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Example of least squares fit 

Fit a polynomial of order p: 
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Variance of LS estimators 
In most cases of interest we obtain the variance in a manner 
similar to ML.  E.g. for data ~ Gaussian we have 

and so 

or for the graphical method we  
take the values of θ where 

1.0 
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Two-parameter LS fit 
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Goodness-of-fit with least squares 
The value of the χ2 at its minimum is a measure of the level 
of agreement between the data and fitted curve: 

It can therefore be employed as a goodness-of-fit statistic to 
test the hypothesized functional form λ(x; θ). 

We can show that if the hypothesis is correct, then the statistic  
t = χ2

min follows the chi-square pdf, 

where the number of degrees of freedom is  

       nd  = number of data points - number of fitted parameters 
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Goodness-of-fit with least squares (2) 
The chi-square pdf has an expectation value equal to the number  
of degrees of freedom, so if χ2

min ≈  nd the fit is ‘good’. 

More generally, find the p-value: 

E.g. for the previous example with 1st order polynomial (line), 

whereas for the 0th order polynomial (horizontal line), 

This is the probability of obtaining a χ2
min as high as the one 

we got, or higher, if the hypothesis is correct. 
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Goodness-of-fit vs. statistical errors 
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Goodness-of-fit vs. stat. errors (2) 
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LS with binned data 
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LS with binned data (2) 
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LS with binned data — normalization 
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LS normalization example 
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Using LS to combine measurements 
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Combining correlated measurements with LS 
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Example: averaging two correlated measurements 
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Negative weights in LS average 
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Interval estimation — introduction 

Often use +/- the estimated standard deviation of the estimator. 
In some cases, however, this is not adequate: 

 estimate near a physical boundary,  
 e.g., an observed event rate consistent with zero. 

In addition to a ‘point estimate’ of a parameter we should report  
an interval reflecting its statistical uncertainty.   

Desirable properties of such an interval may include: 
 communicate objectively the result of the experiment; 
 have a given probability of containing the true parameter; 
 provide information needed to draw conclusions about 
 the parameter possibly incorporating stated prior beliefs. 

We will look briefly at Frequentist and Bayesian intervals. 
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Frequentist confidence intervals 
Consider an estimator for a parameter θ and an estimate 

We also need for all possible θ its sampling distribution 

Specify upper and lower tail probabilities, e.g., α = 0.05, β = 0.05, 
then find functions uα(θ) and vβ(θ) such that: 
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Confidence interval from the confidence belt 

Find points where observed  
estimate intersects the  
confidence belt.   

The region between uα(θ) and vβ(θ) is called the confidence belt. 

This gives the confidence interval [a, b] 

Confidence level = 1 - α - β = probability for the interval to 
cover true value of the parameter (holds for any possible true θ). 
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Confidence intervals by inverting a test 
Confidence intervals for a parameter θ can be found by  
defining a test of the hypothesized value θ (do this for all θ):  

 Specify values of the data that are ‘disfavoured’ by θ  
 (critical region) such that P(data in critical region) ≤ γ  
 for a prespecified γ, e.g., 0.05 or 0.1. 

 If data observed in the critical region, reject the value θ . 

Now invert the test to define a confidence interval as: 

 set of θ values that would not be rejected in a test of 
 size γ  (confidence level is 1 - γ ). 

The interval will cover the true value of θ with probability ≥ 1 - γ. 

Equivalent to confidence belt construction; confidence belt is  
acceptance region of a test. 
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Relation between confidence interval and p-value 

Equivalently we can consider a significance test for each 
hypothesized value of θ, resulting in a p-value, pθ..   
 

 If pθ < γ, then we reject θ.  
 
The confidence interval at CL = 1 – γ consists of those values of  
θ  that are not rejected. 
 
E.g. an upper limit on θ is the greatest value for which pθ ≥ γ.  
 

 In practice find by setting pθ = γ and solve for θ. 

G. Cowan  
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Confidence intervals in practice 
The recipe to find the interval [a, b] boils down to solving 

→ a is hypothetical value of θ such that  

→ b is hypothetical value of θ such that 
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Meaning of a confidence interval 
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Central vs. one-sided confidence intervals 
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Intervals from the likelihood function  
In the large sample limit it can be shown for ML estimators: 

defines a hyper-ellipsoidal confidence region, 

If  then 

(n-dimensional Gaussian, covariance V) 
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Approximate confidence regions from L(θ )  
So the recipe to find the confidence region with CL = 1-γ  is: 

For finite samples, these are approximate confidence regions. 

Coverage probability not guaranteed to be equal to 1-γ ; 

no simple theorem to say by how far off it will be (use MC). 

Remember here the interval is random, not the parameter. 
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Example of interval from ln L(θ )  
For n=1 parameter, CL = 0.683, Qγ = 1. 


