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ML with binned data 
Often put data into a histogram: 

Hypothesis is  where 

If we model the data as multinomial (ntot constant),   

then the log-likelihood function is: 
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ML example with binned data 
Previous example with exponential, now put data into histogram: 

Limit of zero bin width → usual unbinned ML. 

If ni treated as Poisson, we get extended log-likelihood: 
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Relationship between ML and Bayesian estimators 
In Bayesian statistics, both θ and x are random variables: 

Recall the Bayesian method: 

Use subjective probability for hypotheses (θ); 

before experiment, knowledge summarized by prior pdf π(θ); 

use Bayes’ theorem to update prior in light of data: 

Posterior pdf (conditional pdf for θ given x) 



G. Cowan  Computing and Statistical Data Analysis / Stat 8 5 

ML and Bayesian estimators (2) 
Purist Bayesian:  p(θ | x) contains all knowledge about θ. 

Pragmatist Bayesian:  p(θ | x) could be a complicated function, 

→ summarize using an estimator  

Take mode of p(θ | x) ,  (could also use e.g. expectation value) 

What do we use for π(θ)?  No golden rule (subjective!), often 
represent ‘prior ignorance’ by π(θ) = constant, in which case 

But... we could have used a different parameter, e.g., λ = 1/θ, 
and if prior πθ(θ) is constant, then πλ(λ) is not!   

 ‘Complete prior ignorance’ is not well defined. 
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The method of least squares 
Suppose we measure N values, y1, ..., yN,  
assumed to be  independent Gaussian  
r.v.s with  

Assume known values of the control 
variable x1, ..., xN and known variances 

The likelihood function is 

We want to estimate θ, i.e., fit the curve to the data points. 
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The method of least squares (2) 

The log-likelihood function is therefore 

So maximizing the likelihood is equivalent to minimizing 

Minimum defines the least squares (LS) estimator  

Very often measurement errors are ~Gaussian and so ML 
and LS are essentially the same. 

Often minimize χ2 numerically (e.g. program MINUIT). 
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LS with correlated measurements 
If the yi follow a multivariate Gaussian, covariance matrix V, 

Then maximizing the likelihood is equivalent to minimizing 


