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Outline

—p | Probability
Definition, Bayes’ theorem, probability densities
and their properties, catalogue of pdfs, Monte Carlo

2 Statistical tests
general concepts, test statistics, multivariate methods,
goodness-of-fit tests

3 Parameter estimation
general concepts, maximum likelithood, variance of
estimators, least squares

4 Hypothesis tests for discovery and exclusion
discovery significance, sensitivity, setting limits

5 Further topics
systematic errors, Bayesian methods, MCMC
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Some statistics books, papers, etc.

G. Cowan, Statistical Data Analysis, Clarendon, Oxford, 1998

R.J. Barlow, Statistics: A Guide to the Use of Statistical Methods 1n
the Physical Sciences, Wiley, 1989

Ilya Narsky and Frank C. Porter, Statistical Analysis Techniques in
Particle Physics, Wiley, 2014.

L. Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986

F. James., Statistical and Computational Methods in Experimental
Physics, 2nd ed., World Scientific, 2006

S. Brandt, Statistical and Computational Methods in Data
Analysis, Springer, New York, 1998 (with program library on CD)

J. Beringer et al. (Particle Data Group), Review of Particle Physics,
Phys. Rev. D86, 010001 (2012) ; see also pdg. 1bl.gov sections on

probability, statistics, Monte Carlo
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Data analysis 1n particle physics

N

; \ Observe events of a certain type
q

I\

Measure characteristics of each event (particle momenta,
number of muons, energy of jets,...)

Theories (e.g. SM) predict distributions of these properties
up to free parameters, e.g., a, Gg, M, a, my, ...

Some tasks of data analysis:
Estimate (measure) the parameters;
Quantify the uncertainty of the parameter estimates;

Test the extent to which the predictions of a theory
are 1in agreement with the data.
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Dealing with uncertainty

In particle physics there are various elements of uncertainty:

final theory not known,
that’s why we search further :
theory 1s not deterministic, . .ﬂw
quantum mechanics

random measurement CITOTIS,

present even without quantum effects

things we could know 1n principle but don’t,

e.g. from limitations of cost, time, ...

We can quantify the uncertainty using PROBABILITY
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A definition of probability

Consider a set S with subsets 4, B, ...

Forall AcCc S,P(A) >0

P =1
(5) Kolmogorov

If ANB=0,P(AUB) = P(A) + P(B) axioms (1933)

From these axioms we can derive further properties, e.g.
P(A)=1-P(A)
P(AUA)=1
P(®)=0
if AC B, then P(A) < P(B)
P(AuB) = P(A)+ P(B) — P(An B)
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Conditional probability, independence

Also define conditional probability of A given B (with P(B) # 0):

P(ANB
p(a|B) = ZANB)
P(B)
E.g. rolling dice: P(n < 3|neven) = P((n;?gvr;rg even) _ :13_% — %

Subsets 4, B independent if: P(ANB) = P(A)P(B)

P(A)P(B)
P(B)

If A4, B independent, P(A|B) = = P(A)

N.B. do not confuse with disjoint subsets, 1.e., AN B =10
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Interpretation of probability

[. Relative frequency
A, B, ... are outcomes of a repeatable experiment

P(A) — im times outcome is A

n—oeo n

cf. quantum mechanics, particle scattering, radioactive decay...

[I. Subjective probability
A, B, ... are hypotheses (statements that are true or false)

P(A) = degree of belief that A is true

» Both interpretations consistent with Kolmogorov axioms.
 In particle physics frequency interpretation often most useful,
but subjective probability can provide more natural treatment of
non-repeatable phenomena:

systematic uncertainties, probability that Higgs boson exists,...
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Bayes' theorem

From the definition of conditional probability we have,

_ P(ANB) __ P(BNA)
P(A|B) = P(B) and P(B|A) = POA)
but P(ANB) =P(BNA),so
Bayes’ theorem
P(AB) =~ (BZL?;Z; (4) yes t

First published (posthumously) by the
Reverend Thomas Bayes (1702—1761)

An essay towards solving a problem in the
doctrine of chances, Philos. Trans. R. Soc. 53

(1763) 370; reprinted in Biometrika, 45 (1958) 293.
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The law of total probability B

Consider a subset B of
the sample space S, S i

divided into disjoint subsets 4.
such that U. 4. = §,

— B=BNS=BnNn(U;A;)) =U,(BNA),), !
— P(B) = P(Ui(BNAy)) =%; P(BNA)
— P(B)=5,P(B|A;)P(A;) law of total probability

P(B|A)P(A)

Bayes’ theorem becomes | P(A|B) =
>_i P(B|A;)P(A;)
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An example using Bayes theorem
Suppose the probability (for anyone) to have AIDS is:

P(AIDS) = 0.001 < prior probabilities, 1.e.,
P(no AIDS) = 0.999 before any test carried out

Consider an AIDS test: resultis + or —

P(+|AIDS) = 0.98 < probabilities to (in)correctly
P(—|AIDS) = 0.02 identify an infected person

P(+|no AIDS) = 0.03 <« probabilities to (in)correctly
P(—|no AIDS) = 0.97 identify an uninfected person

Suppose your result is +. How worried should you be?

G. Cowan Aachen 2014 / Statistics for Particle Physics, Lecture 1 11



Bayes' theorem example (cont.)

The probability to have AIDS given a + result 1s

P(+|AIDS) P(AIDS)
P(+4|AIDS) P(AIDS) 4+ P(+|no AIDS) P(no AIDS)

P(AIDS|+) =

B 0.98 x 0.001
"~ 0.98 x 0.001 + 0.03 x 0.999

= 0.032 «— posterior probability

1.e. you’re probably OK!
Your viewpoint: my degree of belief that I have AIDS 1s 3.2%
Your doctor’s viewpoint: 3.2% of people like this will have AIDS
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Frequentist Statistics — general philosophy

In frequentist statistics, probabilities are associated only with
the data, i.e., outcomes of repeatable observations (shorthand: T ).

Probability = limiting frequency
Probabilities such as

P (Higgs boson exists),
P (0.117 < ;< 0.121),

etc. are either O or 1, but we don’t know which.

The tools of frequentist statistics tell us what to expect, under
the assumption of certain probabilities, about hypothetical

repeated observations.

The preferred theories (models, hypotheses, ...) are those for
which our observations would be considered ‘usual’.
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Bayesian Statistics — general philosophy

In Bayesian statistics, use subjective probability for hypotheses:

probability of the data assuming

hypothesis 7/ (the likelihood) . Vs E?f?; Srszlz?rl::;litthyé ici Zt’a

. _ _ P(@@H)m(H)
/P (H|Z) [ P(Z|H)n(H) dH

posterior probability, 1.e., \ normalization involves sum
after seeing the data over all possible hypotheses

Bayes’ theorem has an “if-then” character: If your prior
probabilities were s (H), then 1t says how these probabilities
should change in the light of the data.

No general prescription for priors (subjective!)
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Random variables and probability density functions

A random variable 1s a numerical characteristic assigned to an
element of the sample space; can be discrete or continuous.

Suppose outcome of experiment 1s continuous value x
P(x found in [z, + dz]) = f(x) dx
— f(x) = probability density function (pdf)

©.@)
/ f(x)de =1 x must be somewhere

— OO

Or for discrete outcome x; with e.g. i = 1, 2, ... we have
P(xz;) = p; probability mass function

Y P(z) =1 x must take on one of its possible values
)
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Cumulative distribution function

Probability to have outcome less than or equal to x 1s

X
/ f(z) de' = F(x) cumulative distribution function
— OO

< 03 @ o g |
. . OF (x
Alternatively define pdf with f(xz) = 8( )
T
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Other types of probability densities

Outcome of experiment characterized by several values,
e.g. an n-component vector, (x,, ... X,)

— joint pdf f(x1,...,%n)
Sometimes we want only pdf of some (or one) of the components
— marginal pdf f1(x1) = / : -/f(:l;l, o, Tp)dxo ... dTn

X,, X, independent if f(x1,z2) = f1(x1)f2(z2)

Sometimes we want to consider some components as constant
f(z1,22)
f2(x2)
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Expectation values

Consider continuous r.v. x with pdf f (x).
Define expectation (mean) value as FE[x] = / x f(x) dx
Notation (often): E[x] = p  ~ “centre of gravity” of pdf.

For a function y(x) with pdf g(y),
Ely] = /yg(y) dy = /y(a?)f(a;) dx (equivalent)

Variance: V[x] = E[a:Q] — ,LL2 = E[(z — ,LL)Q]
Notation: V[z] = o 2
— <« (o)
Standard deviation: ¢ = \/ o 2 /\
!

o ~ width of pdf, same units as x. 1
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Covariance and correlation
Detine covariance cov[x,y] (also use matrix notation V, ) as
coviz,y] = Elzy] — papy = El(x — pa)(y — py)]

Correlation coefficient (dimensionless) defined as

cov|x, y]

Pxy —
O'ma'y

If x, y, independent, 1.¢., f(x,y) = fe(z)fy(y), then
Elzy] = / / zy f(z,y) dedy = pazpy
— coV|[x,y] =0 x and y, ‘uncorrelated’

N.B. converse not always true.
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Correlation (cont.)
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Error propagation
Suppose we measure a set of values £ = (x1,...,2xn)

and we have the covariances V;; = cov|[xz;, z;]

which quantify the measurement errors in the x..
Now consider a function y (&) .
What is the variance of y(&) 7
The hard way: use joint pdf f(Z) to find the pdf 9(¥y) ,

then from g(y) find V[y] = E[y?] — (E[¥])*.

Often not practical, (&) may not even be fully known.
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Error propagation (2)
Suppose we had [ = E[Z]

in practice only estimates given by the measured x

Expand y(&) to 1st order in a Taylor series about [

y(Z) ~ y(ii) + Z [ ] (x5 — i)

x;
ox; =i

To find V[y] we need E[y?*] and E[y].

Ely(Z)] =~ y(i) since Elz; —p;] =0
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Error propagation (3)

Ely?(@)] ~ v (1) + 2y(@) Y [%
1 =1

n Oy
(z; — ps) [
: ) (]Z::l axj r=

7

| — |
!
T
Ry
8
~.
|
=
o

Putting the ingredients together gives the variance of y ()

G. Cowan

n

oy~ >

1,j=1

|

dy Oy

=i

Aachen 2014 / Statistics for Particle Physics, Lecture 1

23



Error propagation (4)

If the x; are uncorrelated, i.e., Vij = 022 0ij , then this becomes

2
U ~ Z [838@] 022

=
Similar for a set of m functions ¥(Z) = (y1(Z), ..., ym(Z))
2. | Oyg, Oy
Up = coVlyr, yl = ) [8 ka Vi
i,j=1 L9 9% lz=p

or in matrix notation [ = AV AL

G. Cowan

,  where

A — | 9%
Y10
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Error propagation (35)

The ‘error propagation’ formulae tell us the

covariances of a set of functions
y(Z) = (y1(2),...,ym(Z)) in terms of

the covariances of the original variables. O,

Limitations: exact only if 4(Z) linear. Y(x)

Approximation breaks down if function

nonlinear over a region comparable

in size to the o;. o

N.B. We have said nothing about the exact pdf of the x,
e.g., 1t doesn’t have to be Gaussian.
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Error propagation — special cases

y=2z1+x2 — U§ZU%+U§+2COV[$17$Q]

2 2 2
— o o o coVlzi.x
Yy = 1T L =14 %, (1, x2]

y=oorr T3 122

That 1s, 1f the x; are uncorrelated:
add errors quadratically for the sum (or difference),

add relative errors quadratically for product (or ratio).

A But correlations can change this completely...
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Error propagation — special cases (2)

Consider y = 1 — 2 with

cov|zy, 3]
pr=p2 =10, oy1=o02=1, p= =

0102

Viy] =124+1%2=2, - oy, =1.4

Now suppose p=1. Then
Viy] =1241%2-2=0,— 0, =0

1.e. for 100% correlation, error in difference — O.
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Some distributions

Distribution/pdf Example use in HEP
Binomial Branching ratio

Multinomial Histogram with fixed N
Poisson Number of events found
Uniform Monte Carlo method
Exponential Decay time

Gaussian Measurement error
Chi-square Goodness-of-fit

Cauchy Mass of resonance

Landau Ionization energy loss

Beta Prior pdf for efficiency
Gamma Sum of exponential variables
Student’s ¢ Resolution function with adjustable tails
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Binomial distribution

Consider N independent experiments (Bernoulli trials):

outcome of each 1s ‘success’ or ‘failure’,
probability of success on any given trial 1s p.

Define discrete r.v. n = number of successes (0 <n < N).

Probability of a specific outcome (in order), e.g. “ssfsf’ 1s

pp(1 —p)p(l —p) =p"(1 _p)N—n
N
n!(N—n)!

But order not important; there are

ways (permutations) to get n successes in N trials, total

probability for # is sum of probabilities for each permutation.
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Binomial distribution (2)

The binomial distribution is therefore

N
;N, — n 1 . N—n
f/("ﬂ p) DTN =P (1-p)
random parameters

variable

For the expectation value and variance we find:
N
E[n] = ) nf(n;N,p) = Np

n=0

VIn] = E[n?] — (E[n])? = Np(1 — p)
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Binomial distribution (3)

Binomial distribution for several values of the parameters:

2 04
2 N=5
é 02 |+ NN p=05 i
0 HH Hﬂ
0 5 10 15 20
n
2 04
= N=10
= 02 | N p=05 |
Lallh,
0 5 10 15 20
n
2 04
> N=20
é 02 | p:05 i
. il
0 5 10 15 20

n

f(n;N,p)

f(n:N,p)

0.2

0.4

0.2

N=20
M =01 |
"
0 5 10 15 20
n
N=20
p=02 |
A,
5 10 15 20
n
N=20
p=06 |
e
5 10 15 20

n

Example: observe N decays of W+, the number n of which are
W—uv 1s a binomial r.v., p = branching ratio.
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Multinomial distribution

Like binomial but now m outcomes instead of two, probabilities are

m
1=1

For N trials we want the probability to obtain:

n, of outcome 1,
n, of outcome 2,

n,, of outcome m.

This is the multinomial distribution for 7 = (n1,...,7m)
N
f(it; N,p) = PP - D
nilnol. - ny!
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Multinomial distribution (2)

Now consider outcome 7 as ‘success’, all others as ‘failure’.

— all n; individually binomial with parameters N, p,

E[n;] = Np;, VIn;l = Np;(1 —p;) foralli

One can also find the covariance to be
Vij = Npi(d;5 — pj)

Example: 7 = (n1,...,nm) represents a histogram

with m bins, N total entries, all entries independent.
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Poisson distribution

Consider binomial 7 in the limit

N — oo, p — 0O, FElnl = Np —v.
< 0.4
= v=2
— n follows the Poisson distribution: =02 L N N
V’I’L 0 H H ” I o
f(niv)="e (n>0) I
- - 04
S v=5
Flnl=v, Vn]l=v. To2f
0 ln [ H H H H [
0 5 10 15 20
Example: number of scattering events — _ | '
n with cross section o found for a fixed £ v=10
. . . . 0.2 r
integrated luminosity, with v = o [ L dt. a1l
0 ol 0o
0 5 10 15 20

n
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Uniform distribution

Consider a continuous r.v. x with —oo < x < oo . Uniform pdf is:

12

 a<z<f

f(x;aaﬁ):{ﬁ_a E, 1ot o B
0 otherwise | L
1 oo | e
Bla] = 2(a + 5) " |
Vial = L(8—a)? .
12 ® o ; ; ;

N.B. For any r.v. x with cumulative distribution F(x),
y = F(x) 1s uniform 1n [0,1].

Example: for i’ — yy, E, is uniformin [E; , E, .. ], with

Emin = %Eﬂ(l — 5) . Emax = %Ew(l + 5)
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Exponential distribution

The exponential pdf for the continuous r.v. x 1s defined by:

1

%6_33/6 x>0 = 08 - L 2:;
flx; &) = ios
otherwise 06
E[ZU] p— 0.4 ‘\\\
02 e
2
V[x] - g 0 0 1 2 (; 4 5

Example: proper decay time ¢ of an unstable particle

f(t;7) = le_t/T (7= mean lifetime)
T

Lack of memory (unique to exponential): f(t — to|t > tg) = f(¢)
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Gaussian distribution

The Gaussian (normal) pdf for a continuous r.v. x 1s defined by:

~

]. —(CU— 2 2 é 06 F — n=0,0=1 i
T, , O ) — e :u’) /20 = --- u=0, 0=2
fip, o) = —o— s
04 r
Elz] =p  (N.B. often u, 0 denote

mean, variance of any o2
V[z] = o2 IV, notonly Gaussian.)

0 E=oo

Special case: u=0, =1 (‘standard Gaussian’):

r) = - e 7°/2 )= [ z') dz’
o) =2 e@) = [ e@)d

If y ~ Gaussian with u, o2, then x = (y — u) /o follows ¢ (x).
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Gaussian pdf and the Central Limit Theorem

The Gaussian pdf is so useful because almost any random
variable that 1s a sum of a large number of small contributions
follows 1t. This follows from the Central Limit Theorem:

For n independent r.v.s x; with finite variances o, otherwise
arbitrary pdfs, consider the sum

mn
y= >
1=1

In the limit n — oo, y 1s a Gaussian r.v. with
n

Ell=> 1w  Vil=)Y o?
1=1 )

1 =1

Measurement errors are often the sum of many contributions, so
frequently measured values can be treated as Gaussian r.v.s.
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Central Limit Theorem (2)

The CLT can be proved using characteristic functions (Fourier
transforms), see, e€.g., SDA Chapter 10.

For finite n, the theorem 1s approximately valid to the
extent that the fluctuation of the sum 1s not dominated by
one (or few) terms.

A Beware of measurement errors with non-Gaussian tails.

Good example: velocity component v, of air molecules.

OK example: total deflection due to multiple Coulomb scattering.
(Rare large angle deflections give non-Gaussian tail.)

Bad example: energy loss of charged particle traversing thin
gas layer. (Rare collisions make up large fraction of energy loss,
cf. Landau pdf.)

G. Cowan Aachen 2014 / Statistics for Particle Physics, Lecture 1 39



Multivariate Gaussian distribution

Multivariate Gaussian pdf for the vector? = (z1,...,xn) :

1
oAV

F(& 6, V) p | -5 — DTV HE - i)

=T

— — —»T
x, [ are column vectors, £ , [~ are transpose (row) vectors,

Blz;] = pi, ,  covlz;,z;] =V .

For n = 2 this 1s
1

f(z1,22,; p1,12,01,02,p) =
2mo1004/ 1 — ,02
1 TN v — po\” T1 — (1) (T2 — M2
X exp{ — _9
p{ 2(1—02)[< o1 >+< 02 ) p( o1 >< o2 >]}

where p = cov[x,, x,]/(0,0,) 1s the correlation coefficient.

G. Cowan Aachen 2014 / Statistics for Particle Physics, Lecture 1 40



Chi-square (%) distribution

The chi-square pdf for the continuous r.v. z (z > 0) 1s defined by

1 n/2-1 —2/2 & N _
zZ;m) = z e g =
HEm = o () |
03 X —10
n=1, 2, ..= number of ‘degrees of L
freedom’ (dof) e,
01 FA\N
FElzl =n, V][z]=2n. Ve s e

For independent Gaussian x, i = 1, ..., n, means u,, variances 07,

n T; — i2
Z( 2:“)

z = - follows yx? pdf with »n dof.
i=1 i
Example: goodness-of-fit test variable especially in conjunction

with method of least squares.
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Cauchy (Breit-Wigner) distribution

The Breit-Wigner pdf for the continuous r.v. x 1s defined by

1 r/2

f(mv r,ZUO) — ;l—2/4+ (%-330)2

08

Jlex, D)

06 r

(' =2, x, = 0 is the Cauchy pdf.)

04

E[x] not well defined, V[x] —oo.

02 |

x, = mode (most probable value)

I" = full width at half maximum

Example: mass of resonance particle, e.g. p, K*, ¢°, ...

I" = decay rate (inverse of mean lifetime)
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[Landau distribution

For a charged particle with = v /c traversing a layer of matter
of thickness d, the energy loss A follows the Landau pdf:

1 A
f(A;B) = —¢9(N) , g
€ ST R
1 50 [5 -+ + g
o(N\) = _/O exp(—ulnu — Au) sin mru du
r
—f d [
— Y Aa_e(iné4q1o
= Hoe(nS o1
_ 2wNae*2?p> 7 d ,  I?expp?
¢ = mec2S A (B2 © T 2mec232~2

L. Landau, J. Phys. USSR 8 (1944) 201; see also
W. Allison and J. Cobb, Ann. Rev. Nucl. Part. Sci. 30 (1980) 253.
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Landau distribution (2)

< 4 | | |
>
g o
4 110
Long ‘Landau tail a ol
<
— all moments oo =
1 -
0
0
~ 4
Mode (most probable o
value) sensitive to 3, J T
— particle 1.d. 2 r
1 -
O L | | | |
-1 2 3 -+
10 1 10 10 10 10
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Beta distribution

. T(a+8)
e enB) = F ()
Blrl = a+f3
_ af
Y = et s+ D)

Often used to represent pdf
of continuous r.v. nonzero only
between finite limits.

2211 - z)P1

3

=
S
<

S

25 -
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Gamma distribution

: _ 1 a—1 _—x/p3
(@i B) = £l
FElx] = apf 505
V[CE] — OéﬂQ “-0.4
0.3

Often used to represent pdf
of continuous r.v. nonzero only

in [0,0].

Also e.g. sum of n exponential 01 ;
r.v.s or time until n#th event |

0.2

in Poisson process ~ Gamma
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Student's 7 distribution

()

flz,v) =

Elzx] =0 Ww>1)

V[a] =L2 (v > 2)

v =number of degrees of freedom
(not necessarily integer)

v=1 gives Cauchy,

v — oo gives Gaussian.

332
Vo (v/2) (1 t

f(x;v)

0.5

04 r

—v=1
----- v=2
......... v=100
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Student's ¢ distribution (2)

If x ~ Gaussian with =0, =1, and
z ~ x> with n degrees of freedom, then
t=x/(z/n)'? follows Student's ¢ with v = n.

This arises in problems where one forms the ratio of a sample
mean to the sample standard deviation of Gaussian r.v.s.

The Student's ¢ provides a bell-shaped pdf with adjustable
tails, ranging from those of a Gaussian, which fall off very
quickly, (v — oo, but 1n fact already very Gauss-like for
v= two dozen), to the very long-tailed Cauchy (v=1).

Developed 1in 1908 by William Gosset, who worked under
the pseudonym "Student" for the Guinness Brewery.
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The Monte Carlo method

What 1t 1s: a numerical technique for calculating probabilities
and related quantities using sequences of random numbers.

The usual steps: 9(r)

(1) Generate sequence 7y, 75, ..., ¥, uniform 1n [0, 1].

(2) Use this to produce another sequence x,, x,, ..., x, ° 1

..., n

distributed according to some pdf f(x) in which
we’re interested (x can be a vector).

(3) Use the x values to estimate some property of f(x), e.g.,
fraction of x values with a <x <b gives (b r(3)dx .

— MC calculation = integration (at least formally)

MC generated values = ‘simulated data’
— use for testing statistical procedures
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Random number generators

Goal: generate uniformly distributed values 1n [0, 1].
Toss coin for e.g. 32 bit number... (too tiring).

— ‘random number generator’
= computer algorithm to generate r, r,, ..., r,.

Example: multiplicative linear congruential generator (MLCG)
n.., = (a@an)modm, where
n; = integer
a = multiplier
m = modulus
n, = seed (initial value)
N.B. mod = modulus (remainder), e.g. 27 mod 5 = 2.

This rule produces a sequence of numbers n,, 1, ...
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Random number generators (2)

The sequence 1s (unfortunately) periodic!
Example (see Brandt Ch 4): a=3,m="7,n,=1

n1 = (3-1)mod7 =3

n> = (3-3)mod7 =2
ny = (3-2)mod7 =6
ng = (3-6)mod7 =4
ng = (3-4)mod7 =25
nge = (3-5)mod7 =1 <« sequence repeats

Choose a, m to obtain long period (maximum = m — 1); m usually
close to the largest integer that can represented in the computer.

Only use a subset of a single period of the sequence.
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Random number generators (3)
r; = n;/m are in [0, 1] but are they ‘random’?
Choose a, m so that the 7, pass various tests of randomness:
uniform distribution 1n [0, 1],
all values independent (no correlations between pairs),
¢.g. L’Ecuyer, Commun. ACM 31 (1988) 742 suggests

a = 40692 Mﬂﬂjﬂuﬂ{u‘

m = 2147483399

N(r)

100 -

50

o 1 ! I |
0 0.2 0.4 0.8 0.8

Far better generators available, e.g. TRandom3, based on Mersenne
twister algorithm, period = 219°37 — 1 (a “Mersenne prime”).

See F. James, Comp. Phys. Comm. 60 (1990) 111; Brandt Ch. 4
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The transformation method

Given ry, 7,,..., r, uniform 1n [0, 1], find x, x,,..., x,
that follow f(x) by finding a suitable transformation x (7).

lllll

Require: P(r <) = P(x < z(r"))

ie. [ gmyar=1'= [T p@)de' = Fa('))

That 1s, set F'(z) =r and solve for x (7).




Example of the transformation method

Exponential pdf: f(x; &) = %e_x/g (x> 0)

x]1
Set /oEG x/£d$/=7“ and solve for x (7).

— x(r)=—-€In(1—7r) (x(r) = —&Inr works too.)

250 F 100¢ F
200 Mﬂﬂnﬂd{”‘ B0OC
150 600 |}
100 440G
50 T 200 |
° 9 ois 1 ® 0 2‘

r xEr)
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The acceptance-rejection method

05

J()

04 Xl

03

Enclose the pdf in a box:

02 r

01

O 1

(1) Generate a random number x, uniform in [x ], 1.e.

min?® X max

T = Tmin + r1(Tmax — Tmin) » r, 1s uniform in [0,1].

(2) Generate a 2nd independent random number z uniformly

distributed between 0 and £, ,i.e. ©u = r2fmax -

ax?

(3) Ifu < f(x), then accept x. If not, reject x and repeat.
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Example with acceptance-rejection method
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If dot below curve, use
x value in histogram.
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Improving efficiency of the
acceptance-rejection method

The fraction of accepted points is equal to the fraction of
the box’s area under the curve.

For very peaked distributions, this may be very low and
thus the algorithm may be slow.

Improve by enclosing the pdf f(x) in a curve C A(x) that conforms
to f(x) more closely, where 4(x) 1s a pdf from which we can
generate random values and C' 1s a constant.

Generate points uniformly
over C h(x).

If point 1s below f(x),
accept x.
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Monte Carlo event generators :

u
" \

Simple example: ete™ — utu” . ‘\9

Generate cosf and ¢: W

f(cosl; Apg) < (1 4+ gAFB cos + cos?0) ,

o) =5 (0<6<2m)

Less simple: ‘event generators’ for a variety of reactions:
ete- — u*tu~, hadrons, ...
pp — hadrons, D-Y, SUSY,...

e.g. PYTHIA, HERWIG, ISAJET...

Output = ‘events’, 1.e., for each event we get a list of

generated particles and their momentum vectors, types, etc.
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Event listing (summary) A Simlﬂated eVent

particle/jet KS KF orig p_x P_yY p_z E

Ip+! 21 2212 0 0,000 0,000 7000,000 7000,000 0,938
Ip+! 21 2212 0 0,000 0,000-7000,000 7000,000 0,938

[

Igl 21 21
lubar! 21 -2
21 21
21 21
21 1000021
21 1000021
21-1000024
21 -3
21 4
1¥chi_201 21 1000023
Ibl 21 5
Ibbar! 21 -5
1“chi_101 21 1000022
Isl 21 3
Ichar! 21 -4
1“chi_101 21 1000022
Ihu_mu! 21 14
Ihu_mubar! 21 -14

0,863 -0,323 1739,862 1739,862 0,000
-0,621 -0,163 -777,415 777,415 0,000
-2,427 5,486 1487,857 1487 >><..

-62,910 63,357 -463,274 471
314,363 544,843 493,897 973) 397 pi+ 0,008 0,398 -308,296 308,297
-379,700 -476,000 525,686 930) 395 gamma 0,407 0,087-1695,458 1695,458
120,058 112,247 129,860 263) 399 gamma 0,113 -0,029 -314,822 314,822
259,400 187,468 83,100 330) 400 (pi0) 0,021 0,122 103,709 103,709
-79,403 242,409 283,026 381) 401 (pi0) 0,084 -0,068 -94,276 94,276
-326,241 -80,971 113,712 385) 402 (pi0) 0,267 -0,052 -144,673 144,674
-51,841 -294,077 389,953 491) 403 ganma -1,581 2,473 3,308 4,421
-0,597 -99,577 21,299 101) 404 gamma -1,494 2,143 3,061 4,016
103,362 81,316 83,457 175) 405 pi- 0,007 0,738 4,015 4,085

5,451 38,374 52,302 65) 406 pi+ -0,024 0,293 0,486 0,585

20,839 -7,250 5,938 22) 407 K+ 4,382 -1,412 -1,799 4,368
-136,266 -72,961 53,246 181 408 pi- 1,183 -0,894 -0,176 1,500
-78,263 -24,757 21,719 84) 403 (pi0) 11 0,955 -0,453 -0,530 1,221
-107,801 16,901 38,226 115) 410 (pi0) 11 2,349 -1,105 -1,181 2,855
411 (Kbar0) 11 1,441 0,247 0,472 1,615
qanmna 1 22 2,636 1,357 0,125 2) 412 pi- 1 2,232 -0,400 -0,249 2,285
{“chi_1-) 11-1000024 129,643 112,440 129,820 262) 413 k+ 1 1,380 -0,652 -0,361 1,644
(“chi_20) 11 1000023 -322,330 -80,817 113,191 382} 414 (pi0) 11 1,078  -0,265 0,175 1,132
“chi_10 1 1000022 97,944 77,819 80,917 169) 415 (K_S0) 11 1,841 0,111 0,894 2,109
“chi_10 1 1000022 -136,266 -72,961 53,246 181) 416 K+ 0,307 0,107 0,252 0,642
nU_mu 1 14 -78,263 -24,757 21,719 84) 417 pi- 0,266 0,316 -0,201 0,480
nu_mubar 1 -14 -107,801 16,901 38,226 115) 418 nbar0 1,335 1.641 2,078 3,111
{Delta++) 11 2224 0,222 0,012-2734,287 2734} 419 (pi0) 0,899 1,046 1,311 1,908
420 pi+ 0,217 1,407 1,356 1,971
421 (pi0) 1,207 2,336 2,767 3,820
422 n0 3,475 5,324 5,702 8,592
423 pi- 1,856 2,608 2,808 4,259
424 gamma -0,012 0,247 0,421 0,489
425 gamma 0,025 0,034 0,009 0,043
426 pi+ 2,718 5,229 6,403 8,703
427 (pi0) 4,109 6,747 7.597 10,961

PYTHIA Monte Carlo 123 (pi0) 0BE L1t o2 160t

430 gamma -0,383 1,169 1,208 1,724

pp —> gluinO—gluinO I431 gamma -0,2010 0,070 0,060 0,221

000~ O B

e
MR ) L0 L0 L0 00 00 00 =~ =~ =~ & O & NN =
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Monte Carlo detector simulation
Takes as input the particle list and momenta from generator.

Simulates detector response:
multiple Coulomb scattering (generate scattering angle),
particle decays (generate lifetime),
lonization energy loss (generate A),
electromagnetic, hadronic showers,
production of signals, electronics response, ...

Output = simulated raw data — 1nput to reconstruction software:

track finding, fitting, etc.

Predict what you should see at ‘detector level’ given a certain
hypothesis for ‘generator level’. Compare with the real data.

Estimate ‘efficiencies’ = #events found / # events generated.

Programming package: GEANT
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Next time...

Today we have focused on probabilities, how they are
defined, interpreted, quantified, manipulated, etc.

In the following lecture we will begin talking about statistics,

1.e., how to make inferences about probabilities (e.g., probabilistic
models or hypotheses) given a sample of data.
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Multivariate distributions

Outcome of experiment charac- 10

J— eventd

terized by several values, e.g. an

n-component vector, (x, ... X,)

6 |
P(ANB) = f(z,y) dxdy ) LLLTE L gy eventB

/ ) |

joint pdf ol .

Normalization: /”’/f(xla---afvn>da31"'dCUn =
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Marginal pdf

10 T | |

Sometimes we want only pdf of » overid

some (or one) of the components: 8 -

P(A) = 2 PANE) o E ot :
i 4 e ~
— Z f(z,y;) dy dz 7y SV B
7: 2 - =
— [ f(z,y) dyda
0 ; ! ‘.1 é é
fo(@) = [ £z ) dy x

— marginal pdf fi(z1) = / : -/f(xl, o, Tp)dxo. .. drn
X, X, independent if f(z1,22) = f1(z1)f2(22)
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Marginal pdf (2)

o 0.3

. 0.2

(a) 0.1

1)

Marginal pdf ~
projection of joint pdf
onto individual axes.
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Conditional pdf

Sometimes we want to consider some components of joint pdf as
constant. Recall conditional probability:

P(AN B) _ f(x,y) dz dy

PRI = =50 fola) do

— conditional pdfs:  p(ylz) = L&) _ f=y)
p (ylz) @) 9(z|y) F0 ()

h(y|z) fz(x)
fy(y)

Bayes’ theorem becomes: g(z|y) =

Recall 4, B independent if P(AnN B) = P(A)P(B) .
— x, y independent if f(z,y) = fz(z) fy(y) -
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Conditional pdfs (2)

E.g. joint pdf f(x,y) used to find conditional pdfs A(y|x,), A(y|x,):

.1'1 .\‘2
&
10 L = 05
! N -,
' (a) = (b)
8 | ' E 04
: : e
' : 11
: . e
g L T 0.3
SR ‘
- et
4 fil :: 0.2
Lo
N
N
.. 0.1
- k- dx - k- dx
X
O L1l 0
0 2 4 6 3 10 0 2 4 6 8 10
X )

Basically treat some of the r.v.s as constant, then divide the joint
pdf by the marginal pdf of those variables being held constant so
that what 1s left has correct normalization, e.g., / h(ylz)dy =1 .
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Functions of a random variable

A function of a random variable 1s itself a random variable.
Suppose x follows a pdf f(x), consider a function a(x).

What 1s the pdf g(a)?

’:: 10 T T T d — / d
g g(@)da= [ f(2)da
(@)
8 I 4
dS = region of x space for which
A 1 aisin[a, atda].
s 7 | For one-variable case with unique

inverse this 1s simply

- ds g(a)da = f()da

e e e 0 () = f(e@) [
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Functions without unique inverse

—

x

S

©

If inverse of a(x) not unique,
include all dx intervals in dS
which correspond to da: T

dx, = di;—3 &=

Example; a=a:2, r = ++/a, d:c=:|:26f;a.
S = |\/a.\/a da Ul -va da
_[ " “+2¢a] [_ YGRS
_ fWa) | f(—+/a)
g(a) = >Va + >
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Functions of more than one r.v.

Considerr.v.s & = (z1,...,zn) and a function a(Z).
g(a)dad = / : ./de(:cl, oo, Tp)dxy .. .drn

dS = region of x-space between (hyper)surfaces defined by

a(@) =d, a(@) = d + dd’
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Functions of more than one r.v. (2)

Example: r.v.s x, y > 0 follow joint pdf f(x,y),
consider the function z = xy. What is g(z)?

5 ! I | !

g(z)dz = /.../dsf(:c,y)d:vdy

_ /O /Z(Z-I-dZ)/iU (2.9) dy

z dx

L9 = [Tr@HE

0 z y
_— . |G
0 1 2 3 4 5 0 Y Y

(Mellin convolution)

o
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More on transformation of variables

Consider a random vector © = (x1,...,zn) with joint pdf f(Z) .
Form # linearly independent functions 7(Z) = (y1(Z), ..., yn(Z))
for which the inverse functions z1(%), ..., zn(¥) exist.

Then the joint pdf of the vector of functions is 9(%) = |J|f(Z)

. a 8 o o o a —
where J 1s the Y1 oy2 Yn
8562 8582 85[;
. . o o o a
Jacobian determinant: J=| %1 92 Yn
Oxn
ayn

Fore.g. 91(y1) integrate g(¥) over the unwanted components.
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