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goodness-of-fit tests
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estimators, least squares

4 Hypothesis tests for discovery and exclusion
discovery significance, sensitivity, setting limits

5 Further topics
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Hypotheses

A hypothesis H specifies the probability for the data, 1.e., the
outcome of the observation, here symbolically: x.

x could be uni-/multivariate, continuous or discrete.

E.g. write x ~ f (x|H).

x could represent e.g. observation of a single particle,
a single event, or an entire “experiment”.

Possible values of x form the sample space S (or “data space”).
Simple (or “point”) hypothesis: f(x|H) completely specified.
Composite hypothesis: H contains unspecified parameter(s).

The probability for x given H 1s also called the likelihood of
the hypothesis, written L(x|H).
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Frequentist statistical tests

Consider a hypothesis H, and alternative H,.

A test of H,, 1s defined by specifying a critical region w of the
data space such that there 1s no more than some (small) probability
a, assuming H, 1s correct, to observe the data there, 1.e.,

Pxew|Hy)<a

Need inequality if data are data space €2

discrete.

a 1s called the size or
significance level of the test.

If x 1s observed 1n the
critical region, reject H,,.

critical region w

G. Cowan Aachen 2014 / Statistics for Particle Physics, Lecture 2



Definition of a test (2)

But in general there are an infinite number of possible critical
regions that give the same significance level o.

So the choice of the critical region for a test of /4, needs to take
into account the alternative hypothesis H,.

Roughly speaking, place the critical region where there 1s a low
probability to be found if H,, 1s true, but high if H, 1s true:

S’{/:‘Ho\ e \,H,“u\l r&jtoh W
':' b/‘/—?(x\HA
X
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Type-1, Type-l1I errors
Rejecting the hypothesis /1, when it 1s true is a Type-I error.
The maximum probability for this is the size of the test:
PxeW|H,)<a

But we might also accept /4, when it is false, and an alternative
H, 1s true.

This 1s called a Type-II error, and occurs with probability
PxeS-W|H,)=p

One minus this 1s called the power of the test with respect to
the alternative H,:

Power =1 -
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Rejecting a hypothesis

Note that rejecting H,, 1s not necessarily equivalent to the
statement that we believe it 1s false and /, true. In frequentist

statistics only associate probability with outcomes of repeatable
observations (the data).

In Bayesian statistics, probability of the hypothesis (degree
of belief) would be found using Bayes’ theorem:

P(x|H ) ( )
P(H|x
) = () dH
which depends on the prior probability a(H).

What makes a frequentist test useful 1s that we can compute

the probability to accept/reject a hypothesis assuming that it
1S true, or assuming some alternative is true.
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Physics context of a statistical test

Event Selection: the event types in question are both known to exist.

Example: separation of different particle types (electron vs muon)
or known event types (ttbar vs QCD multijet).
Use the selected sample for further study.

Search for New Physics: the null hypothesis 1s
H, : all events correspond to Standard Model (background only),

and the alternative is

H, : events include a type whose existence is not yet established
(signal plus background)

Many subtle 1ssues here, mainly related to the high standard of proof
required to establish presence of a new phenomenon. The optimal statistical
test for a search is closely related to that used for event selection.
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Example of a multivariate statistical test

Suppose the result of a measurement for an individual event
is a collection of numbers & = (x1,...,Zn)

x, = number of muons,
X, = mean p of jets,
X, = missing energy, ...

T follows some n-dimensional joint pdf, which depends on
the type of event produced, 1.e., was it

pp—tt, PP —4gg,-..

For each reaction we consider we will have a hypothesis for the
pdfof 7, e.g., f(Z|Ho), f(Z|H1) , etc.

E.g. call H, the background hypothesis (the event type we
want to reject); [, 1s signal hypothesis (the type we want).
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Defining a multivariate critical region

Each event is a point in x-space; critical region i1s now defined
by a ‘decision boundary’ in this space.

What kind of boundary is best?

Nonlinear?
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Test statistics

The critical region’s boundary can be defined by

t(ry,....xn) = teut

where #(x,,..., x,) 1s a scalar test statistic.

We can work out the pdfs g(t|Hg), g(t|H1), ...

Critical region’s boundary is
now a single ‘cut’ on ¢.

So the original n-dimensional
problem becomes 1n effect
1-dimensional.

g(@®)

2

15 |

05 |

i rEjECT Hy
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Signal/background efficiency

Probability to reject background hypothesis for
background event (background efficiency):

o0 % 2 tcut
&y = / g(t|b)dt = « acceptb -3 rejectb
tcut 18 T
o . g(1lb) _
Probability to accept a signal event g(ts)
as signal (signal efficiency):
05 |

o

Eg = / g(tls)dt =1—p ° T &
t

‘cut
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Purity of event selection

Suppose only one background type b; overall fractions of signal
and background events are 7, and s, (prior probabilities).

Suppose we select signal events with > ¢, . What is the

cut*
‘purity’ of our selected sample?

Here purity means the probability to be signal given that
the event was accepted. Using Bayes’ theorem we find:

P(t > teut|s) s
P(t > tewt|s)ms + P(t > tewt|b)my

P(h|f > tcut) —

So the purity depends on the prior probabilities as well as on the
signal and background efficiencies.
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Constructing a test statistic

How can we choose a test’s critical region 1n an ‘optimal way’?

Neyman-Pearson lemma states:

To get the highest power for a given significance level in a test of
H,, (background) versus H,, (signal) the critical region should have

P(x|Hy)
P(x|Hy) ~

inside the region, and < c outside, where c 1s a constant which
determines the power.

e e e o 2 PO
Equivalently, optimal scalar test statistic is | t(x) = P(x|Hy)
0

N.B. any monotonic function of this is leads to the same test.
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Why Neyman-Pearson doesn’ t always help

The problem 1s that we usually don’t have explicit formulae for
the pdfs P(x|H,), P(x|H,).

Instead we may have Monte Carlo models for signal and
background processes, so we can produce simulated data,
and enter each event into an n-dimensional histogram.

Use e.g. M bins for each of the n dimensions, total of M" cells.

But 7 1s potentially large, — prohibitively large number of cells
to populate with Monte Carlo data.

Compromise: make Ansatz for form of test statistic (&)
with fewer parameters; determine them (e.g. using MC) to
give best discrimination between signal and background.
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Multivariate methods

Many new (and some old) methods:

Fisher discriminant
Neural networks
Kernel density methods
Support Vector Machines
Decision trees

Boosting

Bagging

New software for HEP, e.g.,
TMVA , Hocker, Stelzer, Tegenfeldt, Voss, Voss, physics/0703039
StatPatternRecognition, I. Narsky, physics/0507143
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Resources on multivariate methods
Books:

C.M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006

T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical
Learning, Springer, 2001

R. Duda, P. Hart, D. Stork, Pattern Classification, 2" ed., Wiley, 2001
A. Webb, Statistical Pattern Recognition, 2" ed., Wiley, 2002

Materials from some recent meetings:

PHYSTAT conference series (2002, 2003, 2005, 2007....) see
www.phystat.org

Caltech workshop on multivariate analysis, 11 February, 2008
indico.cern.ch/conferenceDisplay.py?confId=27385

SLAC Lectures on Machine Learning by Ilya Narsky (2006)
www-group.slac.stanford.edu/sluo/Lectures/Stat2006 Lectures.html
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[Linear test statistic

—

n —
K T
Ansatz:  y(X)=D w,x,=w'*
=1

Choose the parameters w,, ..., w, so that the pdfs f(y|Ho), f(y|H1)

have maximum ‘separation’. We want:

71

large distance between '
mean values, small widths
> — 2
Ty
2
T1 — T
- Fisher: maximize J(wW)= (21(2) n g)%
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Coefficients for maximum separation

" v 1
> e mean, covariance of x

We have (up) =) x; p(3|H,)dx _

o

(Vk)ij: (x—lli\—)z-(x_IJI\—)J-])(3‘:”'[1\—)d36

L2

where k=0,1 (hypothesis)
and i,j=1,..,n (component of x)

For the mean and variance of y(X) we find
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Determining the coefficients w

The numerator of J(w) 1s

(1 —10)* = > wiwj(po — p1)i(po — p1)j = Y wiw;By;
ij=1 ij=1

where Bij = (o — p1)i(Ko — H1);

n
The denominator is 33 + X% = Z (Vo +V1)i5 Z wiw; Wi
i,j=1 ,7=1

where Wi = (Vo + Vl)z’j . So the quantity to maximize is:

w! Bw  separation between the classes
J(w) = =

wI'Ww  separation within the classes

G. Cowan Aachen 2014 / Statistics for Particle Physics, Lecture 2 20



Fisher discriminant function
oJ
ow.

1

Setting =0 gives Fisher’s linear discriminant function:

y(}):wT} WlthV_{/OCW—l(ﬁo—ﬁl)

Gives linear decision boundary.

Projection of points in direction of decision

boundary gives maximum separation. H il
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Fisher discriminant for Gaussian data

Suppose f(x|H ) is a multivariate Gaussian with mean values
E,|%|=[,for H, E,|X|=p,for H,

and covariance matrices V0 = Vl = V for both. We can write the

Fisher's discriminant function (with an offset) 1s

— — —1—>
-

y(;c)zwo_i'(uO_IH) Voox

The likelihood ratio 1s thus

o =exXp|l o (X—f,) V - (x—pa)h VO (3F—4)
p(lel) p[ 2 ’ : : ]

v
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Fisher for Gaussian data (2)

That 1s, y(x) 1s a monotonic function of the likelihood ratio, so for

this case the Fisher discriminant is equivalent to using the likelihood
ratio, and is therefore optimal.

For non-Gaussian data this no longer holds, but linear
discriminant function may be simplest practical solution.

Often try to transform data so as to better approximate
Gaussian before constructing Fisher discrimimant.

G. Cowan Aachen 2014 / Statistics for Particle Physics, Lecture 2
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Fisher and Gaussian data (3)

Multivariate Gaussian data with equal covariance matrices also
gives a simple expression for posterior probabilities, e.g.,

P(BHHO)P(HO)

P(H,X)= p(X|H,)P(H,)+ p(x|H,)P(H,)

For Gaussian x and a particular choice of the offset w, this becomes:

. 1 — o ) J
PH )= 1+e-.v(x-):S(J’(x)) SOD g |
06 F
which i1s the logistic sigmoid function: 04 I
02 -
(We will use this later in connection

0 1 1 1 1
with Neural Networks.) 4 2 0o 2 4
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[ _inear decision boundaries

A linear decision boundary 1s only
optimal when both classes follow
multivariate Gaussians with equal
covariances and different means.

For some other cases a linear
boundary is almost useless.
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Transformation of inputs

If the data are not Gaussian with equal covariance, a linear decision
boundary 1s not optimal. But we can try to subject the data to a

transformation . R
(Pl(x)) AAF (P,,,(X)

and then treat the ¢ as the new input variables. This 1s often called

“feature space” and the ¢ are “basis functions™. The basis

functions can be fixed or can contain adjustable parameters which
we optimize with training data (cf. neural networks).

In other cases we will see that the basis functions only enter as
dot products

— —

(p(‘i:i)'(p(fj):K(‘i:i) -7::])

and thus we will only need the “kernel function™ K(x’_, xj)
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Nonlinear transformation of inputs

We can try to find a transformation, Xi,---, X, =@ (X),....9,(X)
so that the transformed “feature space” variables can be separated

better by a linear boundary:

» Here, guess fixed
¢ =tan  (x,/x;) basis functions

s (no free parameters)
P,=\Vx; X,
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Neural networks

Neural networks originate from attempts to model neural processes
(McCulloch and Pitts, 1943; Rosenblatt, 1962).

Widely used in many fields, and for many years the only “advanced”
multivariate method popular in HEP.

We can view a neural network as a specific way of parametrizing
the basis functions used to define the feature space transformation.

The training data are then used to adjust the parameters so that the
resulting discriminant function has the best performance.

G. Cowan Aachen 2014 / Statistics for Particle Physics, Lecture 2
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The single layer perceptron

n
Define the discriminant using y(X)=h Wo"’z W, X,
i=1

where £ 1s a nonlinear, monotonic activation function; we can use
. . . o —-X ._.1
e.g. the logistic sigmoid A(x)=(1+e ) .

X
If the activation function is monotonic, |
the resulting y(x) is equivalent to the
original linear discriminant. This is an O y(x)
example of a “generalized linear model”
called the single layer perceptron. T
X

» output node

input layer
G. Cowan Aachen 2014 / Statistics for Particle Physics, Lecture 2
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The multilayer perceptron

Now use this idea to define not only the output y(x), but also the set of
transformed inputs ¢, (x),...,®,, (X) that form a “hidden layer’:

Superscript for weights indicates
layer number

\

n
P (F)=h|wy+ 2, w)'x,
j=1

! hidden  output

inputs
layer ¢
This 1s the multilayer perceptron, our basic neural network model;

straightforward to generalize to multiple hidden layers.
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Neural network example from LEP II

Signal: ete” - W*W~ (often 4 well separated hadron jets)
Background: e*e” — qqgg (4 less well separated hadron jets)

s | < 1nput variables based on jet
h oas | oos | 1~ structure, event shape, ...
T e 0 ke ° wawes  nONE by itself gives much separation.
e % “ }&% Neural network output:
I:;(Nm?; ‘ ng\eficit; ’ glf:r\ority1 2:; :
o.o:E~ " o.o:;— Ty o.o::— Th :f L J
?.og(Ap?inori(yf Q Qs'lhrus t1 [ oiain(E,.)i s 01 02 03 04 05 06 07 N%Eron%’utpu:

(Garrido, Juste and Martinez, ALEPH 96-144)
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Overtraining

[f decision boundary 1s too flexible 1t will conform too closely
to the training points — overtraining.

Monitor by applying classifier to independent validation sample.

training sample

> 4

G. Cowan Aachen 2014 / Statistics for Particle Physics, Lecture 2
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Monitoring overtraining

Monitor misclassification (error) rate versus “flexibility” of the
boundary. For training sample this will continue to decrease.

error But the validation sample it may
initially decrease, and then at
some point increase, indicating
overtraining.

validation sample

training sample

# of adjustable parameters in classifier ~ “flexibility” of boundary
Choose classifier that minimizes error function for validation sample.
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Particle 1.d. in MiniBooNE

Detector 1s a 12-m diameter tank

of mineral o1l exposed to a beam Etectron cancidate
fuzzy ring, short trz}qk

of neutrinos and viewed by 1520  v;~_ &

photomultiplier tubes: w
n : P

MiniBooNE Detector

Muon candidate
sharp ring, filled in

i~
W
L
ﬁ | Pion candidate
‘ _two "e-like" rings
. . F =
Search for v  to v_ oscillations ol |

: W , -
required particle i.d. using n_— <D

information from the PMTs.
H.J. Yang, MiniBooNE PID, DNP06
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Decision trees

Out of all the mnput variables, find the one for which with a
single cut gives best improvement 1n signal purity:

signal !
signal ! background !

where w.. 1s the weight of the ith event.

P=

Resulting nodes classified as either
signal/background.

[terate until stop criterion reached
based on e.g. purity or minimum
number of events in a node.

The set of cuts defines the decision
boundary.

G. Cowan Aachen 2014 / Statistics for Particle Physics, Lecture 2
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Example by MiniBooNE experiment,
B. Roe et al., NIM 543 (2005) 577
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Finding the best single cut

The level of separation within a node can, e.g., be quantified by
the Gini coefficient, calculated from the (s or b) purity as:

G =p(l—p)

For a cut that splits a set of events a into subsets b and ¢, one
can quantify the improvement in separation by the change in
weighted Gini coefficients:

A=W,G, —W,Gy, — W.G. where,eg., W, = Z w;
1ea

Choose e.g. the cut to the maximize A; a variant of this
scheme can use instead of Gini e.g. the misclassification rate:

c=1—max(p,1 —p)
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Decision trees (2)

The terminal nodes (leaves) are classified a signal or background
depending on majority vote (or e.g. signal fraction greater than a
specified threshold).

This classifies every point in input-variable space as either signal
or background, a decision tree classifier, with discriminant function

fix) =1 1f x in signal region, —1 otherwise

Decision trees tend to be very sensitive to statistical fluctuations in
the training sample.

Methods such as boosting can be used to stabilize the tree.
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Boosting

Boosting is a general method of creating a set of classifiers
which can be combined to achieve a new classifier that 1s more stable
and has a smaller error than any individual one.

Often applied to decision trees but, can be applied to any classifier.

Suppose we have a training sample 7 consisting of N events with

X ..., X event data vectors (each x multivariate)

Yysees ¥, tTUE class labels, +1 for signal, —1 for background

W, W event weights

Now define a rule to create from this an ensemble of training samples
I,T, .., derive a classifier from each and average them.

Trick 1s to create modifications in the training sample that give
classifiers with smaller error rates than those of the preceding ones.

A successful example is AdaBoost (Freund and Schapire, 1997).
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AdaBoost

First initialize the training sample 7' using the original

X peeees X event data vectors

Yo ¥y tTUE Class labels (+1 or -1)
w D
1

with the weights equal and normalized such that

> =1

i=1

s W event weights

Then train the classifier fl (x) (e.g. a decision tree) with a method that
incorporates the event weights. For an event with data x,

fx)>0 classify as signal

fx)<0 classity as background
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Updating the event weights

Define the training sample for step k+1 from that of k by updating
the event weights according to

_ V.12
(k+l)_ (k) e cxkfk(xl).}l
w. = w.
/ ;
i = event index k = training sample index

where Zk 1s a normalization factor defined such that the sum of the

weights over all events 1s equal to one.

Therefore event weight for event i is increased in the k+1 training
sample 1f it was classified incorrectly in sample k.

Idea is that next time around the classifier should pay more

attention to this event and try to get it right.
G. Cowan Aachen 2014 / Statistics for Particle Physics, Lecture 2 page 40



Error rate of the kth classifier

At each step the classifiers f,(x) are characterized by a given
error rate ¢,

Zw (v (x,)<0)

where I(X) = 1 1if X 1s true and 1s zero otherwise.

G. Cowan Aachen 2014 / Statistics for Particle Physics, Lecture 2
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Assigning the classitier score

Assign a score to the kth classifier based on its error rate,

x,=In
€k

||M><:

If we define the final classifier as f(x

then one can show that its error rate on the training data satisfies
the bound

K
e<[]2Ve (1—¢,)
k=1

G. Cowan Aachen 2014 / Statistics for Particle Physics, Lecture 2
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AdaBoost error rate

So providing each classifier in the ensemble has € < 2, i.e., better than

random guessing, then the error rate for the final classifier on the training
data (not on unseen data) drops to zero.

That 1s, for sufficiently large K the training data will be over fitted.

The error rate on a validation sample would reach some minimum after a
certain number of steps and then could rise.

So the procedure is to monitor the error rate of the combined classifier at
each step with a validation sample and to stop before it starts to rise.

Although in principle AdaBoost must overfit, in practice following this
procedure overtraining is not a big problem.
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BDT example from MiniBooNE

~200 input variables for each event (v interaction producing e, |l or T).

Each individual tree is relatively weak, with a misclassification
error rate ~ 0.4 — 0.45

_l 1 1 | I | | 1 I | | I I I | | I I I | 1

1 7 e un-weighted misclassified event rate 3

0.8 _: a weighted musclassified event rate. err_ _

= o B T B*hl((l—enm)--‘errm), ]5=05 ;

S 06 - - T L . B L
S
< 04
0.2 4
.

0 200 400 600 800 11000
Number of Tree Iterations

B. Roe et al., NIM 543 (2005) 577
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Monitoring overtraining

Training MC Samples .VS.  Testing MC Samples

. . E — 1500 — _

From MiniBooNE =~ ™1  DNwe=1 1 e 1

20000 " ] Ei
example: 10000 — " I] 500 — Ei II

3 Jl T hl
Performance stable N N N DRSS A SRS MARAE DR
after a few hundred 204  Neee =100 s {  Ngee =100
o 6000 A

trees. 1000 EE 4000 S
0 T ,". T T '-‘I' T 3 03 'l-‘l . et T -

3000 — _ _
. _ [- -4 _ r
1 Ntree =500 10000 — Ntree =500
2000 - 7500 — RS
1 S ] Ty
: _-l ". 5 —] -" - .
1000 ] y x ﬁ 5000 o -._"
] - 2500 {4 e
. |.| - 1 _.n‘ “w,
O =Tt 0 == T
-20 0 20 20 0 20
2000 |
. N. =1000 8000 N. =1000
1500 — tree ] tree
] ::\--‘—-_l GOOU - .
1000 —_ l.—l- I_. 4000 _: ...,' '\l‘.
0 .-: T T I T T I.I I T T T I T 0 = .-: T T I T T T [‘-‘l--l T I T
-40 -20 0 20 -40 -20 0 20
Boosting Outputs Boosting Outputs
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B. Roe et al., NIM 543 (2005) 577

Comparison of boosting algorithms

A number of boosting algorithms on the market; differ in the
update rule for the weights.

3

5 H
® c-Boost(45) i E ] @ £-Boost(45) ik
2.5 4 Ao AdaBoost(45) HINE N 2.5 4 Ao AdaBoost(45) I E
¢ :{—[l:-9_=}i1E’.-:w-:»\r(—L:"):| iffar 1o 1j’*]l,-':_'rnE).-IHI-\I'[—L.‘"i) / .‘[
-% 2 4 * e-hingeBoost(30) '," -c% 2 J * e-hingeBoost(30) /
= (4 ]
2 15 AdaBoost(8) g 154 v AdaBoost(8) £ F
§ ] E-hingeBoo““ g ] _- E-hingeBo(?gt(gﬂ' F
0.5 J— e 05 1~
1M Ntree = 500 Ntree = 1000
O+ 71 77 LA L L S N
20 40 60 80 20 40 60 80
Signal Efficiency (%) Signal Efficiency (%)
3 - . 3 - -
] @ ¢-Boost(45) ik ] @ e-Boost(45)
2.5 4 o AdaBoost(45) § 2.5 4 o AdaBoost(45)
] ¢ e-logitBoost(45) i 1 ¢ e-logitBoost(45)
-% 2 4 * e-hingeBoost(30) F -t% 2 4 * e-hingeBoost(30)
a4 ] o
g 153 AdaBoost(8) qa_, 153" AdaBoost(8)
;:.2 1 _§ ®m e-hingeBoost(8)4£ é 13 E—hingeBools.l(f_il 7
0.5 T 0.5 < :
1 Ntree = 2000 EI Ntree = 3000
0 T I T T T I T T T I T T T I T 0 T I T T T I T T T ] T T T I T
20 40 60 80 20 40 60 80
Signal Efficiency (%) Signal Efficiency (%)
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Testing significance / goodness-of-fit

Suppose hypothesis H predicts pdf f(Z|H) for a set of

observations £ = (x1,...,Zn) .
We observe a single point in this space: Zgpg

What can we say about the validity of A in light of the data?

Decide what part of the =z Lobs .
data space represents less \ v Mote
compatibility with H than / compatible
does the point ZTps - 7 less with
(Not unique!) compatible
with H
> T;
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p-values
Express ‘goodness-of-fit’ by giving the p-value for H:

p = probability, under assumption of H, to observe data with
equal or lesser compatibility with H relative to the data we got.

A This 1s not the probability that A 1s true!

In frequentist statistics we don’t talk about P(H) (unless H
represents a repeatable observation). In Bayesian statistics we do;
use Bayes’ theorem to obtain

P(Z|H)w(H)

PUH|Z) = [ P(Z|H)x(H) dH

where 7 (H) is the prior probability for H.

For now stick with the frequentist approach;
result is p-value, regrettably easy to misinterpret as P(H).

G. Cowan Aachen 2014 / Statistics for Particle Physics, Lecture 2 48



p-value example: testing whether a coin is fair’

Probability to observe n heads in N coin tosses 1s binomial:

n!(NNi n)!p”(l —p)N "

Hypothesis H: the coin 1s fair (p = 0.5).

P(n;p,N) =

Suppose we toss the coin N =20 times and get n = 17 heads.

Region of data space with equal or lesser compatibility with
Hrelativeton=171s: n=17,18,19, 20,0, 1, 2, 3. Adding
up the probabilities for these values gives:

P(n=0,1,2,3,17,18,19, or 20) = 0.0026 .

i.e. p = 0.0026 1s the probability of obtaining such a bizarre
result (or more so) ‘by chance’, under the assumption of H.
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Distribution of the p-value

The p-value 1s a function of the data, and is thus itself a random
variable with a given distribution. Suppose the p-value of H 1s
found from a test statistic #(x) as

i — / £\ H)dt
Jt
The pdf of p,, under assumption of H is

f(t1H) — f(tHH)
opujor s L 0sprs

g(pu|H) =

assumption of H, p,, ~ Uniform[0,1] l/ . &pylH)
and 1s concentrated toward zero for

Some (broad) class of alternatives. 0 | P

G. Cowan Aachen 2014 / Statistics for Particle Physics, Lecture 2 50

H
In general for continuous data, under \g Pl )




Using a p-value to define test of H,

So the probability to find the p-value of H, p,, less than « 1s
P(po < alHp) = a

We started by defining critical region in the original data
space (x), then reformulated this in terms of a scalar test
statistic #(x).

We can take this one step further and define the critical region
of a test of i, with size « as the set of data space where p, < c.

Formally the p-value relates only to /|, but the resulting test will
have a given power with respect to a given alternative H,.
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The significance of an observed signal

Suppose we observe n events; these can consist of:

n,, events from known processes (background)
n, events from a new process (signal)

If n, n, are Poisson r.v.s with means s, b, then n = n, + n,
1s also Poisson, mean = s + b:

(s + b)ne—(s—l—b)
I

n.

P(n;s,b) =

Suppose b = 0.5, and we observe n_, .= 5. Should we claim
evidence for a new discovery?

Give p-value for hypothesis s = 0:
p-value = P(n>5;b=0.5,s=0)
= 1.7x107% # P(s=0)!

G. Cowan Aachen 2014 / Statistics for Particle Physics, Lecture 2 52



Significance from p-value

Often define significance Z as the number of standard deviations
that a Gaussian variable would fluctuate in one direction
to give the same p-value.

e

T x

2.0

0 ]. —:UQ/Q
p=/ € de:l—(I)(Z) 1 - TMath: :Freq

Z =311 -p) TMath: :NormQuantile
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Pearson’ s y? statistic

Test statistic for comparing observed data @ = (nq,...,nN)
(n, independent) to predicted mean values 7 = (v1,...,VN) :

2 9
— Vz) (Pearson’s x?

, where ¢ = V[n,] . o
statistic)

Z

x> = sum of squares of the deviations of the ith measurement from
the ith prediction, using o; as the ‘yardstick’ for the comparison.

For n, ~ Poisson(v;) we have V[n,] = v, so this becomes

N
C=3 (ni_’/i)z.

i=1 Vi
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Pearson’ s 2 test

If n, are Gaussian with mean v; and std. dev. o, i.e., n, ~ N(v., 67),
then Pearson’s y* will follow the y? pdf (here for x> = z):

CATY 1 N/2-1_—2/2

If the n, are Poisson with v.>> 1 (in practice OK for v, > half dozen)

then the Poisson dist. becomes Gaussian and therefore Pearson’s
x° statistic here as well follows the y? pdf.

The »? value obtained from the data then gives the p-value:

pzf;ofxg(z;N)dz.
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The “y? per degree of freedom’

Recall that for the chi-square pdf for NV degrees of freedom,
FElz] =N, V][z]=2N.

This makes sense: 1f the hypothesized v, are right, the rms

deviation of »n; from v, 1s 0;, so each term in the sum contributes ~ 1.

One often sees x?/N reported as a measure of goodness-of-fit.
But... better to give y*and N separately. Consider, e.g.,

v2 = 15, N=10 — p—value=0.13,

y2 = 150, N =100 — p—value=9.0 x 104

i.e. for N large, even a x? per dof only a bit greater than one can
imply a small p-value, 1.e., poor goodness-of-fit.
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Pearson’s )? with multinomial data

N
If ntot = ) is fixed, then we might model 7, ~ binomial
i=1
withp.=n;,/n,. le 7 =(n1,...,ny) ~multinomial.

In this case we can take Pearson’s y? statistic to be

N
> (n; — pintot)?
X" =)
= PiNtot

If all p; n,,>> 1 then this will follow the chi-square pdf for
N—-1 degrees of freedom.
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Example of a y? test

= 10 I
= — data

8  --- expected background T «— Th]S giVCS

6 N 2

> (n; —v;) _
| R L
i=1 ¢
, L _
__,T— B il st = SN —
0 | aisintsl for N =20 dof.
5 10 15 20

x

Now need to find p-value, but... many bins have few (or no)
entries, so here we do not expect ¥ to follow the chi-square pdf.
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Using MC to find distribution of y? statistic

The Pearson y~ statistic still reflects the level of agreement
between data and prediction, 1.e., it 1s still a ‘valid’ test statistic.

To find its sampling distribution, simulate the data with a
Monte Carlo program: n; ~ Poisson(v;), i =1, N.

Here data sample simulated 106
times. The fraction of times we

find »* > 29.8 gives the p-value:
p=0.11

If we had used the chi-square pdf
we would find p = 0.073.

—
e
=

0.1

0.08

006 r

004

002 r

—— chi-square pdf for N =20

- —-- pdf from Monte Carlo

—> P-value

\
Y
\\\
 n
1 =

10 20 30 40 50

2
X
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Network architecture: one hidden layer

Theorem: An MLP with a single hidden layer having a sufficiently

large number of nodes can approximate arbitrarily well the
optimal decision boundary.

Holds for any continuous non-polynomial activation function
Leshno, Lin, Pinkus and Schocken (1993), Neural Networks 6, 861—867

In practice often choose a single hidden layer and try increasing the
the number of nodes until no further improvement in performance
1s found.
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More than one hidden layer

“Relatively little 1s known concerning the advantages and disadvantages
of using a single hidden layer with many units (neurons) over many
hidden layers with fewer units. The mathematics and approximation
theory of the MLP model with more than one hidden layer is not well
understood.”

“Nonetheless there seems to be reason to conjecture that the two hidden
layer model may be significantly more promising than the single hidden
layer model, ...”

A. Pinkus, Approximation theory of the MLP model in neural networks,
Acta Numerica (1999), pp. 143—195.
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Network training

The type of each training event is known, i.e., for event a we have:

xa:(xl 3eers x,,) the input variables, and

t,=0,1 a numerical label for event type (“target value™)

Let w denote the set of all of the weights of the network. We can
determine their optimal values by minimizing a sum-of-squares
“error function”

Contribution to error function
from each event
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Numerical minimization of E(w)

Consider gradient descent method: from an initial guess in weight
space w'" take a small step in the direction of maximum decrease.
[.e. for the step T to T+1,

W= OV £ (37

learning rate (1>0)

If we do this with the full error function E(w), gradient descent does
surprisingly poorly; better to use “conjugate gradients”.

But gradient descent turns out to be useful with an online (sequential)
method, 1.e., where we update w for each training event a, (cycle through

all training events):
w(T+1)= w(f)_ n V Ea(w(f))
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Error backpropagation

Error backpropagation (“backprop™) is an algorithm for finding the
derivatives required for gradient descent minimization.

The network output can be written y(x) = h(u(x)) where

(1) ..
Z Wik Xk
k=0

where we defined ¢, = x, = | and wrote the sums over the nodes

u(?c):Z w(lz}(pj(}), @ (x)=h
=0

in the preceding layers starting from 0 to include the offsets.

0E,

So e.g. for event a we have e (yo—t)h" (u(X))p,(F)
" AN
derivative of
Chain rule gives all the needed derivatives. activation function
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Probability Density Estimation (PDE)

Construct non-parametric estimators for the pdfs of the data x for the
two event classes, p(xIH ), p(xIH ) and use these to construct the

likelihood ratio, which we use for the discriminant function:

n-dimensional histogram is a brute force example of this; we will
see a number of ways that are much better.
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Correlation vs. independence

In a general a multivariate distribution p(x) does not factorize into a
product of the marginal distributions for the individual variables:

n holds only if the

2\ — 3 (4 e
P(l)—n pi(x;) components of x
are independent

Most importantly, the components of x will generally have nonzero
covariances (1.e. they are correlated):

V,.]:cov[x,., xj]:E[x,.xj]—E[x,.]E[xj]io
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Decorrelation of input variables

But we can define a set of uncorrelated input variables by a
linear transformation, i.e., find the matrix A such that for Y= 4 X
the covariances covly, yi] =0:

fLnl 6 T T T T

-

s“"’

0 0 -
g | 2 L i’
4 f @ tr 8
6 1 1 1 1 6 1 1 1 1
6 4 2 0 2 4 6 5 4 2 0 2 4 6
X M

For the following suppose that the variables are “decorrelated” in
this way for each of p(xIHO) and p(xIHl) separately (since in general

their correlations are different).
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Decorrelation 1s not enough

But even with zero correlation, a multivariate pdf p(x) will in general
have nonlinearities and thus the decorrelated variables are still not
independent.

pdf with zero covariance but

X,

—

j components still not
¢ L independent, since clearly
F gl p(xy,x,)

R P ( X -|x )

¢pz(xz)

and therefore

X1 plxx,)# p(x)) palx,)
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Naive Bayes

But if the nonlinearities are not too great, it is reasonable to first
decorrelate the inputs and take as our estimator for each pdf

=

b >=H 5, ()

So this at least reduces the problem to one of finding estimates of
one-dimensional pdfs.

The resulting estimated likelihood ratio gives the Naive Bayes classifier
(in HEP sometimes called the “likelithood method™).
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Kernel-based PDE (KDE, Parzen window)

Consider d dimensions, N training events, x,, ..., Xy,
estimate f (x) with

A S
F@ = g 2 1 (557

\ ™~ bandwidth
kernel (smoothing parameter)

1 "
Use e.g. Gaussian kernel: K(x) = (27T)d/26_|x|2/2

Need to sum N terms to evaluate function (slow);
faster algorithms only count events in vicinity of x
(k-nearest neighbor, range search).
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