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Exercises on discovery and exclusion significance with

statistical uncertainty in the background estimate

This note describes the problem of a simple counting experiment where one observes n
events in a search region assumed to follow a Poisson distribution with a mean µs+ b, where
s is the expected number of events from the nominal signal model (here taken as known),
b is the total expected number of background events and µ is rate parameter that we want
to test. The background is treated as a sum of components each constrained by a control
measurement. The procedure below for obtain the discovery and exclusion signficance values
is based on the large-sample formulae described in Ref. [1].

Suppose n events are selected in a search region where both signal and background could
be present. The expectation value of n can be written

E[n] = µs+ btot , (1)

where s is the expected number from signal and btot is the expected total background (i.e.,
from all sources). Here µ is a strength parameter defined such that µ = 0 corresponds to the
background-only hypothesis and µ = 1 gives the nominal signal rate plus background.

Suppose that btot consists of N components, i.e.,

btot =
N
∑

i=1

bi . (2)

To estimate the expected number of events from background component i, we construct N
control regions, where we make subsidiary measurement mi modeled as following a Poisson
distribution with expectation value

E[mi] = τibi . (3)

Here τi is a scale factor that relates the mean number of events that contribute to n (the
primary measurement), to that of the ith subsidiary measurement. That is, τi is effectively
the ratio of the sizes of the control to signal regions. Here we will assume that the τi can be
determined with negligible uncertainty.

The likelihood function for the parameters µ and b = (b1, . . . , bN ) is the product of
Poisson probabilities:

L(µ,b) =
(µs+ btot)

n

n!
e−(µs+btot)

N
∏

i=1

(τibi)
mi

mi!
e−τibi . (4)

Here µ is the parameter of interest; the components of b are nuisance parameters.

To test a hypothesized value of µ, one computes the profile likelihood ratio
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λ(µ) =
L(µ,

ˆ̂
b)

L(µ̂, b̂)
(5)

where the double-hat notation refers to the conditional maximum-likelihood estimators (MLEs)
for the given value of µ, and the single hats denote the unconditional MLEs.

For purposes of establishing a one-sided upper limit, we define the test statistic

qµ =

{−2 lnλ(µ) µ̂ ≤ µ ,

0 µ̂ > µ ,
(6)

and for purposes of testing the background-only hypothesis for discovery, we define

q0 =

{−2 lnλ(0) µ̂ > 0 ,

0 µ̂ ≤ 0 ,
(7)

The ratio λ(µ) is expected to be close to unity (i.e., qµ is near zero) if the data are in good
agreement with the hypothesized value of µ.

Suppose the data results in a value of qµ = qobs. The level of agreement between the data
and hypothesized µ is given by the p-value,

p =

∫

∞

qobs

f(qµ|µ) dqµ , (8)

where f(qµ|µ) is the sampling distribution of qµ under the assumption of µ.

One can define the significance corresponding to a given p-value as the number of standard
deviations Z at which a Gaussian random variable of zero mean would give a one-sided tail
area equal to p. That is, the significance Z is related to the p-value by

p =

∫

∞

Z

1√
2π

e−x2/2 dx = 1− Φ(Z) , (9)

where Φ is the cumulative distribution for the standard (zero mean, unit variance) Gaussian.
Equivalently one has

Z = Φ−1(1− p) , (10)

where Φ−1 is the quantile of the standard Gaussian (inverse of the cumulative distribution).

As shown in Ref. [1], in the large-sample limit, the significance with which one would
reject a value of µ approaches the asymptotic form

Zµ =
√
qµ , (11)

and similarly the significance with which one would reject µ = 0 is

Z0 =
√
q0 . (12)
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To calculate the value of qµ that one would obtain from a set of data values n and

m1, . . . ,mN , one needs the unconditional estimators µ̂ and b̂, and the conditional MLEs
ˆ̂
b,

i.e., the values of b that maximize the likelihood for the specified value of µ. The value of n
itself is obtained from the real data. In cases with more than one background component, it
is easiest to solve for the required quantities numerically.

As an example consider a search with two background components as illustrated in Ta-
ble 1. Using these numbers n = 23 for the number of events found gives Z0 = 3.00.

Table 1: Number of expected background events mi observed in the control measurements and the
corresponding scale factors τi.

mi τi
8 2.0
3 1.0
1 0.5
0 1.0

As suggested exercises, one may use the program SigCalc, available on the course website,
to investigate how the discovery significance would change if the background measurements
were different, or if the scale factors τi were changed. In the default version of the program,
he values needed are entered in a text file, and example of which called inputFile.txt can
be found together with the SigCalc code. The format should be clear from looking at the
file, and one may then change the values or the number of background components.

Recall that the estimated background value b̂i = mi/τi, so one could, for example in-
vestigate what happens if the first background component were characterized by m1 = 40,
τ1 = 10, versus, say, m1 = 1, τ1 = 0.25. In both cases, as well as with the numbers given
in the table above, the number of background events for the first background component is
predicted to be 4.0. But with large τ1, the statistical precisiion with which this background
is estimated is greater, and thus one expects to have a more sensitive analysis.

Similarly, for the fourth background component in the table above, there were zero events
observed in the control measurement. Suppose, however, that the corresponding τ4 value had
been equal to 0.1 (poorly constrained background) or 10.0 (well constrained background).
One may investigate what these and similar changes have on the discovery significance.

One may extend the program SigCalc in any number of ways. For example, instead of
finding the significance for observed values of n and m1, . . . ,mM , one may generate these
values from a Monte Carlo model under assumption of specified values of µ and bi. For each
simulated experiment one can then find the significance, and by simulating the experiment
a number of times one can find the median (or mean) of this distribution, which is then the
expected significance under assumption of the model used to generate the data.

The program also provides the p-value of a hypothesized value of µ. If this value is found
less than 5%, one would say that the value is excluded at 95% confidence level. One could
therefore include a loop in the program to find the p-value for a range of hypothesized values
of µ, and thus to find that value of µ for which pµ = 0.05. As the p-value given in the program
is based on a one-sided test, this represents the upper limit at 95% confidence level.

As a more ambitions extention, one may also insert histograms into the program to
record the exact distribution of the test statistic being used, and use these, rather than the
asymptotic formulae, to determine the p-values of the hypothesis being tested.
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