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ML with binned data

N
Often put data into a histogram: 7@ = (nq,...,ny), ntet = »_ 7y
i=1
N
Hypothesisis 7= (v1,...,vN), tot = »_ v;  Where
i=1

vi0) = vot | f(a;0) da

bin<

If we model the data as multinomial (n,,, constant),

ni ny
. Ntot! V1 VN
£ 7) = — .( ) ( )
ni:-... NN \Ntot Ntot

N
then the log-likelihood function is: InL(F) = 3 n;Iny;(0) + C
i=1
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ML example with binned data

Previous example with exponential, now put data into histogram:
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Limit of zero bin width — usual unbinned ML.

If n. treated as Poisson, we get extended log-likelihood:

N
In L(vtot, 0) = —vtot + > niInv;(viot, 0) + C
i=1
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Relationship between ML and Bayesian estimators

In Bayesian statistics, both @ and x are random variables:
L(0) = L(f|9) — fjoint(fW)

Recall the Bayesian method:

Use subjective probability for hypotheses (6);
before experiment, knowledge summarized by prior pdf 7( 6);
use Bayes’ theorem to update prior in light of data:

L(Z|0)m(0)
[ L(Z6D (") db’

p(0|T) =
/'

Posterior pdf (conditional pdf for 6 given x)
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ML and Bayesian estimators (2)

Purist Bayesian: p(6|x) contains all knowledge about 6.
Pragmatist Bayesian: p(0|x) could be a complicated function,

— summarize using an estimator 9Bayes

Take mode of p(60 | x) , (could also use e.g. expectation value)

What do we use for i(60)? No golden rule (subjective!), often
represent ‘prior ignorance’ by si( 6) = constant, in which case

eBayes = OmL

But... we could have used a different parameter, e.g., A= 1/6,
and 1f prior 7, 0) 1s constant, then i,(A) 1s not!

‘Complete prior ignorance’ is not well defined.
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The method of least squares

Suppose we measure N values, y,, ..., Yy,
assumed to be independent Gaussian
r.v.s with

Ely;] = Axs;0) .

Assume known values of the control
variable x,, ..., x,, and known variances

Vil = o7 .

y
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15 F

i L

05 r

0

We want to estimate 6, 1.e., fit the curve to the data points.

The likelithood function is

(0) IJ_V[ f(yi; 0) IJ_V[ /—1
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The method of least squares (2)

The log-likelihood function 1s therefore

N . 2
- — Xz 0
In L(0) = _1 E (s (;32 ) + terms not depending on 0
2 . 1
1=

g,

So maximizing the likelihood is equivalent to minimizing

N ( , . 2
XQ(Q) — Z ) 2’1,
i=1 i
Minimum defines the least squares (LS) estimator 0.

Very often measurement errors are ~Gaussian and so ML
and LS are essentially the same.

Often minimize y? numerically (e.g. program MINUIT).
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LS with correlated measurements

If the y, follow a multivariate Gaussian, covariance matrix V,

- 1
y, A\, V)= ex
9y ) (2m) N2V |1/2

1 . - L o
P —5(9 — A)TV 1(y —A)
Then maximizing the likelihood 1s equivalent to minimizing

N
X2(0) = 3 (yi— Az 0) (V1 (y; — M(xj; 0))
1,J=1
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