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Particle 1.d. in MiniBooNE
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Decision trees

Out of all the mnput variables, find the one for which with a
single cut gives best improvement 1n signal purity:

signal !
signal ! background !

where w.. 1s the weight of the ith event.

P=

Resulting nodes classified as either
signal/background.

[terate until stop criterion reached
based on e.g. purity or minimum
number of events in a node.

The set of cuts defines the decision
boundary.
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Finding the best single cut

The level of separation within a node can, e.g., be quantified by
the Gini coefficient, calculated from the (s or b) purity as:

G =p(l—p)

For a cut that splits a set of events a into subsets b and ¢, one
can quantify the improvement in separation by the change in
weighted Gini coefficients:

A=W,G, —W,Gy, — W.G. where,eg., W, = Z w;
1ea

Choose e.g. the cut to the maximize A; a variant of this
scheme can use instead of Gini e.g. the misclassification rate:

c=1—max(p,1 —p)
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Decision trees (2)

The terminal nodes (leaves) are classified a signal or background
depending on majority vote (or e.g. signal fraction greater than a
specified threshold).

This classifies every point in input-variable space as either signal
or background, a decision tree classifier, with discriminant function

fix) =1 1f x in signal region, —1 otherwise

Decision trees tend to be very sensitive to statistical fluctuations in
the training sample.

Methods such as boosting can be used to stabilize the tree.
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Boosting

Boosting is a general method of creating a set of classifiers
which can be combined to achieve a new classifier that 1s more stable
and has a smaller error than any individual one.

Often applied to decision trees but, can be applied to any classifier.

Suppose we have a training sample 7 consisting of N events with

X ..., X event data vectors (each x multivariate)

Yysees ¥, tTUE class labels, +1 for signal, —1 for background

W, W event weights

Now define a rule to create from this an ensemble of training samples
I,T, .., derive a classifier from each and average them.

Trick 1s to create modifications in the training sample that give
classifiers with smaller error rates than those of the preceding ones.

A successful example is AdaBoost (Freund and Schapire, 1997).
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AdaBoost

First initialize the training sample 7' using the original

X peeees X event data vectors

Yo ¥y tTUE Class labels (+1 or -1)
w D
1

with the weights equal and normalized such that

> =1

i=1

s W event weights

Then train the classifier fl (x) (e.g. a decision tree) with a method that
incorporates the event weights. For an event with data x,

fx)>0 classify as signal

fx)<0 classity as background
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Updating the event weights

Define the training sample for step k+1 from that of k by updating
the event weights according to

_ V.12
(k+l)_ (k) e cxkfk(xl).}l
w. = w.
/ ;
i = event index k = training sample index

where Zk 1s a normalization factor defined such that the sum of the

weights over all events 1s equal to one.

Therefore event weight for event i is increased in the k+1 training
sample 1f it was classified incorrectly in sample k.

Idea is that next time around the classifier should pay more

attention to this event and try to get it right.
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Error rate of the kth classifier

At each step the classifiers f (x) are defined so as to minimize

the error rate €.

ZW (v, f1(x;)<0)

where /(X) = 1 1f X 1s true and is zero otherwise.
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Assigning the classitier score

Assign a score to the kth classifier based on its error rate,

x,=In
€k

If we define the final classifier as f(x

||M><:

then one can show that its error rate on the training data satisfies
the bound

K
e<[]2Ve (1—¢,)
k=1
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AdaBoost error rate

So providing each classifier in the ensemble has € < 2, i.e., better than

random guessing, then the error rate for the final classifier on the training
data (not on unseen data) drops to zero.

That 1s, for sufficiently large K the training data will be over fitted.

The error rate on a validation sample would reach some minimum after a
certain number of steps and then could rise.

So the procedure is to monitor the error rate of the combined classifier at
each step with a validation sample and to stop before it starts to rise.

Although in principle AdaBoost must overfit, in practice following this
procedure overtraining is not a big problem.
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BDT example from MiniBooNE

~200 input variables for each event (v interaction producing e, |l or T).

Each individual tree is relatively weak, with a misclassification
error rate ~ 0.4 — 0.45

_l 1 1 | I | | 1 I | | I I I | | I I I | 1

1 7 e un-weighted misclassified event rate 3

0.8 _: a weighted musclassified event rate. err_ _

= o B T B*hl((l—enm)--‘errm), ]5=05 ;

S 06 - - T L . B L
S
< 04
0.2 4
.

0 200 400 600 800 11000
Number of Tree Iterations

B. Roe et al., NIM 543 (2005) 577
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Monitoring overtraining

From MiniBooNE
example:

Performance stable
after a few hundred
trees.

G. Cowan

Training MC Samples .VS.  Testing MC Samples
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,B. Roe et al., NIM 543 (2005) 577

Comparison of boosting algorithms

A number of boosting algorithms on the market; differ in the
update rule for the weights.
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Testing significance / goodness-of-fit

Suppose hypothesis H predicts pdf f(Z|H) for a set of

observations £ = (x1,...,Zn) .
We observe a single point in this space: Zgpg

What can we say about the validity of A in light of the data?

Decide what part of the =z Lobs .
data space represents less \ v Mote
compatibility with H than / compatible
does the point ZTps - 7 less with
(Not unique!) compatible
with H
> T;
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p-values
Express ‘goodness-of-fit’ by giving the p-value for H:

p = probability, under assumption of H, to observe data with
equal or lesser compatibility with H relative to the data we got.

A This 1s not the probability that A 1s true!

In frequentist statistics we don’t talk about P(H) (unless H
represents a repeatable observation). In Bayesian statistics we do;
use Bayes’ theorem to obtain

P(Z|H)w(H)

PUH|Z) = [ P(Z|H)x(H) dH

where 7 (H) is the prior probability for H.

For now stick with the frequentist approach;
result is p-value, regrettably easy to misinterpret as P(H).
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p-value example: testing whether a coin is fair’

Probability to observe n heads in N coin tosses 1s binomial:

n!(NNi n)!p”(l —p)N "

Hypothesis H: the coin 1s fair (p = 0.5).

P(n;p,N) =

Suppose we toss the coin N =20 times and get n = 17 heads.

Region of data space with equal or lesser compatibility with
Hrelativeton=171s: n=17,18,19, 20,0, 1, 2, 3. Adding
up the probabilities for these values gives:

P(n=0,1,2,3,17,18,19, or 20) = 0.0026 .

i.e. p = 0.0026 1s the probability of obtaining such a bizarre
result (or more so) ‘by chance’, under the assumption of H.

G. Cowan Computing and Statistical Data Analysis / Stat 6
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The significance of an observed signal

Suppose we observe n events; these can consist of:

n,, events from known processes (background)
n, events from a new process (signal)

If n, n, are Poisson r.v.s with means s, b, then n = n, + n,
1s also Poisson, mean = s + b:

(s +Ib) 6_(8+b)

n.

P(n;s,b) =

Suppose b = 0.5, and we observe n_, .= 5. Should we claim
evidence for a new discovery?

Give p-value for hypothesis s = 0:
p-value = P(n>5;b=0.5,s=0)
= 1.7x107% # P(s=0)!
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Significance from p-value

Often define significance Z as the number of standard deviations
that a Gaussian variable would fluctuate in one direction
to give the same p-value.

e

T x

2.0

0 ]. —:UQ/Q
p=/ € de:l—(I)(Z) 1 - TMath: :Freq

Z =311 -p) TMath: :NormQuantile
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The significance of a peak

)
z, —— data

Suppose we measure a value

B8  --- cted back d
x for each event and find: expected backgroun

Each bin (observed) 1s a 41
Poisson r.v., means are s |
given by dashed lines.

In the two bins with the peak, 11 entries found with 5 = 3.2.
The p-value for the s = 0 hypothesis is:

P(n>11b=32,5s=0)=5.0x 1074
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The significance of a peak (2)

But... did we know where to look for the peak?
— give P(n > 11) in any 2 adjacent bins
Is the observed width consistent with the expected x resolution?
— take x window several times the expected resolution
How many bins x distributions have we looked at?
— look at a thousand of them, you’ll find a 103 effect
Did we adjust the cuts to ‘enhance’ the peak?
— freeze cuts, repeat analysis with new data

How about the bins to the sides of the peak... (too low!)
Should we publish???7?

G. Cowan Computing and Statistical Data Analysis / Stat 6
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When to publish

HEP folklore is to claim discovery when p =2.9 x 107/,
corresponding to a significance Z = 5.

This 1s very subjective and really should depend on the
prior probability of the phenomenon in question, e.g.,

phenomenon reasonable p-value for discovery
DYDY mixing ~0.05
Higgs ~ 1077 (?)
Life on Mars ~10710
Astrology ~1072Y

One should also consider the degree to which the data are
compatible with the new phenomenon, not only the level of
disagreement with the null hypothesis; p-value 1s only first step!

G. Cowan Computing and Statistical Data Analysis / Stat 6
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Distribution of the p-value

The p-value 1s a function of the data, and is thus itself a random
variable with a given distribution. Suppose the p-value of H 1s
found from a test statistic #(x) as

_m:/'ﬂﬂmw
Jt
The pdf of p,, under assumption of H is

FEH) _JEH) g < < 1)

e = oy on ~ )~ =S

H
In general for continuous data, under /g(pH )
assumption of H, p,, ~ Uniform[0,1] . &pylH)
and 1s concentrated toward zero for

Some (broad) class of alternatives. 0 | P
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Using a p-value to define test of H,

So the probability to find the p-value of H, p,, less than « 1s
P(po < alHp) = a

We started by defining critical region in the original data
space (x), then reformulated this in terms of a scalar test
statistic #(x).

We can take this one step further and define the critical region
of a test of i, with size « as the set of data space where p, < c.

Formally the p-value relates only to /), but the resulting test will
have a given power with respect to a given alternative /.

G. Cowan Computing and Statistical Data Analysis / Stat 6
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Pearson’ s y? statistic

Test statistic for comparing observed data @ = (nq,...,nN)
(n, independent) to predicted mean values 7 = (v1,...,VN) :

2 ;
— Vz) (Pearson’s y?

, where ¢ = V[n,] . o
statistic)

Z

x> = sum of squares of the deviations of the ith measurement from
the ith prediction, using o; as the ‘yardstick’ for the comparison.

For n, ~ Poisson(v;) we have V[n,] = v, so this becomes

N
C=3 (ni_’/i)z.

i=1 Vi
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Pearson’ s x? test

If n, are Gaussian with mean v, and std. dev. o, i.e., n, ~ N(v,, 07),
then Pearson’s y? will follow the y? pdf (here for x> = z):

: 1 N/2—-1_—z/2
N) =
fXQ(Z' ) 2N/2|—(N/2)Z €

If the n, are Poisson with v, >> 1 (in practice OK for v. > 5)

then the Poisson dist. becomes Gaussian and therefore Pearson’s
x° statistic here as well follows the x? pdf.

The »? value obtained from the data then gives the p-value:

p:/XOQOfXQ(Z;N)dZ.
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The “y? per degree of freedom’

Recall that for the chi-square pdf for NV degrees of freedom,
FElz] =N, V][z]=2N.

This makes sense: 1f the hypothesized v, are right, the rms

deviation of »n; from v, 1s 0;, so each term in the sum contributes ~ 1.

One often sees x?/N reported as a measure of goodness-of-fit.
But... better to give y*and N separately. Consider, e.g.,

v2 = 15, N=10 — p—value=0.13,

y2 = 150, N =100 — p—value=9.0 x 104

i.e. for N large, even a x? per dof only a bit greater than one can
imply a small p-value, 1.e., poor goodness-of-fit.

G. Cowan Computing and Statistical Data Analysis / Stat 6
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Pearson’ s y? with multinomial data

N
If ntot = ) is fixed, then we might model 7, ~ binomial
i=1
withp.=n;,/n,. le 7 =(n1,...,ny) ~multinomial.

In this case we can take Pearson’s y? statistic to be

N
> (n; — pintot)?
X" =)
= PiNtot

If all p; n,,>> 1 then this will follow the chi-square pdf for
N—-1 degrees of freedom.

G. Cowan Computing and Statistical Data Analysis / Stat 6
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Example of a y? test

= 10 I
= — data

8  --- expected background T «— Th]S giVCS

6 N 2

> (n; —v;) _
| R L
i=1 ¢
, L _
__,T— B il st = SN —
0 | aisintsl for N =20 dof.
5 10 15 20

x

Now need to find p-value, but... many bins have few (or no)
entries, so here we do not expect ¥ to follow the chi-square pdf.
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Using MC to find distribution of y? statistic

The Pearson y~ statistic still reflects the level of agreement
between data and prediction, 1.e., it 1s still a ‘valid’ test statistic.

To find its sampling distribution, simulate the data with a
Monte Carlo program: n; ~ Poisson(v;), i =1, N.

Here data sample simulated 106
times. The fraction of times we

find »* > 29.8 gives the p-value:
p=0.11

If we had used the chi-square pdf
we would find p = 0.073.

—
e
=

0.1

0.08

006 r

004

002 r

—— chi-square pdf for N =20

- —-- pdf from Monte Carlo

—> P-value

\
Y
\\\
 n
1 =

10 20 30 40 50

2
X

G. Cowan Computing and Statistical Data Analysis / Stat 6

60

30



Parameter estimation

The parameters of a pdf are constants that characterize
its shape, e.g.
f(w;0) = —e—x/ ’

/\

I.vV parameter

Suppose we have a sample of observed values: © = (x1,...,xn)

We want to find some function of the data to estimate the
parameter(s):

o(z) «— estimator written with a hat

Sometimes we say ‘estimator’ for the function of x, ..., x,;

no

‘estimate’ for the value of the estimator with a particular data set.
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Properties of estimators

If we were to repeat the entire measurement, the estimates
from each would follow a pdf:

_ Y best

large
variance

g(0;0)

biased

We want small (or zero) bias (systematic error): b= E[0] — 0

— average of repeated measurements should tend to true value.

And we want a small variance (statistical error): V0]

— small bias & variance are in general conflicting criteria
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An estimator for the mean (expectation value)

Parameter: u = E|x]

Estimator: g = Z T; (‘sample mean”)

Weftind: b=FE[g]—pn=0

~ 02
Vil =" (o=

G. Cowan Computing and Statistical Data Analysis / Stat 6
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An estimator for the variance

Parameter: 02 = V[z]

Estimator: o2 = y Z (z; — %)% = (‘sample
e variance’)

We find:
b= E[c;\Q] — 02 =20 (factor of n—1 makes this so)

3 1 n—3
V[UQ]:;OM_n—l

,ug) ,  where

pr = [ (@ w*f@) deo
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