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Abstract

We present improved methods for calculating confidence intervals and p-values in specific class
of statistical model that can incorporate uncertainties in parameters that themselves represent
uncertainties (informally, “errors on errors”) called the Gamma Variance Model (GVM). This
model contains fixed parameters, generically called ε, that represent the relative uncertainties in
estimates of standard deviations of Gaussian distributed measurements. If the ε parameters are
small, one can construct confidence intervals and p-values using standard asymptotic methods.
This is formally similar to the familiar situation of a large data sample, in which estimators for all
adjustable parameters have Gaussian distributions. Here we address the important case where the
ε parameters are not small and as a consequence the asymptotic distributions do not represent a
good approximation. The improvements are based on the technology of higher-order asymptotics
(p∗ approximation and Bartlett correction).

Keywords: Gamma Variance Model, higher-order asymptotics, p∗ approximation, Bartlett correc-
tion
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1 Introduction

In experimental sciences such as Particle Physics one collects data, here denoted as y, and seeks
to make inferences about a hypothesis H that defines the probability distribution for the data,
P (y|H). Often P (y|H) is indexed by a set of parameters of interest µ and by a set of nuisance
parameters θ, thus P (y|H) = P (y|µ,θ). The parameters of interest are the main objective of the
analysis, whereas nuisance parameters are often introduced to account for systematic uncertainties
in the model.

We focus here on frequentist tests of the hypothesized parameters that are based on the likeli-
hood function L(µ,θ) = P (y|H) = P (y|µ,θ). These tests lead to confidence intervals or regions
for the parameters of interest as well as p-values that quantify goodness of fit. To find these re-
sults, one requires the sampling distribution of test statistics that are obtained from the likelihood
function and are described in greater detail below. For appropriately defined test statistics, the
corresponding distributions can often be found using asymptotic results based on theorems due
to Wilks [1] and Wald [2] (see, e.g., [3]). The asymptotic distributions are valid in specific limits,
which usually correspond to having a large data sample, whose size we will denote generically as
n.

In this paper we are interested specifically in the case where n is not sufficiently large for
the asymptotic distributions of the relevant test statistics to represent a good approximation. In
such problems one could use Monte Carlo methods to obtain the distributions, but this involves
additional time-consuming computation. Instead, one can modify the test statistic using the higher-
order asymptotic methods, specifically, the p∗ approximation of Barndorff-Nielsen [5] and the
Bartlett correction [9], as described, e.g., in [10, 11]. With these methods, the distribution of the
modified statistic becomes closer to the asymptotic form, allowing one to find confidence intervals
and p-values without use of Monte Carlo.

In this paper we consider applications of higher-order asymptotic methods to the Gamma
Variance Model (GVM), which was proposed in Ref. [12]. In the GVM, measured values are
modeled as following Gaussian distributions with a mean that depends on the parameters of the
problem, and with variances σ2 whose values are themselves not certain. The variances as well
are thus taken as adjustable parameters, and the values one would assign to them are treated
as measurements that follow a Gamma distribution with parameters α and β (see Sec. 4 below).
These parameters are chosen so that the Gamma distribution’s relative width reflects the desired
uncertainty on σ2. This is quantified using the quantity ε = 1/2

√
α, which to first approximation

is the relative uncertainty on the estimate of the standard deviation σ, informally referred to as
the “error on the error”.1

In the Gamma Variance Model there is a correspondence between the error-on-error parameters
ε and an effective sample size n of

n = 1 +
1

2ε2
. (1)

That is, the large-sample limit corresponds to the case where ε → 0 and thus the values of σ are
accurately estimated. For many analyses, however, the assigned values of standard deviations for
individual measurements may easily be uncertain at the level of several tens of percent or more. In
this case the effective sample size is low and thus the asymptotic distributions of likelihood-based
test statistics are not necessarily valid. The goal of this paper is to apply higher-order asymptotics
to this model and thus achieve more accurate confidence levels and p-values.

In Sec. 2 we briefly review the basic techniques for finding confidence intervals and p-values
in a general likelihood-based analysis. Section 3 describes how in general these techniques can be
improved using the methods of higher-order asymptotics and in Sec. 4 we recall the important
properties of the Gamma Variance Model. In Sec. 5 we apply higher-order asymptotic corrections
to a simple example of the GVM based on a single measurement, and in Secs. 6 and 7 to averages
of measured values. A summary and conclusions are given in Sec. 8.

2 Parameter inference using the profile likelihood ratio

In this section we review the basic technology used to find confidence intervals and p-values from
test statistics derived from the likelihood ratio by using the first-order asymptotic distributions

1In earlier references, e.g., [12, 14], the parameter ε was denoted as r.



based on Wilks’ theorem. Further details on these methods as applied in Particle Physics analyses
can be found, e.g., in Ref.[3].

In statistical data analysis, the central object needed to carry out inference related to the
parameters of interest µ using measured data y is the likelihood function: L(µ,θ) = P (y|µ,θ).
Here nuisance parameters θ are introduced to account for systematic uncertainties. Their presence
enlarges the model’s parameter space and allows it to better approximate the truth, even though
this reduces the sensitivity to the parameters of interest.

In frequentist statistics, a test of hypothesized parameter values can be carried out by defining
a test statistic based on the (profile) likelihood ratio

wµ = −2 log
L(µ, ˆ̂θ)

L(µ̂, θ̂)
. (2)

Here µ̂ and θ̂ are the Maximum Likelihood Estimators (MLEs) for the parameters of interest and

the nuisance parameters, respectively, and ˆ̂θ are the profiled (or constrained) estimators of the
nuisance parameters, given by the values of θ that maximize the likelihood for a fixed value of µ.
The likelihood ratio is used to test the compatibility of a value of µ with the experimental data,
with greater wµ corresponding to increasing incompatibility between the hypothesized µ and the
data.

To mitigate the negative impact of the nuisance parameters, one often performs indepen-
dent control measurements, here denoted as u = (u1, . . . , uN ), that provide information on θ =
(θ1, . . . , θN ). Here we will suppose, as is often the case, that these are direct estimates of the
nuisance parameters θ and are treated as independently Gaussian distributed random variables
with standard deviations σu = (σu1 , ..., σuN

). The resulting likelihood is, therefore,

L(µ,θ) = P (y|µ,θ)× P (u|θ) = P (y|µ,θ)×
N∏
i=1

1√
2πσ2

ui

exp

[
− (ui − θi)

2

2σ2
ui

]
, (3)

or equivalently, the log-likelihood is

ℓ(µ,θ) = logL(µ,θ) = logP (y|µ,θ)−
N∑
i=1

(ui − θi)
2

2σu2
i

+ C , (4)

where C is a constant that can be dropped since it does not depend on the parameters. The
likelihood ratio defined by Eq. (2) can be used to derive a confidence region for the parameters of
interest µ (or a confidence interval if there is just one parameter of interest).

The p-value for a hypothesized value µ is found from the statistic wµ as

pµ =

∫ ∞

wµ,obs

f(wµ|µ,θ)dwµ = 1− F [wµ,obs] , (5)

where f(wµ|µ,θ) is the probability density function of wµ under the hypothesis that µ and θ are
the true parameters of the model, wµ,obs is the observed value of the likelihood ratio, and F is the
cumulative distribution of wµ. The boundary of the confidence region for µ, with confidence level
1 − α, is found from the p-value of Eq. (5) by solving pµ = α. This gives a region in parameter
space that satisfies Prob(µ ∈ confidence regions) ≥ 1− α.

In many realistic applications, the computation of the probability density function f(wµ|µ,θ)
is a major challenge since it is usually not known in closed form. Monte Carlo simulations are
often used to compute it, but this can be very time-consuming for complex models with many
measurements. Moreover, to ensure that pµ is greater than α for all θ values, one needs to know
f(wµ) for every point in the θ space, which further complicates the problem.

However, it is possible to avoid the numerical computation of f(wµ) in the asymptotic limit,
which is defined as the limit where all the MLEs of the model are Gaussian distributed. This limit
is typically reached when the experimental sample size n approaches infinity, i.e., in the so-called
large sample limit. In this limit, the MLEs have a Gaussian distribution with an error term of
order O(n−1/2). Moreover, according to Wilks’ theorem [1], wµ follows a chi-square distribution
with M degrees of freedom, where M is the dimension of the parameters of interest space. Wilks’
theorem thus states that the asymptotic distribution of wµ is independent of nuisance parameters,
and is given by

f(wµ)|µ,θ) = χ2
M +O(n−1) . (6)



This allows us to compute the confidence regions by substituting f(wµ) with χ2
M . Note that the

Gaussianity of the MLEs can also be controlled by other parameters of the likelihood, as shown in
Sec. 4.

In the asymptotic limit it is also possible to show that the likelihood ratio can be approximated
using a quadratic expansion,

wµ = (µ− µ̂)V −1(µ− µ̂) , (7)

where Vij = cov[µ̂i, µ̂j ] is found using the “observed information matrix” jij(µ),

Vij = −jij(µ̂) = − ∂2ℓ

∂µi∂µj

∣∣∣
µ̂
. (8)

This equation says that in the asymptotic limit, the confidence region in the parameters of interest
space is a hyper-ellipsoid centered in µ̂. Equivalently the profile likelihood can be approximated
as

ℓ(µ, ˆ̂θ) = ℓ(µ̂, θ̂)− 1

2
(µ− µ̂)V −1(µ− µ̂) , (9)

Deviations from the quadratic approximations of the likelihood root and the profile likelihood are
expected when the conditions of the asymptotic limit ar not satisfied.

3 Higher-order asymptotic corrections

As shown in the previous section, the asymptotic distributions greatly simplify the procedure for
finding p-values and confidence regions. These distributions do not represent valid approximations,
however, if the MLEs of the model parameters are not Gaussian distributed, which usually happens
when the experimental sample size is small. In cases where the asymptotic limit cannot be used,
one may resort to MC simulations as an alternative. However, this approach is computationally
expensive, therefore alternative analytical approaches are preferred.

Broadly speaking, there are two possible strategies to obtain test statistics with known dis-
tributions: one can either better approximate the distribution of the likelihood ratio, or one can
adjust the test statistic itself such that its distribution is better approximated by its asymptotic
formula, even for small sample sizes. An example of the former is given in Ref. [4]; in this paper,
we focus on the latter approach. Specifically, this section explores two potential solutions, the p∗

approximation [5, 6, 7, 8] and the Bartlett correction [9, 13].
In addition to the likelihood ratio test,

wµ = −2 log
L(µ, ˆ̂θ)

L(µ̂, θ̂)
= 2

[
ℓ(µ̂, θ̂)− ℓ(µ, ˆ̂θ)

]
, (10)

the other relevant first-order statistic we want to study is the profile likelihood root test (here
simply the “likelihood root”). This is defined as the square root of the likelihood ratio multiplied
by the sign of µ̂− µ:

rµ = sign(µ̂− µ)

√
2
[
ℓ(µ̂, θ̂)− ℓ(µ, ˆ̂θ)

]
. (11)

In contrast to the likelihood ratio, the likelihood root can be defined only when there is a single
parameter of interest. Therefore, this statistic can be relevant in applications such as averages of
scalar point estimates. The asymptotic distribution of the likelihood root is a standard Gaussian,
with an error term of O(n−1/2):

f(rµ|µ,θ) = N (0, 1) +O(n−1/2) . (12)

Here n generally represents the sample size of the experiment, but it can also be another parameter
of the likelihood that controls the convergence of the likelihood to the asymptotic limit. It should
be noted that the error term in Eq. (12) is larger than the error on the asymptotic distribution of
the likelihood ratio, as shown in Eq. (6). However, the likelihood ratio only allows for two-sided
tests, while the likelihood root allows for one-sided tests as well.

The objective is to derive corrections for wµ and rµ such that the distributions of the refined
statistics, denoted as w∗

µ and r∗µ, are more accurately approximated by the asymptotic distributions



provided earlier, with error terms of order O(n−3/2) or smaller. Furthermore, these enhanced
statistics will be designed to preserve the same local power as the original test statistics at the
pertinent perturbative order, specifically P(S∗ > x∗) = P(S > x) + O(n−3/2), where S represents
one of the first-order statistics and S∗ corresponds to its higher-order improved counterpart.

3.1 The p∗ approximation

The asymptotic distributions of the likelihood root and the likelihood ratio are derived from the
assumption that the MLEs are Gaussian in the asymptotic limit. However, this assumption is only
valid up to error terms of order O(n−1/2). A major development in likelihood-based inference is
to improve the distributions of the MLEs. For models with a single parameter µ, the Barndorff-
Nielsen p∗ approximation [5, 6, 7, 8] is the basic higher-order approximation to the distribution of
µ̂. The p∗ density function of µ̂ is given by

f(µ̂) = p∗(µ̂) = c |j(µ̂)|1/2 e−wµ/2 . (13)

Here, wµ is the likelihood ratio defined in Eq. (2), c is a normalization constant equal to
√
2π +

O(n−1), and j is the observed information matrix defined as − ∂2ℓ
∂µ2 . The error term on the p∗

approximation is of order O(n−3/2), which is a significant improvement compared to O(n−1/2) from
the first-order Gaussian approximation. If the p∗ approximation is expanded at order O(n−1/2), the
Gaussian density of µ̂ is recovered. At order O(n−1/2), the likelihood ratio wµ can be approximated
using Eq. (7) as

wµ = (µ̂− µ)2|j|+O(n−1/2) , (14)

where j is a constant since the likelihood is a quadratic function of µ at this order in n. Therefore
the p∗ approximation reduces to a Gaussian:

f(µ̂) =
1√
2π

|j|1/2e−
(µ̂−µ)2

2|j|−1 +O(n−1/2) . (15)

The p∗ approximation provides a way to improve the cumulative distribution of the likelihood root
rµ by reducing its error term. Specifically, integrating the p∗ approximation, as shown in Ref. [8],
yields the following expression for the cumulative distribution of rµ,

F (rµ) = Φ(rµ) + (r−1
µ − q−1

µ )ϕ(rµ) +O(n−3/2) , (16)

where ϕ is the standard normal density function and Φ is its cumulative distribution. The statistic
qµ is defined as

qµ =

(
∂ℓ

∂µ̂

∣∣∣
µ̂
− ∂ℓ

∂µ̂

∣∣∣
µ

)
j(µ̂)1/2 (17)

and applies to models with one parameter of interest and no nuisance parameters.
In the asymptotic limit, the statistic qµ approaches rµ, resulting in the cumulative distribution

of rµ approaching the cumulative distribution of a standard normal. This can be intuitively
demonstrated by utilizing the asymptotic limit expression of the log-likelihood, as provided in
Eq. (9), provided the model contains only one parameter µ.

An alternative expression to (16) can be obtained by modifying the statistic rµ itself, rather
than its cumulative distribution. In particular, as shown in [7], the modified statistic

r∗µ = rµ +
1

rµ
log

qµ
rµ

(18)

follows a standard normal distribution with an error term of order n−3/2:

f(r∗µ) = N (0, 1) +O(n−3/2) . (19)

That is, the error on the r∗µ asymptotic distribution falls off three powers of n−1/2 faster than that
of the likelihood root (see Eq. (11)). In addition, by squaring r∗µ one obtains the statistic r∗2µ , which
is asymptotically distributed as chi-squared with one degree of freedom. This can be interpreted
as a higher-order correction to the likelihood ratio statistic wµ.

An intuitive interpretation of the r∗ statistics can be obtained, despite its non-trivial derivation
(see, for example, Brazzale et al. (2007) [10]). The following equation i (see e.g. [10]):

r∗µ =
rµ − E[rµ]

V[rµ]1/2
+O(n−3/2) , (20)



this tells that at the n−1 perturbative order r∗µ in the standardized version of rµ.
For statistical models that include nuisance parameters, the structure of the statistic r∗µ remains

the same as before, but the definition of qµ changes. Consider a model with full parameter space
ψ = {µ,θ}, where µ is the parameter of interest and θ represents the nuisance parameters. In
such a model, the statistic qµ can be defined using either of two equivalent expressions:

qµ,1 =
det
[
ℓψ̂(µ̂, θ̂)− ℓψ̂(µ,

ˆ̂
θ) ℓθψ̂(µ,

ˆ̂
θ)
]

det
[
ℓψψ̂(µ̂, θ̂)

] (
det[jψψ(µ̂, θ̂)]

det[jθθ(µ,
ˆ̂
θ)]

)1/2

, (21)

or

qµ,2 =
det
[
ϕ(µ̂, θ̂)− ϕ(µ, ˆ̂θ) ϕθ(µ,

ˆ̂
θ)
]

det
[
ϕψ(µ̂, θ̂)

] (
det[jψψ(µ̂, θ̂)]

det[jθθ(µ,
ˆ̂
θ)]

)1/2

. (22)

The numerator and denominator of both qµ,1 and qµ,2 are determinants of d× d matrices, where d
is the dimension of the full parameter space. In both the expressions j is the information matrix,
defined as

jψψ(ψ) = − ∂2ℓ(ψ)

∂ψ∂ψT
. (23)

Moreover, the subscripts on ℓ and ϕ indicate derivatives, e.g., ℓψ and ϕψ indicate the partial
derivatives of ℓ and ϕ with respect to the parameters ψ.

It is important to note that the definition of qµ,1 involves derivatives with respect to the MLEs
of the model. This means that qµ,1 can only be used if the likelihood’s dependence on the MLEs
can be explicitly expressed. If this is not possible, qµ,2 can be used instead. However, this requires
defining a new set of parameters ϕ, called the canonical parameters, defined as

ϕT (ψ,yobs) =

N∑
i=1

∂l

∂yi

∣∣∣
yobs

× V . (24)

Here yobs are the observed data and V is N × d matrix defined as:

V = −
(

∂z

∂yT

)−1(
∂z

∂ψT

)∣∣∣
ψ̂obs

. (25)

In the last expression z = {z1(y1), ..., zN (yN )} is a vector of pivotal quantities. Pivotal quantities
are statistics that have a fixed distribution under the model, i.e., they are not dependent on the
parameters of the model. Such a vector always exists in the form of cumulative distributions F (yi),
which are always uniformly distributed in [0, 1]. But alternative choices are often available, e.g.,
for a Gaussian distributed random variable y with mean µ and standard deviation σ one can define
the pivotal statistic z = (y − µ)/σ, whose distribution is a standard normal for any chosen µ and
σ. For a comprehensive understanding of the construction of the r∗µ see e.g. [10].

In Secs. 5, 6 and 7 below, the statistic r∗µ will be used to derive improved confidence intervals
for the mean µ of a set of measured values in the context of the Gamma Variance Model.

3.2 The Bartlett correction

A different approach to higher-order asymptotics due to Bartlett [9] involves a scaling of the
likelihood ratio statistic, rather than a correction to the distributions of the MLEs. Bartlett’s
argument is as follows: For a model with M parameters of interest µ, the likelihood ratio wµ
follows a chi-square distribution for M degrees of freedom in the asymptotic limit, and for a
sample size n suppose

E[wµ] = M + b+O(n−2) . (26)

Therefore the modified statistic

w∗
µ = wµ

M

E[wµ]
=

wµ
1 + b/M

(27)

is expected to follow a distribution closer to the asymptotic χ2
M . The factor 1 + b/M is known as

the Bartlett correction.



Lawley [13] developed a general method to compute the expectation value up to order O(n−2)
proving that all the cumulants of w∗

µ match with the cumulants of a χ2
M distribution up to order

O(n−2). Specifically, Lawley’s formula is based on a quartic expansion of both the likelihood ratio
and the score equation, ∂ℓ

∂µ (µ̂) = 0, in powers of µ̂i − µi (see, e.g., [11]). Here, i is an index
running over the parameter space of the model. The two expansions can be combined to obtain
an approximation of the expectation value

E[wµ] = 2E[l(µ̂)− l(µ)] = M + ϵM +O(n−2) , (28)

where ϵM is the Lawley correction factor to the asymptotic expectation value M . The correction
term ϵM has a complicated structure involving derivatives of the likelihood up to the fourth order
and their expectation values. Nevertheless, for many applications, it is possible to compute it
analytically. Specifically, the definition of ϵM is given by

ϵq =
∑
rstu

λrstu −
∑

rstuvw

λrstuvw , (29)

where the indexes r,s,t,u,v, and w label all the parameters of the model. The two terms inside the
sum are defined as

λrstu = krsktu
(
1

4
krstu − k

(u)
rst + k(tu)rs

)
,

λrstuvw = krsktukvw
(
1

6
krtvksuw +

1

4
krtuksvw − krtvk

(u)
sw − krtuk

(v)
sw + k

(v)
rt k(v)sw + k

(u)
rt k(v)sw

)
.

(30)

The terms inside the above definitions can be computed as

krs = E

[
∂2l

∂µr∂µs

]
, krst = E

[
∂3l

∂µr∂µs∂µt

]
, krstu = E

[
∂4l

∂µr∂µs∂µt∂µu

]
, (31)

k(t)rs =
∂krs
∂µt

, k(tu)rs =
∂2krs
∂µt∂µu

, k
(u)
rst =

∂krs
∂µu

, (32)

where the matrices with upper indices are the inverses of the corresponding matrices with lower
indices. The general expression for the Bartlett correction is quite involved, but its computation is
not conceptually complicated, since it only involves computing derivatives and expectation values
of them.

When the parameters of the likelihood can be split into two subsets, one consisting of parameters
of interest µ = {µ1, ..., µd}, and the other of nuisance parameters θ = {θ1, ..., θM−d}, one is
typically interested in testing specific points in µ space. In such scenarios, the Lawley formula can
be used to compute the expected value as

E[wµ] = 2E[l(µ̂, θ̂)− l(µ,
ˆ̂
θ)]

= 2E[l(µ̂, θ̂)− l(µ,θ)]− 2E[l(µ,
ˆ̂
θ)− l(µ,θ)]

= d+ ϵM − ϵM−d +O(n−2) .

(33)

The notation ϵM−d indicates that the summation in Eq.(29) is only performed over indices labeling
the nuisance parameters. However, a more efficient way to compute Eq. (33), is to directly calculate
the difference ϵM−ϵM−d by summing the terms in Eq. (30) over all permutations of the indices that
contain at least one parameter of interest. It is worth noting that, for composite hypotheses, the
expectation value of the likelihood ratio is dependent on the nuisance parameters, as its distribution
still has a dependence on them. Therefore, to evaluate the expectation value, and thus Eq.(33),

one should use θ =
ˆ̂
θ, the MLEs of the nuisance parameters.

The Lawley formula is a valuable tool in situations where it is not feasible to analytically
compute the exact expectation value of wµ, a common scenario in realistic applications. An
alternative approach is to numerically estimate the expectation value of wµ using MC methods.
Specifically, E[wµ] can be estimated by generating data and setting the parameters of interest µ
to the value in the parameter space being tested, and the nuisances θ to their profile values. When
the exact expectation value of wµ is computed, the error term on the asymptotic distribution of
w∗
µ is expected to be smaller than O(n−2).



4 Overview of the Gamma Variance Model

Having outlined in the preceding section the general formalism for higher-order asymptotic cor-
rections, we now demonstrate their use with the Gamma Variance Model (GVM). This model,
introduced in Ref. [12], extends the likelihood of Eq. (3) by regarding the variances σ2

ui
as ad-

justable rather than known parameters. The values that one would have assigned to them before
are now treated as independent gamma distributed estimates vi, i.e.,

vi ∼
βαi
i

Γ(αi)
vαi−1
i e−βivi . (34)

Here the parameters of the gamma distribution αi and βi are defined such that the expected
value is E[vi] = αi/βi and the variance is σ2

vi
= αi/β

2
i . These are chosen such vi is an unbiased

estimator for σ2
ui
, (i.e., E[vi] = σ2

ui
) and the width of the gamma distribution is adjusted to reflect

the appropriate level of uncertainty by defining

εi ≡
1

2

σvi

E[vi]
=

1

2

σvi

σ2
ui

, (35)

which using error propagation becomes

εi ≃
si

E[si]
, (36)

where si =
√
vi. Therefore, the new quantity εi is the relative uncertainty on the assigned system-

atic error, which we refer to informally as the relative error-on-error parameter.
Including the vi as measurements into the likelihood gives

L(µ,θ) = P (y|µ,θ)×
N∏
i=1

1√
2πσ2

ui

e
− (ui−θi)

2

2σ2
ui

βαi
i

Γ(αi)
vαi−1
i e−βivi . (37)

Although treating the σ2
ui

as adjustable in the GVM in effect doubles the number of nuisance
parameters in comparison to the model where the σ2

ui
are known, one can profile over them in

closed form. After some manipulation (see Ref. [12]), the profile log-likelihood is found to be

ℓ(µ,θ, ˆ̂σ2
u) = ℓp(µ,θ) = logP (y|µ,θ)− 1

2

N∑
i=1

(
1 +

1

2ε2i

)
log

[
1 + 2ε2i

(ui − θi)
2

vi

]
. (38)

Comparing with the log-likelihood based on fixed σ2
ui

from Eq. (4), one sees that the usual quadratic
term, (ui − θi)

2/σ2
ui
, is replaced by(

1 +
1

2ε2i

)
log

[
1 + 2ε2i

(ui − θi)
2

vi

]
. (39)

As discussed in Refs. [12], the Gamma Variance model leads to interesting and useful conse-
quences for inference about the parameters of interest µ. In particular, the size of the confidence
region for µ becomes coupled to the goodness of fit, with increasing incompatibility between the
input data leading to larger regions. Furthermore, the point estimate for µ shows a decreased sen-
sitivity to outliers in the data. It is therefore of particular interest to apply the GVM in cases where
the input values are in tension either amongst themselves or with the predictions of a hypothesis of
interest. For example, the tension between measured and predicted values of the anomalous muon
magnetic moment was explored in Ref. [14]. The GVM represents a purely frequentist approach
to this type of problem. Bayesian methods have been found to yield qualitatively similar results,
e.g., in Refs. [15, 16, 17, 18].

A practical difficulty with the Gamma Variance Model arises in connection with the use of
asymptotic formulae to obtain p-values and confidence regions when the ε parameters exceed a
value of around 0.2. As discussed in Ref. [12], there is a correspondence between the parameters
εi and an effective sample size, ni, which can be found by considering a sample of ni independent
observations of ui and using their sample variance as an estimate of σ2

ui
. This estimator is found

to be gamma distributed with an error-on-error parameter εi related to the sample size by



ni = 1 +
1

2ε2i
. (40)

Thus when εi becomes too large, then neff drops to become of order unity and the large-sample
limit required for use of asymptotic distributions is no longer satisfied. Values of ε are expected to
be roughly 0.2 to 0.5 or even larger in many applications, which could make it far more difficult
to compute p-values and confidence regions.

The breakdown of the asymptotic formulae for large εi can be understood intuitively by ex-
panding the logarithmic term (39) in powers of εi:(

1 +
1

2ε2i

)
log

[
1 + 2ε2i

(ui − θi)
2

vi

]
=
(
1 + 2ε2i

) (ui − θi)
2

vi
− 2ε2i

(ui − θi)
4

v2i
. (41)

Thus as εi approaches zero, the logarithmic constraint reduces to the standard quadratic one, and
the fact that the Gaussian-distributed ui enter in this fashion leads to the asymptotic distributions
for the statistics wµ and εµ discussed above. However, for large εi, the Gamma Variance Model
deviates from the quadratic approximation by an error term of order O(ε2i ), as shown in Eq. (41).

Consequently, when εi is not equal to zero, the asymptotic formulae used to obtain p-values
and confidence regions are not guaranteed to represent valid approximations. Furthermore, the
interval of convergence of the logarithm in Eq. (39) is

2ε2i
(ui − θi)

2

vi
< 1 , (42)

thus problems in the convergence of the asymptotic formulae may arise if the above condition is
not satisfied.

In principle, this difficulty can be overcome by using Monte Carlo calculations, but this can
entail substantial additional work and computing time. It is therefore of great use to have a method
of finding p-values and confidence regions without MC, and thus the primary goal of this paper
is to investigate the use of higher-order asymptotics with the GVM to obtain results that remain
accurate even for large εi.

5 Single-measurement model

In order to investigate the asymptotic properties of a statistical model with uncertain error param-
eters, it is convenient to use the simplified model introduced in Ref. [12]. Here for completeness
we reproduce several results shown in that paper using the Bartlett correction and extend them in
Sec. 5.1 using the formulae from Lawley and the p∗ approximation.

The single-measurement model describes a single Gaussian distributed measurement y with
mean µ and standard deviation σ. We take µ to be the parameter of interest and σ2 to be a
nuisance parameter constrained by an independent gamma-distributed estimate v. Therefore, the
resulting likelihood is

L(µ, σ2) =
1√
2πσ2

e−(y−µ)2/2σ2 β

Γ(α)
vα−1e−βv , (43)

where α = 1/4ε2 and β = 1/4ε2σ2, and ε is the relative error on the standard deviation σ.
Additionally, the log-likelihood of the model is given by

ℓ(µ, σ2) = −1

2

(y − µ)2

σ2
−
(
1

2
+

1

4ε2

)
log σ2 − v

4ε2σ2
. (44)

The goal is to compute the likelihood ratio wµ (see Eq. (2)) to study its asymptotic properties and
to apply to it the higher-order corrections defined in Sec.3. This requires the estimators

µ̂ = y , (45)

σ̂2 =
v

1 + 2ε2
, (46)

̂̂
σ2 =

v + 2ε2(y − µ)2

1 + 2ε2
. (47)
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Figure 1. Distributions of wµ (blue) for different values of the parameter ε compared
with the asymptotic χ2 distribution (black).

With the help of the above expressions it is easy to derive the likelihood ratio wµ,

wµ =

(
1 +

1

2ε2

)
log

[
1 + 2ε2

(y − µ)2

v

]
, (48)

which, in the limit ε → 0, becomes

wµ =
(y − µ)2

v
+O(ε2) . (49)

In this limit, the likelihood ratio can be approximated by a quadratic expression, as expected in
the asymptotic limit. Consequently, the parameter ε is related to an effective sample size, as it
measures the extent to which the model deviates from the asymptotic limit. In particular, it is
expected that the distribution of wµ deviates from its asymptotic χ2

1 distribution by an error term
of order O(ε2). Figure 1 displays the distributions of data generated according to Eq. (43) setting
µ = 0, σ = 1 and ε = 0.01, 0.2, 0.4, 0.6. As expected, the distribution deviates from the asymptotic
χ2
1 distribution as the ε parameter increases. The simple dependence of the single measurement

model on the parameter ε makes it an ideal candidate for studying the effectiveness of higher-order
asymptotic methods in improving asymptotic formulae.

5.1 Higher-order asymptotics for the single-measurement model

As one can see in Fig. 1, the likelihood ratio exhibits noticeable deviations from its asymptotic χ2
1

distribution even for moderate values of ε. Hence, it is important to investigate whether higher-
order statistics, namely r∗µ and w∗

µ, can be better approximated by their asymptotic distributions,
particularly for larger values of ε. The r∗µ statistic is given by

r∗µ = rµ +
1

rµ
log

qµ
rµ

, (50)

where rµ is the likelihood root defined as

rµ = sign(µ− µ̂)w1/2
µ . (51)



The asymptotic distribution of r∗ is a standard normal and it has an associated error term of
O(n−3/2). For the single-measurement model, ε is the effective sample size parameter of the model
(n = 1 + 1/2ε2), hence the error term is of order O(ε3). In order to compute r∗µ it is necessary to
compute the statistic qµ. The likelihood of the single-measurement model can be explicitly written
in terms of the MLEs defined in Eq.(45) and Eq.(46):

ℓ(µ̂, σ̂2) = −1

2

(µ̂− µ)2

σ2
−
(
1

2
+

1

4r2

)
log σ2 − σ̂2(1 + 2r2)

4r2σ2
. (52)

Therefore, it is possible to use Eq.(21) to compute the statistic qµ:

qµ =

√
(1 + 2ε2)v

v + 2ε2(y − µ)2
(y − µ) . (53)

Since the asymptotic distribution of r∗µ is a standard normal, the asymptotic distribution of r∗2µ is
a χ2

1 distribution, and therefore it can be seen as a higher-order correction to the likelihood ratio.
The second higher-order statistic we want to study is the Bartlett-corrected likelihood ratio,

w∗
µ = wµ

M

E[wµ]
≡ wµ

1 + b/M
, (54)

where E[wµ] = M + b is what one must find to obtain the Bartlett correction, i.e., E[wµ]/M =
1 + b/M . The Bartlett-corrected likelihood ratio w∗

µ is expected to be χ2
1 distributed in the

asymptotic limit. The expectation value E[wµ] can be estimated using the Lawley formula defined
by Eq. (33):

E[wµ] = 1 + 3ε2 +O(ε4) . (55)

The asymptotic distribution of w∗
µ will have an error term of O(n−2), or equivalently O(ε4) for the

single-measurement model. All of the higher-order statistics described above, namely r∗2µ and w∗
µ,

follow a χ2 distribution in the asymptotic limit.
In Fig. 2, we show the distributions of these two statistics for data generated according to

Eq. (43) with µ = 0, σ = 1, and ε values of 0.01, 0.2, 0.4, and 0.6. The distributions of two
statistics are much better approximated by a χ2

1 distribution compared to the original likelihood
ratio wµ, indicating that higher-order statistics provide significant improvements in this application.

5.2 Confidence intervals for the single-measurement model

The likelihood ratio is a commonly used tool for deriving confidence regions, typically obtained by
finding the p-value of µ and then solving the equation pµ = α, where 1− α represents the desired
confidence level. In the case of the single-measurement model, which involves only one parameter
of interest µ, our goal is to construct a confidence interval for it as described in Sec. 2. To obtain
the p-value, the distribution of wµ must be determined. In the asymptotic limit, wµ follows a χ2

1

distribution, but Fig. 1 shows that for large values of ε, this approximation is not very accurate. To
address this, we can use higher-order statistics such as r∗µ and w∗

µ instead. This involves computing
the p-value using w∗ or r∗2, i.e.,

pµ =

∫ ∞

w∗
obs

χ2
1(w

∗) dw = 1− Fχ2
1
[w∗

obs] , (56)

or

pµ =

∫ ∞

r∗2obs

χ2
1(r

∗2) dr∗2 = 1− Fχ2
1
[r∗2obs] . (57)

To illustrate this we find the confidence interval for µ as a function of the parameter ε setting
the observed values of y and v to 0 and 1, respectively. Figure 3 presents a comparison of the
confidence intervals obtained using the likelihood ratio wµ and the higher-order statistics r∗µ and
w∗

µ. Additionally, the confidence interval is also computed by calculating the p-value exactly, as
described in [12]. The plot in Fig. 3 shows that the use of higher-order statistics significantly
improves the accuracy of the confidence interval.
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Figure 2. Distributions of r∗2 (green) and w∗ computed with the Lawley formula (or-
ange) for different values of the parameter ε compared with the χ2 asymptotic distribution
(black).

6 Simple-average model

The single-measurement model can be extended to an average ofN measurements y = {y1, ..., yN},
which are assumed to follow a Gaussian distribution with mean µ and standard deviations σ =
{σ1, ..., σN}. In addition, the standard deviations are assumed to be uncertain with associated
best estimates v = {v1, ..., vN} and relative errors ε = {ε1, ..., εN}. The likelihood of the model
is thus

L(µ,σ2) =

N∏
i

1√
2πσ2

i

e−(yi−µ)2/2σ2
i

N∏
i

βi

Γ(αi)
vαi−1e−βivi , (58)

where αi = 1/4ε2i and βi = 1/4ε2iσ
2
i . Equivalently, the log-likelihood of the model is

ℓ(µ,σ2) =

N∑
i=1

[
−1

2

(yi − µ)2

σ2
i

−
(
1

2
+

1

4ε2i

)
log σ2

i −
vi

4ε2iσ
2
i

]
. (59)

In contrast to the full Gamma Variance Model described in Sec. 4, it does not include nuisance
parameters θi or their estimates, but rather treats the variances σ2

i of the primary measurements
yi as uncertain. It can be easily generalized to a curve-fitting problem where the expectation value
of each measurement yi can be defined as a function of the parameters of interest µ and a control
measurement xi, i.e., E[yi] = f(xi;µ).

The log-likelihood of Eq. (59) profiled over the σ2 is given by

ℓp(µ) = −
N∑
i

1

2

(
1 +

1

2ε2i

)
log

[
1 + 2ε2i

(yi − µ)
2

vi

]
, (60)

which has been computed using the profile value of σ2
i :

̂̂
σ2
i =

vi + 2ε2i (yi − µ)2

1 + 2ε2i
. (61)
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Figure 3. Half-length of 1-σ confidence intervals for µ (Eq. (43)) as a function of
ε, computed using wµ (blue), r∗µ (green) and w∗

µ calculated using the Lawley formula
(orange). The black curve represents the exact half-length of the confidence interval.

As in the example of the single-measurement model from Sec. 5, we compute the likelihood
ratio wµ, and the statistics r∗µ and w∗

µ. To do this, one must first calculate the MLE µ̂ by solving

∂ℓp
∂µ

= 0 . (62)

This must be found numerically, as it cannot be solved in closed form for arbitrary N . As discussed
in Sec. 4, the distribution of the likelihood ratio wµ is expected to deviate from its asymptotic
χ2
1 form by an error term of order O(ε2i ) for each measurement yi. Therefore, it is important to

investigate whether the higher-order statistics r∗µ and w∗
µ can improve the precision of the inference

on µ.
To compute r∗µ, it is necessary to calculate the statistic qµ using Eq.(22), as the log-likelihood

of Eq.(59) cannot be expressed explicitly as a function of the MLEs. Additionally, to compute
qµ, as discussed in Sec. 3.1, a vector of pivotal quantities z = {zy1

, ..., zyN
, zv1 , ..., zvN } must be

defined. For the simple-average model, the best choices for these are

zyi
=

(yi − µ)2

σ2
i

,

zvi
=

vi
σ2
i

.
(63)

These pivotal quantities can be used to compute qµ exploiting Eqs. (24) and (25). However, it is
not possible to derive an analytical expression for qµ for arbitrary N , since it requires computing
the determinants of generic (N + 1)× (N + 1) matrices. Nevertheless, once N is specified, qµ can
be found in closed form.

The Bartlett corrected likelihood ratio w∗
µ can be estimated using the Lawley formula, as

discussed earlier. The result can be expanded at order ε2i as

E[wµ] = 1 +
4∑N

i=1 1/vi

N∑
i=1

ε2i
vi

− 1

(
∑N

i=1 1/vi)
2

N∑
i=1

ε2i
v2i

+

N∑
i=1

O(ε4i ) , (64)

which in the limit εi → 0 gives 1 as expected. Using Eq. (64) one can thus find the corrected
statistic w∗

µ = wµM/E[wµ].

6.1 Confidence intervals for the parameter of interest

In Particle Physics, the likelihood ratio and its higher-order corrections are used to estimate con-
fidence regions for the parameters of interest. Hence, these statistics can be tested by examining



how well they predict the size of confidence regions when their density functions are approximated
using their asymptotic distributions.

In this section, we aim to compute a 68.3% confidence interval for the parameter µ of Eq. (59).
Specifically, we consider the simple case of averaging two measurements, y1 and y2, with observed
values of +δ and −δ, respectively, where δ takes on values of 0.5 and 1.5. The estimate of the
standard deviations v1 and v2 is set to 1. Both measurements are assigned equal error on error
parameters, ε1 = ε2 = ε, and we present results as a function of ε. We use the likelihood ratio wµ

and the higher-order statistics r∗µ and w∗
µ to compute the 68.3% confidence intervals for µ.

In addition, the confidence interval is found by estimating the p-value of the likelihood ratio
using MC. This is done by generating the exact distribution of the data for a fixed value of µ
while setting the nuisance parameters σ2

i to their profiled values. This technique is commonly
known as the profile construction [19] or hybrid resampling [20, 21] method. The half lengths of
the confidence intervals are plotted in Fig. 4, and the results are compared with the numerical
predictions computed using the profile construction technique. In both examples, the Bartlett-
corrected likelihood ratio w∗

µ provides reliable estimates of the size of the confidence interval,
which closely match those obtained using the profile construction technique.

The r∗µ statistic performs well when the averaged data are internally compatible (left panel
of Fig.(4)). However, for larger values of the parameter ε, r∗µ breaks down as the tension in the
observed data grows (right panel of Fig.(4)). A conservative approach to determine the applica-
bility of r∗µ in improving the likelihood ratio predictions is to verify whether the arguments of the
logarithmic terms of Eq. (60) are within their radius of convergence. Specifically, for the endpoints
of the confidence interval, one should check whether the inequality

2ε2i
(yi − µ)

2

vi
< 1 (65)

is satisfied for every measurement yi. In the example above, this condition implies that one should
not trust the accuracy of the result from r∗µ if ε ≥ 0.5 for δ = 0.5 and ε ≥ 0.3 for δ = 1.5.

6.2 Goodness-of-fit

The likelihood ratio is commonly used to construct confidence regions for the parameters of interest.
It does not, however, provide a measure of how well the selected model describes the observed data.
To address this issue, a new statistic is typically defined, known as the goodness-of-fit statistic.
For the simple-average model we use

q = −2 log
L(µ̂, σ̂2)

Ls(ϕ̂, σ̂2)
, (66)

where Ls represents the likelihood of the saturated model. The saturated model is obtained by
replacing the expectation values E[yi] = µ with a set of independent parameters ϕ = {ϕ1, , ..., , ϕn},
such that E[yi] = ϕi. Since the log-likelihood of the saturated model Ls(ϕ̂, σ̂

2) is equal to zero,
the goodness-of-fit statistic reduces to

q = −2 logL(µ̂, σ̂2) =

N∑
i

(
1 +

1

2ε2i

)
log

[
1 + 2ε2i

(yi − µ̂)
2

vi

]
. (67)

If the above expression is expanded in powers of ε2i , in the limit ε2i → 0 one finds

q = −
N∑
i

(yi − µ̂)
2

vi
+O(ε2i ) . (68)

In this limit, q reduces to a sum of squares of Gaussian-distributed quantities, and thus its distri-
bution follows a χ2

N−1 distribution with N − 1 degrees of freedom. This is because the expectation
values are constrained by the single fitted parameter µ̂. However, for large values of the εi param-
eters, deviations from the χ2

N−1 asymptotic distribution are expected.
To correct the goodness-of-fit statistic using higher-order asymptotics, q needs to be defined as

a likelihood ratio. This can be done by defining the saturated model such that the simple-average
model is nested within it. A possible choice is to define the saturated model as

ℓs(α, µ,σ
2) = logLs(α, µ,σ

2) =

N∑
i

−1

2

(yi − αi − µ)2

σ2
i

−
(
1

2
+

1

4ε2i

)
log σ2

i −
vi

4ε2iσ
2
i

, (69)
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Figure 4. Half-length of 1-σ confidence intervals for parameter µ (Eq. (59)) as a function
of ε for δ = 0.5 (top) and δ = 1.5 (bottom), computed using wµ (blue), r∗µ (green) and w∗

µ

calculated using the Lawley formula (orange). The black dots represent our most precise
estimate of the interval, computed using the profile construction.

where we fix αN = −
∑N−1

i=1 αi so that
∑N

i=1 αi = 0. Given this definition, the simple-average model
is recovered by fixing all the αi to zero, hence ℓ = ℓs(α = 0, µ,σ2). Therefore, the goodness-of-fit
can be written as a likelihood ratio of the saturated model,

q = −2 log
Ls(α = 0, ˆ̂µ, ˆ̂σ2)

Ls(α̂, µ̂, σ̂2)
, (70)

and its Bartlett correction can be computed using the Lawley formula. This is done by treating
the αi as parameters of interest and µ and the σ2

i as nuisance parameters. The p∗ approximation
instead is not, in general, useful to correct the goodness-of-fit, as it can only be applied to models
with one parameter of interest, e.g., averages of two measurements.

To measure how well the model describes the observed data, one can compute the p-value of
the goodness-of-fit,

p =

∫ ∞

qobs

f(q) dq = 1− F [qobs] , (71)

In general, small values of the p-value are associated with a bad agreement between the model and
the data. In Particle Physics, p-values are typically converted to a related quantity Z called the
significance, defined as

Z = Φ−1(1− p) , (72)

where Φ−1 is the inverse cumulative distribution of a standard normal. The significance tells us
how many standard deviations away from the mean the observed p-value is.
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Figure 5. Significance Z as a function of ε, computed using the goodness-of-fit (blue)
and its Bartlett corrected counterpart calculated using the Lawley formula (orange). The
black dots represent the significance computed by generating the distribution of q with
MC.

To illustrate this method, we find the p-value and corresponding significance Z for an average
of two incompatible measurements, namely y1 = −3 and y2 = 3, with estimated variances of
v1 = v2 = 1. We set ε1 = ε2 = ε and allow ε to vary. The significance is estimated using both the
goodness-of-fit statistic q and the Bartlett-corrected version q∗. Figure 5 shows the significance as a
function of the parameter ε. The use of the Bartlett correction results in a significant improvement
in estimating the significance, eliminating the need for MC simulation.

7 Averages using the full Gamma Variance Model

An important application of the Gamma Variance Model is the average of N measurements, each
if which are reported with known statistical but uncertain systematic errors. In this scenario, N
measurements are assumed to be independent and Gaussian distributed with means E[yi] = µ+ θi
and known variances (the “statistical errors”) V[yi] = σ2

yi
. Here, the nuisance parameters θi repre-

sent potential biases to the means of the yi. As described in Sec. 4, their values are estimated with
independent Gaussian distributed control measurements ui, whose variances σ2

ui
(the “systematic

errors”) are treated as adjustable parameters. The σ2
ui

are estimated by measurements vi, whose
gamma distributions are characterized by the error-on-error parameters εi. The log-likelihood of
the model becomes

ℓ(µ,θ,σ2
u) = −1

2

N∑
i=1

[
(yi − µ− θi)

2

σ2
yi

− 1

2

(ui − θi)
2

σ2
ui

−
(
1

2
+

1

4ε2i

)
log σ2

ui
− vi

4ε2iσ
2
ui

]
, (73)

and the profiled log-likelihood lp can be computed using

̂̂
σ2
ui

=
vi + 2ε2i (ui − θi)

2

1 + 2ε2i
, (74)

leading to

lp(µ,θ) = −1

2

N∑
i=1

[
(yi − µ− θi)

2

σ2
yi

− 1

2

(
1 +

1

2ε2i

)
log

(
1 + 2ε2i

(ui − θi)
2

v2i

)]
. (75)

The MLEs µ̂ and θ̂i can be found numerically or by solving a system of cubic equations (see
Ref. [12]).

As before, we compute the likelihood ratio wµ and the higher-order statistics r∗µ and w∗
µ. To

compute r∗µ, one needs to calculate qµ as defined in Eq. (22). To do this, one requires a vector of



pivotal quantities z = {zy1
, ..., zyN

, zu1
, ..., zuN

, zv1 , ..., zvN }, which can be defined as

zyi =
(yi − µ− θi)

2

σ2
yi

,

zui
=

(ui − θi)
2

σ2
ui

,

zvi =
vi
σ2
ui

.

(76)

The Bartlett corrected likelihood ratio w∗
µ = wµM/E[wµ] can be estimated numerically using

the Lawley formula defined by Eq. (33), which predicts the expectation value of wµ to be

E[wµ] = 1 +

N∑
i

O(ε4i ) . (77)

Therefore, the Bartlett correction is zero up to O(ε4i ), indicating that any deviations of the likeli-
hood ratio density function from its asymptotic distribution are expected to be of the same order,
O(ε4i ).

To further improve the accuracy of the Lawley formula, one can compute the Bartlett correction
numerically. Specifically, one can estimate the expectation value of wµ by generating data with
all the model parameters set to their maximum likelihood estimates and approximating it as a
constant that is independent of the model parameters:

E[wµ] ≃ E[wµ̂] . (78)

This approximation has been found to yield highly accurate results. Moreover, this approximation
is important because it significantly speeds up the computation of confidence intervals. Rather
than generating a new set of data to estimate the Bartlett correction for every tested value of µ,
data only needs to be generated once.

In certain scenarios, an analyst may wish to conduct inference on one or more nuisance param-
eters θi for example to generate a ranking plot of the systematics or obtain the correlation matrix
of the nuisances. In such cases, the nuisance parameters must be treated as parameters of interest.
According to the Lawley formula, the expected value of the likelihood root will be

E[wµ,θ] = 1 +M +

M∑
i

4kθiθi
ε2i
vi

−
M∑
i

(
kθiθi

)2 ε2i
v2i

+

N∑
i

O(ε4i ) . (79)

Here, M represents the number of nuisance parameters that have been promoted to parameters of
interest. The term kθiθi refers to the θi component of the expectation value of the inverse Hessian
matrix of the likelihood, which is defined by the first term of equation Eq. (31) and computed for
σ2
ui

= vi.

7.1 Confidence regions

As in the previous examples, we compute confidence intervals for the parameter of interest µ using
the likelihood ratio and higher-order statistics, assuming their density functions are given by the
asymptotic distributions. Specifically, consider an example similar to what was used in Sec. 6,
namely, the mean of two measurements, y1 = −δ and y2 = +δ, here with associated statistical
errors σ1 and σ2 both equal to 1/

√
2 and δ = 0.5/1.5. Additionally, we assume that the control

measurements u1 and u2 have observed values of 0, and the estimates of the systematic errors to
be 1/

√
2, or equivalently, the estimates of the variances v1 and v2 to be 1/2. Both measurements

are assumed to have equal error on error parameters, ε1 = ε2 = ε, look at the results for different
ε.

Figure 6 displays the confidence interval estimated for the parameter µ using the likelihood
ratio wµ, as well as the higher-order statistics w∗

µ and r∗µ. The resulting confidence intervals are
compared to the confidence interval predicted using the profile construction method, which is taken
as the best available estimate of such intervals. Among the three statistics, w∗

µ provides the most
accurate estimates, almost perfectly overlapping with the numerical predictions obtained using the
profile construction method. Moreover, w∗

µ is significantly faster to compute as it only requires
data generation for µ = µ̂.
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Figure 6. Half-length of 1-σ confidence intervals for parameter µ (Eq. (73)) as a function
of ε for δ = 0.5 (top) and δ = 1.5 (bottom), computed using wµ (blue), r∗µ (green) and
w∗

µ calculated with MC (orange). The black dots represent our most precise estimate of
the interval, computed using the profile construction.

In contrast, the profile construction method entails generating a new set of data for every
tested value of µ. The r∗µ statistic, on the other hand, provides accurate predictions for internally
consistent data (see the left plot of Fig. 6). However, for growing discrepancies between the
measurements (right plot of Fig. 6), it is reliable only for small values of ε. To determine if r∗µ can
be used, one can verify whether the logarithms appearing in the profile log-likelihood satisfy the
perturbative condition given by Eq. (42). For δ = 1.5, this condition limits the applicability of r∗µ
to ε ≃ 0.3, whereas, for δ = 0.5, the threshold is higher, above 0.6.

Figure 7 shows the 2D confidence region in the (µ, θ1) plane, which was obtained using the
same measured data as in the previous example, whereas the error on error parameters ε1 and ε2
were fixed to 0.5. The confidence regions were computed using the likelihood ratio wµ,θ and the
Bartlett-corrected likelihood ratio w∗

µ,θ computed via Eq. (79), and were then compared with the
confidence regions estimated using the profile construction technique. The results indicate that the
Bartlett correction improves the accuracy of predictions significantly compared to the uncorrected
likelihood ratio.
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Figure 7. 68.3% confidence regions in (µ, θ1) plane for δ = 0.5 (top) and δ = 1.5 (bot-
tom), computed using the likelihood ratio (blue) and the Bartlett correction calculated
with the Lawley formula (orange). The black dots represent the most precise estimate of
the interval, computed using the profile construction. The error on error parameters ε1
and ε2 are fixed to 0.5.

7.2 Goodness of fit

The goodness-of-fit statistic for the Gamma Variance Model can be defined using the same approach
as used for the simple-average model in Sec. 6.2, leading to

q = −2 logL(µ̂, θ̂,
̂̂
σ2
u) =

N∑
i=1

[
(yi − µ̂+ θ̂i)

2

σ2
yi

−
(
1 +

1

2ε2i

)
log

(
1 + 2ε2i

(ui − θ̂i)
2

v2i

)]
. (80)

In this case, however, constructing a saturated model is not useful as the Lawley correction is 0 at
order ε2i . Nonetheless, the Bartlett correction can still be computed using MC simulations. This
method allows for a significant computational improvement over generating the exact distribution
of q using pseudo-experiments to estimate its p-value. The latter approach would require an order
of O(105) simulations to accurately capture a 4σ effect, while the expectation value of q can be
estimated with good precision using only O(103) pseudo-experiments.

To illustrate these techniques we compute the significance of the p-value for an average of two
incompatible measurements using Eq. (73). The observed values of y1 and y2 are assumed to be
−3 and 3 whereas the control measurements u1 and u2 are set to 0. The statistical uncertainties,
σ1 and σ2, are set to 1/

√
2 as the estimates of the systematic errors (which is equivalent to set

v1 = v2 = 1/2). Figure 8 compares the significance computed using the goodness-of-fit q and the
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Figure 8. Significance as a function of ε, computed using the goodness-of-fit (blue)
and its Bartlett corrected counterpart calculated using MC (orange). The black dots
represent the significance computed by generating the distribution of q with MC.

Bartlett-corrected q∗, with the significance computed generating the distribution of q∗ numerically,
all of them as a function of ε. Consistent with our earlier findings, the Bartlett correction yields
highly accurate predictions.

8 Conclusions

In conclusion, we have demonstrated the efficacy of higher-order asymptotics in the computation
of confidence intervals and p-values within the framework of the Gamma Variance Model. The
GVM is a specialized statistical model designed to address uncertainties in parameters that them-
selves represent uncertainties. The methods studied in this paper hold particular relevance when
the fixed parameters, ε, indicative of the relative uncertainties in estimates of standard deviations
for Gaussian-distributed measurements, are not negligible. In such scenarios, standard asymp-
totic methods prove inadequate, and the asymptotic distributions fall short in providing accurate
approximations.

Our investigation specifically focused on the Barndorff-Nielsen p∗ approximation and the Bartlett
correction, both of which are higher-order asymptotic techniques that offer adjustments to the first-
order (profile) likelihood ratio and likelihood root test statistics. These adjustments enable the
test statistics to be more accurately approximated by their asymptotic distributions, even when
the ε parameter is large.

Both the Barndorff-Nielsen p∗ approximation and the Bartlett correction demonstrated their
value as tools to enhance the accuracy and reliability of confidence interval and p-value calculations
using Gamma Variance Models. However, it should be noted that the p∗ approximation exhibited
instabilities in the presence of internally incompatible data for large values of ε. Additionally,
while the r∗ approximation can be computed analytically for all the examples examined in this
paper, the expressions become complex for models associated with realistic applications, such as
the simple-average and full GVM models.

Conversely, the Bartlett correction, calculated using the Lawley formula, offers a more elegant
expression for the expectation value of the likelihood ratio, which is employed to compute the
Bartlett correction factor for the likelihood ratio. Specifically, refer to Eq.(64) for the simple-
average model (see Sec.6) and Eqs.(77) and (79) for combinations utilizing the full GVM (see
Sec. 7.1). Nevertheless, the r∗ approximation is suitable for inference on the parameter of interest
in combinations executed with the full GVM, provided the condition in Eq.(42) is met for every
nuisance parameter. This is because the Lawley formula does not introduce corrections at the
order of ε2 for the likelihood ratio, allowing the r∗ approximation to offer an analytical expression,
while the Bartlett correction can only be computed using MC.

The Bartlett correction also proved to be an effective technique for improving the goodness-
of-fit statistic. This was true for cases where the statistic could be computed analytically using



the Lawley formula, such as the simple-average model, as well as for cases where it was estimated
using Monte Carlo methods, as in the full Gamma Variance Model. The application of the Bartlett
correction in the latter scenario significantly reduced the number of pseudo-experiments required
for accurately estimating the significance of rare effects.

These findings highlight the potential of higher-order asymptotics to refine inference on the
parameters of interest in a various contexts, not only the GVM. Higher-order asymptotics are
valuable tools when the MLEs of statistical models do not follow Gaussian distributions or, equiv-
alently, when log-likelihoods are not well approximated by quadratic expressions. For Gamma
Variance Models this occurs when ε is large; however, in general, such deviations are typically
associated with small experimental-sample sizes. In Particle Physics it is not uncommon to search
for new signal processes by counting collision events with very specific characteristics, such that
the expected number of background events may be order unity. With sample sizes of this order it
is expected that asymptotic distributions will not be accurate and high-order asymptotic formulae
should prove valuable (see, e.g., Refs. [10, 22]).

The introduction of higher-order asymptotic corrections removes a potential stumbling block for
use of the Gamma Variance Model. As many estimate of systematic uncertainties may themselves
be uncertain at the level of 20% to 50% or more, one would not expect asymptotic confidence
intervals or p-values to be accurate. By using higher-order corrections, accurate results can be
achieved without with minimal or no Monte Carlo simulation, greatly simplifying use of the model.
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