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Example of least squares fit

p
Fit a polynomial of order p: A(z;00,...,0p) = >  Onpz"
n=0

Y ' ' ' ' 3
6 — O"order. x2=455 :
-~ - 1% order. x2= 399 :
4" order, ¥2=0.0 I,"
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Variance of LS estimators

In most cases of interest we obtain the variance in a manner
similar to ML. E.g. for data ~ Gaussian we have

v2(0) = —21n L(0)

and so £
— (‘92X2 -1 465 |
o 9‘ ~ 2 892 R
0=0
46

or for the graphical method we

take the values of 6 where 455

X2(9) — Xr2nin _I_ 1

I

(@)
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Two-parameter LS fit

2-parameter case (line with nonzero slope):

08

06

O = 0.93 =+ 0.30, °
01 = 0.68 £ 0.10

cov|fy, 01] = —0.028
r=—0.90

Y2 = 3.99 )

Tangent lines — T4, Ty

(b)

04

06

0.8 1

Angle of ellipse — correlation (same as for ML)
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Goodness-of-fit with least squares

The value of the x? at its minimum is a measure of the level
of agreement between the data and fitted curve:
> _ % (yi — M= 0))?

Xmin 5
i=1 0

It can therefore be employed as a goodness-of-fit statistic to
test the hypothesized functional form A(x; 6).

We can show that if the hypothesis is correct, then the statistic
t = .. follows the chi-square pdf,

1
. _ ng/2—1_—t/2
na) = e ngray” ¢

where the number of degrees of freedom i1s

ny = number of data points — number of fitted parameters
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Goodness-of-fit with least squares (2)

The chi-square pdf has an expectation value equal to the number
of degrees of freedom, so if )?_. = n,the fitis ‘good’.

More generally, find the p-value: p = / ) f(t;ng) dt

Xmin
This is the probability of obtaining a x?, . as high as the one
we got, or higher, if the hypothesis is correct.

E.g. for the previous example with 1st order polynomial (line),

X2 = 3.99, ng=>5-2=3, p = 0.263

whereas for the Oth order polynomial (horizontal line),
X2, = 45.5, ng=5-1=4, p=23.1x10""7
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Goodness-of-fit vs. statistical errors

Small statistical error does not mean a good fit (nor vice versa).
Curvature of X2 near its minimum — statistical errors (0'9*)

Value of X12nin — goodness-of-fit

Horizontal line fit, move the data points, keep errors on points same:

y

I I I I I

. 6 — 6,=284+013 .
Op = 2.84 +0.13 =448
2 B -
Xmin = 4.48 ! + {
| |
Variance same as before, _ 1 1

2 ;
NOW Xpmin good’.
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Goodness-of-fit vs. stat. errors (2)

— X2((90) shifted down, same curvature as before.

Variance of estimator (statistical error) tells us:
if experiment repeated many times, how wide is the distribution

of the estimates @. (Doesn’t tell us whether hypothesis correct.)

P-value tells us:
if hypothesis is correct and experiment repeated many times,
what fraction will give equal or worse agreement between data

and hypothesis according to the statistic X12ni11°

Low P-value — hypothesis may be wrong — systematic error.
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LS with binned data

1 1 T

Jix)

Histogram: 0g | - fited pdf

N bins, 1 entries.
06 r

Hypothesized pdf:
f(z;0) 04 |

02 r

— normalized histogram

We have
Y; = number of entries in bin 2,

— max — -

Xi(0) =n [ fz;0)dz = npi(0)

2
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LS with binned data (2)

LS fit: minimize

where 03 = V[yz-], here not known a priori.

Treat the y; as Poisson r.v.s, in place of true variance take either

)

o7 =MX(0) (LS method)

o? =1vy;  (Modified LS method)

1
MLS sometimes easier computationally, but X12nin no longer follows

chi-square pdf (or is undefined) if some bins have few (or no) entries.
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LS with binned data — normalization

Do not ‘fit the normalization’:

max — —

/\z-(ﬁ—', V) = I//men f(z;0)dx = vp;(0)

Ly

i.e. introduce adjustable v, fit along with 6.

U is a bad estimator for 1 (which we know, anyway!)

X 12nin
2

IQLSI’I?J-}-

A . 9
VMLS = T — Xmin
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LS normalization example
Example with n = 400 entries, N = 20 bins:

< 80 I 4ata (400 entries) @ 1 = 60— data (400 entries) (b)

-—— LS: ¥*=17.1,v=4085+20.2 -—- LS: ¥*=17.3, v = 400 (fixed)

---------- MLS: y2=17.8,v=3822+195 wwee ML: %2 =17.6, 9= 400.0 £20.0

40 R
20
0 1 1 1 0 1 1 1
0 0.5 1 15 2 0 05 1 15
X

2
Expect Xz, around N — m,
— relative error in © large when /N large, n small

Either get n directly from data for LS (or better, use ML).
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Using LS to combine measurements

Use LS to obtain weighted average of /N measurements of A:

Y; = result of measurement ¢, ¢ = 1, ..., IV;
U,l-? = V[yi], assume known;

A = true value (plays role of ).

For uncorrelated ;, minimize

2 N (yi — A’
A) = ,
() igl o?
Set %\E = () and solve,
N 2
< Sl vifo; 2 1
- A= : VAl =
ity 1/0; sy 1/0?
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Combining correlated measurements with LS

If COV[yZ', y]] = V;'j, minimize

) = 5 (i — NV Visly; = N,

i,J=1
N —1
. N o (V7
)\ — w;Yy;. w,; = J=1 Y
— §1 iYi () Z]]Xlzl(v_l)kl

N
VIAl= X wiVijw;

t,J=1

LS A has zero bias, minimum variance (Gauss-Markov theorem).
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Example: averaging two correlated measurements

2
o{ pPO103 )

Suppose we have y1, ¢2, and V' = ( 9
po102 05

A 2—
LA =wp + (- w), w =2 PO

0% + 03 — 2p0,09

R 2\ 2 2
V[)\] . (1 P )0102 2

p— = g
0? + 03 — 2p0109

The increase in inverse variance due to 2nd measurement is

— 2nd measurement can only help.
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Negative weights in LS average
If p > o1/09, — w < 0,

— weighted average is not between Y1 and o (!7)
Cannot happen if correlation due to common data, but

possible for shared random effect; very unreliable if e.g.

P, 01, 09 ncorrect.

See example in SDA Section 7.6.1 with two measurements at same
temperature using two rulers, different thermal expansion coefficients:
average is outside the two measurements; used to improve

estimate of temperature.
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Interval estimation — introduction

In addition to a ‘point estimate’ of a parameter we should report
an interval reflecting its statistical uncertainty.

Desirable properties of such an interval may include:
communicate objectively the result of the experiment;
have a given probability of containing the true parameter;
provide information needed to draw conclusions about
the parameter possibly incorporating stated prior beliefs.

Often use +/— the estimated standard deviation of the estimator.
In some cases, however, this 1s not adequate:

estimate near a physical boundary,

€.g., an observed event rate consistent with zero.

We will look briefly at Frequentist and Bayesian intervals.
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Frequentist confidence intervals

Consider an estimator 8 for a parameter 6 and an estimate 0, .

We also need for all possible 6 its sampling distribution g(0;0) .

Specify upper and lower tail probabilities, e.g., o= 0.05, = 0.05,
then tind functions u(6) and v,4(6) such that:

o = P@>ua(6) s

— /ua(e) 9(8:0) df

B = PO <wvg(0))

vi(0
/5( ) (5. 0)dd

— o0
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Confidence interval from the confidence belt
The region between u,(6) and v4(6) 1s called the confidence belt.

Find points where observed
estimate intersects the T P b
confidence belt. 2 L

This gives the confidence interval [a, b] —

Confidence level = 1 — a — = probability for the interval to
cover true value of the parameter (holds for any possible true 6).
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Confidence intervals by inverting a test

Confidence intervals for a parameter 6 can be found by
defining a test of the hypothesized value 6 (do this for all 6):

Specify values of the data that are ‘disfavoured’ by 6
(critical region) such that P(data in critical region) < y
for a prespecified y, e.g., 0.05 or 0.1.

If data observed in the critical region, reject the value 6.
Now 1nvert the test to define a confidence interval as:

set of @ values that would not be rejected in a test of
size ¥ (confidence leveli1s 1 —y).

The interval will cover the true value of 6 with probability > 1 - y.

Equivalent to confidence belt construction; confidence belt 1s
acceptance region of a test.

G. Cowan Computing and Statistical Data Analysis / Stat 9
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Relation between confidence interval and p-value

Equivalently we can consider a significance test for each
hypothesized value of 6, resulting in a p-value, p,..

If p, <y, then we reject 6.

The confidence interval at CL = 1 — y consists of those values of
6 that are not rejected.

E.g. an upper limit on 0 1s the greatest value for which p,> 7.

In practice find by setting p, = y and solve for 6.
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Confidence intervals in practice

The recipe to find the interval [a, b] boils down to solving

o0 R - oo —~ —~
o :/ g(e;e)cw:[ 9(0:a) do,

ua(6) Oobs
vg(0) N 0, R R
B = /ﬁ g(Q;Q)dQ:/Ong(Q;b)dQ.
e o
% 1 a 8y, @ E Oops D e

05

— a 1s hypothetical value of 6 such that P(0 > 6,,¢) = a.
— b 1s hypothetical value of 6 such that P(6 < 0,,c) = 3.

G. Cowan Computing and Statistical Data Analysis / Stat 9 22



Meaning of a confidence interval

N.B. the interval is random, the true @ is an unknown constant.

A

Often report interval [a, b] as 14

_Cj

So what does 6 = 80.25"’8:%% mean? It does not mean:

P(80.00 < 6 < 80.56) = 1 — o — f3, but rather:

repeat the experiment many times with same sample size,
construct interval according to same prescription each time,

in 1 — a — 3 of experiments, interval will cover 6.
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Central vs. one-sided confidence intervals

Sometimes only specify ¢ or 3, — one-sided interval (limit)
S S
Often take v = 3 = 5 — coverage probability = 1 — 7y

— central confidence interval

N.B. ‘central’ confidence interval does not mean the interval

is symmetric about @, but only that o = 3.

The HEP error ‘convention’: 68.3% central confidence interval.
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Intervals from the likelihood function

In the large sample limit 1t can be shown for ML estimators:

0~ N(0,V) (n-dimensional Gaussian, covariance V)

— — —

L(0) = Lmaxexp [-SQ@.0)| , QW8 = G-HTV1(5-0)

—~
- =

Q(6,0) = Q~ defines a hyper-ellipsoidal confidence region,

P(ellipsoid covers true ) = P(Q(ﬁ 0) < Q~)

If QNN(O V) then Q(g 0) ~ Chi-square(n)

. Qy
coverage probability = 1—~ = / Iy 2(z;n)dz = F Q(ny, n)
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Approximate confidence regions from L(6)

So the recipe to find the confidence region with CL = 1-v 1s:

INnL(6) = In Lmax —

Qy

x2(0) = xZin+ Q-

where Q- = FX_21(1 — v n)

@

1 —

n=1

n=2

n==:3

n =4

n=>m

1.0
2.0
4.0
9.0

0.683
0.843
0.954
0.997

0.393
0.632
0.865
0.989

0.199
0.428
0.739
0.971

0.090
0.264
0.594
0.939

0.037
0.151
0.451
0.891

] —_ (J’\

"In=1 n=2 n=3 n=4 n=>5
0.683 [ 1.00 2.30 3.53 4.72 5.89
0.90 2.71 4.61 6.25 7.78 9.24
0.95 3.84 5.99 7.82 9.49 11.1
0.99 6.63 9.21 11.3 13.3 15.1

For finite samples, these are approximate confidence regions.

Coverage probability not guaranteed to be equal to 1-y;

no simple theorem to say by how far off it will be (use MC).

Remember here the interval 1s random, not the parameter.

G. Cowan
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Example of interval from In L(60)
For n=1 parameter, CL = 0.683, O, = 1.

Our exponential example, now with 7 = 5 observations:

G
- T-AT % T+ A
g 4t ) ’
logL .
S +0.52
45 T T — 0.85_0 30
logL__ —1/2
5 / 1 1 1
0.5 1 1.5 2

G. Cowan Computing and Statistical Data Analysis / Stat 9

27



