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Recipes for Exclusion Limits

We summarize the mathematics needed for computing exclusion limits based on profile
likelihood ratio tests. The material is largely extracted from Ref. [1], where more details can
be found. We consider testing a hypothesized signal strength µ, defined such that µ = 0 is
the background-only model, and µ = 1 corresponds to the nominal signal model. The result
of the significance test is a p-value, pµ. If one finds pµ < 0.05, then this value of µ is excluded
at 95% confidence level. The upper limit on µ is the highest value of µ not excluded, in
practice found by solving pµ = 0.05 for µ.

Here we assume the search is carried out using a histogram where signal could be present,
represented as a set of numbers n = (n1, . . . , nN ), where the expectation value of ni can be
written

E[ni] = νi = µsi + bi . (1)

Here si and bi are the expected numbers of entries in bin i, and µ is the strength parameter.
The values si and bi will depend in general on a set of nuisance parameters θ.

The analysis may use one or more control histograms to constrain the nuisance parameters.
A control histogram is represented by m = (m1, . . . ,mM ) with expectation values

E[mi] = ui(θ) , (2)

where the functions ui(θ) are given functions of the nuisance parameters θ.

These ingredients are used in a statistical test of the strength parameter µ by using the
profile likelihood ratio. Often one assumes that the presence of signal can only increase the
expected number events, i.e., a physical model requires µ ≥ 0 Nevertheless, the estimator µ̂
is taken to be the value of µ that maximizes the likelihood, even if this value is negative. If a
data set gives µ̂ < 0, then the best level of agreement between the data and any physical value
of µ occurs for µ = 0. Therefore to measure the level of agreement between the data and a
hypothesized value of the strength parameter µ we take the ratio of the profile likelihood at
the hypothesized µ to the maximum likelihood for a physical model, i.e.,

λ̃(µ) =















L(µ,
ˆ̂
θ(µ))

L(µ̂,θ̂)
µ̂ ≥ 0,

L(µ,
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θ(µ))

L(0,
ˆ̂
θ(0))

µ̂ < 0 .

(3)

Here
ˆ̂
θ(0) and

ˆ̂
θ(µ) refer to the conditional ML estimators of θ given a strength parameter

of 0 or µ, respectively.
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We then define the test statistic q̃µ as

q̃µ =







−2 ln λ̃(µ) µ̂ ≤ µ

0 µ̂ > µ
=























−2 ln L(µ,
ˆ̂
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L(0,
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θ(0))

µ̂ < 0 ,

−2 ln L(µ,
ˆ̂
θ(µ))

L(µ̂,θ̂)
0 ≤ µ̂ ≤ µ ,

0 µ̂ > µ .

(4)

Large values of q̃µ corresponding to increasing disagreement between the data and the hy-
pothesized µ. For a sufficiently large data sample, the pdf f(q̃µ|µ) is found to approach

f(q̃µ|µ) =
1

2
δ(q̃µ) +
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1
√

2π(2µ/σ)
exp

[

−1
2
(q̃µ+µ2/σ2)2

(2µ/σ)2

]

q̃µ > µ2/σ2 .

(5)

Equation (5) requires the standard deviation σ of µ̂, under assumption of a signal strength
µ. This can be found by first estimating the covariance matrix from the matrix of second
derivatives of the log-likelihood function, evaluated with the Asimov data set that corresponds
to the strength parameter µ that is being tested. That is, the Asimov data values are

nA,i = µsi + bi , (6)

mA,i = ui . (7)

We denote the likelihood evaluated with the Asimov data values as LA(µ). Note that this
depends both on the strength parameter µ being tested as well as on the value of µ that
defines the Asimov data in Eq. (6). When finding the p-value, these two values are the same.

For the inverse covariance matrix one finds (see [1] Eq. (28)),

V −1
jk = −∂2 lnLA

∂θj∂θk
=
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∂νi
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∂ui
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1

ui
. (8)

In Eq. (8) the parameter µ is regarded as one of the θi (say, θ0). To find σ, evaluate the
derivatives of lnLA numerically, use this to find the inverse covariance matrix, and then invert
and extract the variance of µ̂. One can see directly from Eq. (8) that this variance depends on
the parameter values assumed for the Asimov data set, in particular on the assumed strength
parameter µ.

The cumulative distribution for q̃µ corresponding to the pdf (5) is

F (q̃µ|µ) =















Φ
(

√

q̃µ
)

0 < q̃µ ≤ µ2/σ2 ,

Φ
(

q̃µ+µ2/σ2

2µ/σ

)

q̃µ > µ2/σ2 .

(9)

The p-value of the hypothesized µ is as before given by one minus the cumulative distribution,

pµ = 1− F (q̃µ|µ) , (10)

2



and therefore the corresponding significance is

Zµ =











√

q̃µ 0 < q̃µ ≤ µ2/σ2 ,

q̃µ+µ2/σ2

2µ/σ q̃µ > µ2/σ2 .

(11)

The upper limit on µ at confidence level 1− α is found by setting pµ = α and solving for
µ, which gives

µup = µ̂+ σΦ−1(1− α) . (12)

Note that because σ depends in general on µ, Eq. (12) must be solved numerically.
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