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Particle i.d. in MiniBooNE 
Detector is a 12-m diameter tank 
of mineral oil exposed to a beam 
of neutrinos and viewed by 1520 
photomultiplier tubes: 

H.J. Yang, MiniBooNE PID, DNP06 

Search for νµ to νe oscillations  
required particle i.d. using  
information from the PMTs. 
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Decision trees 
Out of all the input variables, find the one for which with a 
single cut gives best improvement in signal purity: 

Example by MiniBooNE experiment, 
B. Roe et al., NIM 543 (2005) 577 

where wi. is the weight of the ith event. 

Resulting nodes classified as either 
signal/background. 

Iterate until stop criterion reached 
based on e.g. purity or minimum 
number of events in a node. 
The set of cuts defines the decision 
boundary. 
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Finding the best single cut 
The level of separation within a node can, e.g., be quantified by 
the Gini coefficient, calculated from the (s or b) purity as: 

For a cut that splits a set of events a into subsets b and c, one 
can quantify the improvement in separation by the change in  
weighted Gini coefficients: 

where, e.g.,   

Choose e.g. the cut to the maximize Δ; a variant of this 
scheme can use instead of Gini e.g. the misclassification rate: 
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Decision trees (2) 
The terminal nodes (leaves) are classified a signal or background 
depending on majority vote (or e.g. signal fraction greater than a 
specified threshold). 

This classifies every point in input-variable space as either signal 
or background, a decision tree classifier, with discriminant function 

f(x) = 1 if x in signal region, -1 otherwise 

Decision trees tend to be very sensitive to statistical fluctuations in 
the training sample. 

Methods such as boosting can be used to stabilize the tree. 
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Monitoring overtraining  

From MiniBooNE 
example: 
Performance stable 
after a few hundred 
trees. 
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Comparison of boosting algorithms 
A number of boosting algorithms on the market; differ in the 
update rule for the weights. 

,B. Roe et al., NIM 543 (2005) 577 
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Testing significance / goodness-of-fit 
Suppose hypothesis H predicts pdf  
observations 

for a set of 

We observe a single point in this space: 

What can we say about the validity of H in light of the data? 

Decide what part of the  
data space represents less  
compatibility with H than  
does the point       less  

compatible 
with H 

     more  
compatible 
with H 

(Not unique!) 
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p-values 

where π (H) is the prior probability for H. 

Express ‘goodness-of-fit’ by giving the p-value for H: 

p = probability, under assumption of H, to observe data with  
equal or lesser compatibility with H relative to the data we got.  

This is not the probability that H is true! 

In frequentist statistics we don’t talk about P(H) (unless H  
represents a repeatable observation). In Bayesian statistics we do;  
use Bayes’ theorem to obtain 

For now stick with the frequentist approach;  
result is p-value, regrettably easy to misinterpret as P(H). 
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p-value example:  testing whether a coin is ‘fair’ 

i.e. p = 0.0026 is the probability of obtaining such a bizarre 
result (or more so) ‘by chance’, under the assumption of H. 

Probability to observe n heads in N coin tosses is binomial: 

Hypothesis H:  the coin is fair (p = 0.5). 

Suppose we toss the coin N = 20 times and get n = 17 heads. 

Region of data space with equal or lesser compatibility with  
H relative to n = 17 is:  n = 17, 18, 19, 20, 0, 1, 2, 3.  Adding 
up the probabilities for these values gives: 
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The significance of an observed signal 
Suppose we observe n events; these can consist of: 

nb events from known processes (background) 
ns events from a new process (signal) 

If ns, nb are Poisson r.v.s with means s, b, then n = ns + nb 
is also Poisson, mean = s + b: 

Suppose b = 0.5, and we observe nobs = 5.  Should we claim 
evidence for a new discovery?   

    Give p-value for hypothesis s = 0: 
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Significance from p-value 
Often define significance Z as the number of standard deviations 
that a Gaussian variable would fluctuate in one direction 
to give the same p-value. 

1 - TMath::Freq 

TMath::NormQuantile 
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G. Cowan  Computing and Statistical Data Analysis / Stat 6 20 

The significance of a peak 

Suppose we measure a value  
x for each event and find: 

Each bin (observed) is a 
Poisson r.v., means are 
given by dashed lines. 

In the two bins with the peak, 11 entries found with b = 3.2. 
The p-value for the s = 0 hypothesis is: 
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The significance of a peak (2) 

But... did we know where to look for the peak? 

 →  give P(n ≥ 11) in any 2 adjacent bins 

Is the observed width consistent with the expected x resolution? 

 →  take x window several times the expected resolution 

How many bins × distributions have we looked at? 

  → look at a thousand of them, you’ll find a 10-3 effect 

Did we adjust the cuts to ‘enhance’ the peak? 

  → freeze cuts, repeat analysis with new data 

How about the bins to the sides of the peak... (too low!) 

Should we publish???? 
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When to publish 
HEP folklore is to claim discovery when p = 2.9 × 10-7, 
corresponding to a significance Z = 5. 

This is very subjective and really should depend on the  
prior probability of the phenomenon in question, e.g., 
 
         phenomenon        reasonable p-value for discovery 

 D0D0 mixing   ~0.05 
 Higgs    ~ 10-7  (?) 
 Life on Mars   ~10-10	

	
Astrology 	
 	
∼10-20	


One should also consider the degree to which the data are 
compatible with the new phenomenon, not only the level of 
disagreement with the null hypothesis; p-value is only first step! 

Computing and Statistical Data Analysis / Stat 6 
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Distribution of  the p-value 
The p-value is a function of the data, and is thus itself a random 
variable with a given distribution.  Suppose the p-value of H is  
found from a test statistic t(x) as 

Computing and Statistical Data Analysis / Stat 6 

The pdf of pH under assumption of H is 

In general for continuous data,  under  
assumption of H, pH ~ Uniform[0,1] 
and is concentrated toward zero for  
Some (broad) class of alternatives. pH 

g(pH|H) 

0 1 

g(pH|H′) 



G. Cowan  24 

Using a p-value to define test of H0 

So the probability to find the p-value of H0, p0, less than α is 

Computing and Statistical Data Analysis / Stat 6 

We started by defining critical region in the original data 
space (x), then reformulated this in terms of a scalar test  
statistic t(x). 

We can take this one step further and define the critical region  
of a test of H0 with size α as the set of data space where p0 ≤ α. 

Formally the p-value relates only to H0, but the resulting test will 
have a given power with respect to a given alternative H1. 
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Pearson’s χ2 statistic 

Test statistic for comparing observed data 
(ni independent) to predicted mean values 

For ni ~ Poisson(νi) we have V[ni] = νi, so this becomes  

(Pearson’s χ2  
statistic) 

χ2 = sum of squares of the deviations of the ith measurement from  
the ith prediction, using σi as the ‘yardstick’ for the comparison. 
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Pearson’s χ2 test 
If ni are Gaussian with mean νi and std. dev. σi, i.e., ni ~ N(νi , σi

2),  
then Pearson’s χ2 will follow the χ2 pdf (here for χ2 = z): 

If the ni are Poisson with νi >> 1 (in practice OK for νi > 5) 
then the Poisson dist. becomes Gaussian and therefore Pearson’s 
χ2 statistic here as well follows the χ2 pdf. 

The χ2 value obtained from the data then gives the p-value: 
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The ‘χ2 per degree of freedom’ 
Recall that for the chi-square pdf for N degrees of freedom, 

This makes sense:  if the hypothesized νi are right, the rms  
deviation of ni from νi is σi, so each term in the sum contributes ~ 1. 

One often sees χ2/N reported as a measure of goodness-of-fit. 
But...  better to give χ2and N separately.  Consider, e.g., 

i.e. for N large, even a χ2 per dof only a bit greater than one can 
imply a small p-value, i.e., poor goodness-of-fit. 
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Pearson’s χ2 with multinomial data 

If  is fixed, then we might model ni ~ binomial  

I.e.  with pi = ni / ntot. ~ multinomial. 

In this case we can take Pearson’s χ2 statistic to be 

If all pi ntot >> 1 then this will follow the chi-square pdf for 
N-1 degrees of freedom. 
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Example of a χ2 test 

← This gives 

for N = 20 dof. 

Now need to find p-value, but... many bins have few (or no) 
entries, so here we do not expect χ2 to follow the chi-square pdf. 
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Using MC to find distribution of χ2 statistic  

The Pearson χ2 statistic still reflects the level of agreement 
between data and prediction, i.e., it is still a ‘valid’ test statistic. 

To find its sampling distribution, simulate the data with a 
Monte Carlo program: 

Here data sample simulated 106 

times.  The fraction of times we  
find χ2 > 29.8 gives the  p-value: 

 p = 0.11 

If we had used the chi-square pdf 
we would find p = 0.073. 
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Parameter estimation 
The parameters of a pdf are constants that characterize 
 its shape, e.g. 

r.v. 

Suppose we have a sample of observed values: 

parameter 

We want to find some function of the data to estimate the  
parameter(s): 

←  estimator written with a hat 

Sometimes we say ‘estimator’ for the function of x1, ..., xn; 
‘estimate’ for the value of the estimator with a particular data set. 
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Properties of estimators 
If we were to repeat the entire measurement, the estimates 
from each would follow a pdf: 

biased large 
variance 

best 

We want small (or zero) bias (systematic error): 
→  average of repeated measurements should tend to true value. 

And we want a small variance (statistical error): 
→  small bias & variance are in general conflicting criteria 
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An estimator for the mean (expectation value) 

Parameter: 

Estimator: 

We find: 

(‘sample mean’) 
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An estimator for the variance 

Parameter: 

Estimator: 

(factor of n-1 makes this so) 

(‘sample 
variance’) 

We find: 

where 


