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The likelihood function 
Suppose the entire result of an experiment (set of measurements) 
is a collection of numbers x, and suppose the joint pdf for 
the data x is a function that depends on a set of parameters θ: 

Now evaluate this function with the data obtained and 
regard it as a function of the parameter(s).  This is the 
likelihood function: 

(x constant) 
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The likelihood function for i.i.d.*. data 

Consider n independent observations of x:  x1, ..., xn,  where  
x follows f (x; θ).  The joint pdf for the whole data sample is: 

In this case the likelihood function is 

(xi constant) 

* i.i.d. = independent and identically distributed 
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Maximum likelihood estimators 
If the hypothesized θ is close to the true value, then we expect  
a high probability to get data like that which we actually found. 

So we define the maximum likelihood (ML) estimator(s) to be  
the parameter value(s) for which the likelihood is maximum. 

 ML estimators not guaranteed to have any ‘optimal’ 
 properties, (but in practice they’re very good). 
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ML example:  parameter of exponential pdf 

Consider exponential pdf, 

and suppose we have i.i.d. data, 

The likelihood function is 

The value of τ for which L(τ) is maximum also gives the  
maximum value of its logarithm (the log-likelihood function): 
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ML example:  parameter of exponential pdf (2) 

Find its maximum by setting  

→ 

Monte Carlo test:   
 generate 50  values 
 using τ = 1: 

 
We find the ML estimate: 
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Functions of ML estimators 

Suppose we had written the exponential pdf as 
i.e., we use λ = 1/τ.  What is the ML estimator for λ? 

For a function α(θ) of a parameter θ, it doesn’t matter 
whether we express L as a function of α or θ. 

The ML estimator of a function α(θ) is simply   

So for the decay constant we have 

Caveat:    is biased, even though is unbiased. 

(bias →0 for n →∞) Can show 
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Example of ML:  parameters of Gaussian pdf 
Consider independent x1, ..., xn,  with xi ~ Gaussian (µ,σ2) 

The log-likelihood function is 
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Example of ML:  parameters of Gaussian pdf (2) 
Set derivatives with respect to µ, σ2 to zero and solve, 

We already know that  the estimator for µ  is unbiased. 

But we find, however, so ML estimator 

for σ2 has a bias, but b→0 for n→∞.  Recall, however, that 

is an unbiased estimator for σ2. 
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Variance of estimators:  Monte Carlo method 
Having estimated our parameter we now need to report its 
‘statistical error’, i.e., how widely distributed would estimates 
be if we were to repeat the entire measurement many times. 

One way to do this would be to simulate the entire experiment 
many times with a Monte Carlo program (use ML estimate for MC). 

For exponential example, from  
sample variance of estimates 
we find: 

Note distribution of estimates is roughly 
Gaussian − (almost) always true for  
ML in large sample limit. 
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Variance of estimators from information inequality 
The information inequality (RCF) sets a lower bound on the  
variance of any estimator (not only ML): 

Often the bias b is small, and equality either holds exactly or 
is a good approximation (e.g. large data sample limit).   Then, 

Estimate this using the 2nd derivative of  ln L at its maximum: 

Minimum Variance 
Bound (MVB)  
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Variance of estimators: graphical method 
Expand ln L (θ) about its maximum: 

First term is ln Lmax, second term is zero, for third term use  
information inequality (assume equality): 

i.e., 

→  to get , change θ away from until ln L decreases by 1/2. 
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Example of variance by graphical method 

ML example with exponential: 

Not quite parabolic ln L since finite sample size (n = 50). 
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Information inequality for n parameters 
Suppose we have estimated n parameters    

The (inverse) minimum variance bound is given by the  
Fisher information matrix: 

The information inequality then states that V - I-1 is a positive 
semi-definite matrix, where                                  Therefore 

Often use I-1 as an approximation for covariance matrix,  
estimate using e.g. matrix of 2nd derivatives at maximum of L. 
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Example of ML with 2 parameters 
Consider a scattering angle distribution with x = cos θ, 

or if xmin < x < xmax, need always to normalize so that  

Example:  α = 0.5, β = 0.5, xmin = -0.95, xmax = 0.95,  
generate n = 2000 events with Monte Carlo. 
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Example of ML with 2 parameters:  fit result 
Finding maximum of ln L(α, β) numerically (MINUIT) gives 

N.B.  No binning of data for fit, 
but can compare to histogram for 
goodness-of-fit (e.g. ‘visual’ or χ2).  

(Co)variances from (MINUIT routine  
HESSE) 
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Two-parameter fit:  MC study 
Repeat ML fit with 500 experiments, all with n = 2000 events: 

Estimates average to ~ true values; 
(Co)variances close to previous estimates; 
marginal pdfs approximately Gaussian. 
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The ln Lmax - 1/2 contour 

For large n, ln L takes on quadratic form near maximum: 

The contour  is an ellipse: 
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(Co)variances from ln L contour 

→ Tangent lines to contours give standard deviations. 

→ Angle of ellipse φ related to correlation: 

Correlations between estimators result in an increase 
in their standard deviations (statistical errors). 

The α, β plane for the first 
MC data set 
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Information inequality for n parameters 
Suppose we have estimated n parameters    

The (inverse) minimum variance bound is given by the  
Fisher information matrix: 

The information inequality then states that V - I-1 is a positive 
semi-definite matrix, where                                  Therefore 

Often use I-1 as an approximation for covariance matrix,  
estimate using e.g. matrix of 2nd derivatives at maximum of L. 
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Extended ML 
Sometimes regard n not as fixed, but as a Poisson r.v., mean ν. 

Result of experiment defined as: n, x1, ..., xn. 

The (extended) likelihood function is: 

Suppose theory gives ν = ν(θ), then the log-likelihood is  

where C represents terms not depending on θ. 
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Extended ML (2) 

Extended ML uses more info → smaller errors for  

Example:  expected number of events  
where the total cross section σ(θ) is predicted as a function of 
the parameters of a theory, as is the distribution of a variable x.  

If ν does not depend on θ but remains a free parameter, 
extended ML gives:  

Important e.g. for anomalous couplings in e+e- → W+W-	
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Extended ML example 
Consider two types of events (e.g., signal and background) each  
of which predict a given pdf for the variable x:  fs(x) and fb(x). 

We observe a mixture of the two event types, signal fraction = θ,  
expected total number = ν, observed total number = n. 

Let goal is to estimate µs, µb. 

→ 
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Extended ML example (2) 

Maximize log-likelihood in  
terms of µs and µb: 

Monte Carlo example 
with combination of 
exponential and Gaussian: 

Here errors reflect total Poisson 
fluctuation as well as that in  
proportion of signal/background. 


