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Outline 
1  Probability 

 Definition, Bayes’ theorem, probability densities  
 and their properties, catalogue of pdfs, Monte Carlo  

2  Statistical tests  
 general concepts, test statistics, multivariate methods, 
 goodness-of-fit tests 

3  Parameter estimation 
 general concepts, maximum likelihood, variance of  
 estimators, least squares 

4  Hypothesis tests for discovery and exclusion 
 discovery significance, sensitivity, setting limits 

5  Further topics 
 systematic errors, Bayesian methods, MCMC 
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Hypotheses 
A hypothesis H specifies the probability for the data, i.e., the  
outcome of the observation, here symbolically: x. 

 x could be uni-/multivariate, continuous or discrete. 

 E.g. write x ~ f (x|H). 

 x could represent e.g. observation of a single particle,  
 a single event, or an entire “experiment”. 

Possible values of x form the sample space S (or “data space”). 

Simple (or “point”) hypothesis:  f (x|H) completely specified. 

Composite hypothesis:  H contains unspecified parameter(s). 

The probability for x given H is also called the likelihood of 
the hypothesis, written L(x|H). 
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Frequentist statistical tests  
Consider a hypothesis H0 and alternative H1. 

A test of H0  is defined by specifying a critical region w of the 
data space such that there is no more than some (small) probability 
α, assuming H0 is correct,  to observe the data there, i.e., 

  P(x ∈ w | H0 ) ≤ α 

Need inequality if data are 
discrete. 

α is called the size or  
significance level of the test. 

If x is observed in the  
critical region, reject H0. 

data space Ω 

critical region w 
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Definition of a test (2) 
But in general there are an infinite number of possible critical 
regions that give the same significance level α. 

So the choice of the critical region for a test of H0  needs to take 
into account the alternative hypothesis H1. 

Roughly speaking, place the critical region where there is a low  
probability to be found if H0 is true, but high if H1 is true: 
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Type-I, Type-II errors  
Rejecting the hypothesis H0 when it is true is a Type-I error.   

The maximum probability for this is the size of  the test: 

 P(x ∈ W | H0 ) ≤ α	



But we might also accept H0 when it is false, and an alternative  
H1 is true. 

This is called a Type-II error, and occurs with probability 

 P(x ∈ S - W | H1 ) = β 

One minus this is called the power of the test with respect to 
the alternative H1: 

 Power = 1 - β 
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Rejecting a hypothesis 
Note that rejecting H0 is not necessarily equivalent to the 
statement that we believe it is false and H1 true.  In frequentist 
statistics only associate probability with outcomes of repeatable 
observations (the data). 

In Bayesian statistics, probability of the hypothesis (degree 
of belief) would be found using Bayes’ theorem: 

which depends on the prior probability π(H).  

What makes a frequentist test useful is that we can compute 
the probability to accept/reject a hypothesis assuming that it 
is true, or assuming some alternative is true. 
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Physics context of a statistical test 
Event Selection:  the event types in question are both known to exist. 

 Example:  separation of different particle types (electron vs muon) 
 or known event types (ttbar vs QCD multijet). 
 Use the selected sample for further study. 

 
Search for New Physics:  the null hypothesis is 

 H0 : all events correspond to Standard Model (background only),  

and the alternative is 

 H1 : events include a type whose existence is not yet established 
         (signal plus background)  

Many subtle issues here, mainly related to the high standard of proof 
required to establish presence of a new phenomenon.  The optimal statistical 
test  for a search is closely related to that used for event selection. 
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For each reaction we consider we will have a hypothesis for the 
pdf of     , e.g.,  

Example of a multivariate statistical test 
Suppose the result of a measurement for an individual event  
is a collection of numbers 

 x1 = number of muons, 

 x2 = mean pT of jets, 

 x3 = missing energy, ... 

     follows some n-dimensional joint pdf, which depends on  
the type of event produced, i.e., was it  

etc. 
E.g. call H0 the background hypothesis (the event type we  
want to reject); H1 is signal hypothesis (the type we want). 

G. Cowan  
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Defining a multivariate critical region 
Each event is a point in x-space; critical region is now defined 
by a ‘decision boundary’ in this space.   

What kind of boundary is best? 

Cuts? Linear? Nonlinear? 
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Test statistics 
The critical region’s boundary can be defined by 

We can work out the pdfs 

Critical region’s boundary is 
now a single ‘cut’ on t.   

So the original n-dimensional 
problem becomes in effect     
1-dimensional. 

where t(x1,…, xn) is a scalar test statistic. 

G. Cowan  
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Signal/background efficiency 
Probability to reject background hypothesis for  
background event (background efficiency): 

Probability to accept a signal event 
as signal (signal efficiency): 

G. Cowan  

g(t|s) g(t|b) 

accept b reject b 
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Purity of event selection 
Suppose only one background type b; overall fractions of signal 
and background events are πs and πb (prior probabilities). 

Suppose we select signal events with t > tcut.  What is the 
‘purity’ of our selected sample? 

Here purity means the probability to be signal given that 
the event was accepted.  Using Bayes’ theorem we find: 

So the purity depends on the prior probabilities as well as on the 
signal and background efficiencies. 

G. Cowan  
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Constructing a test statistic 
How can we choose a test’s critical region in an ‘optimal way’? 

 Neyman-Pearson lemma states: 

To get the highest power for a given significance level in a test of 
H0, (background) versus H1, (signal) the critical region should have 

inside the region, and  ≤ c outside, where c is a constant which  
determines  the power. 

Equivalently, optimal scalar test statistic is 

N.B. any monotonic function of this is leads to the same test. 
G. Cowan  
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Why Neyman-Pearson doesn’t always help 
The problem is that we usually don’t have explicit formulae for 
the pdfs P(x|H0), P(x|H1). 

Instead we may have Monte Carlo models for signal and  
background processes, so we can produce simulated data, 
and enter each event into an n-dimensional histogram. 
Use e.g. M bins for each of the n dimensions, total of Mn cells. 

But n is potentially large, →  prohibitively large number of cells  
to populate with Monte Carlo data. 

Compromise:  make Ansatz for form of test statistic 
with fewer parameters; determine them (e.g. using MC) to  
give best discrimination between signal and background. 
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Multivariate methods 
Many new (and some old) methods: 

 Fisher discriminant 
 Neural networks 
 Kernel density methods 
 Support Vector Machines 
 Decision trees 
  Boosting 
  Bagging   

 
New software for HEP, e.g., 
TMVA , Höcker, Stelzer, Tegenfeldt, Voss, Voss, physics/0703039 
StatPatternRecognition, I. Narsky, physics/0507143  
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2 
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Determining the coefficients w 

The numerator of J(w) is  

where  

The denominator is 

where  .   So the quantity to maximize is: 
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Neural network example from LEP II 
Signal:  e+e- → W+W-    (often 4 well separated hadron jets) 
Background:  e+e- → qqgg  (4 less well separated hadron jets) 

←  input variables based on jet 
structure, event shape, ... 
none by itself gives much separation. 

Neural network output: 

(Garrido, Juste and Martinez, ALEPH 96-144) 
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Overtraining  

training sample independent validation sample 

If decision boundary is too flexible it will conform too closely 
to the training points  → overtraining. 
Monitor by applying classifier to independent validation sample. 



G. Cowan  Aachen 2014 / Statistics for Particle Physics, Lecture 2 33 

Choose classifier that minimizes error function for validation sample. 

# of adjustable parameters in classifier ~ “flexibility” of boundary 

Monitor misclassification (error) rate versus “flexibility” of the 
boundary.  For training sample this will continue to decrease. 
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Particle i.d. in MiniBooNE 
Detector is a 12-m diameter tank 
of mineral oil exposed to a beam 
of neutrinos and viewed by 1520 
photomultiplier tubes: 

H.J. Yang, MiniBooNE PID, DNP06 

Search for νµ to νe oscillations  
required particle i.d. using  
information from the PMTs. 
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Decision trees 
Out of all the input variables, find the one for which with a 
single cut gives best improvement in signal purity: 

Example by MiniBooNE experiment, 
B. Roe et al., NIM 543 (2005) 577 

where wi. is the weight of the ith event. 

Resulting nodes classified as either 
signal/background. 

Iterate until stop criterion reached 
based on e.g. purity or minimum 
number of events in a node. 
The set of cuts defines the decision 
boundary. 
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Finding the best single cut 
The level of separation within a node can, e.g., be quantified by 
the Gini coefficient, calculated from the (s or b) purity as: 

For a cut that splits a set of events a into subsets b and c, one 
can quantify the improvement in separation by the change in  
weighted Gini coefficients: 

where, e.g.,   

Choose e.g. the cut to the maximize Δ; a variant of this 
scheme can use instead of Gini e.g. the misclassification rate: 
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Decision trees (2) 
The terminal nodes (leaves) are classified a signal or background 
depending on majority vote (or e.g. signal fraction greater than a 
specified threshold). 

This classifies every point in input-variable space as either signal 
or background, a decision tree classifier, with discriminant function 

f(x) = 1 if x in signal region, -1 otherwise 

Decision trees tend to be very sensitive to statistical fluctuations in 
the training sample. 

Methods such as boosting can be used to stabilize the tree. 
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At each step the classifiers fk(x) are characterized by a given 
error rate εk,  
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< 
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Monitoring overtraining  

From MiniBooNE 
example: 
Performance stable 
after a few hundred 
trees. 
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Comparison of boosting algorithms 
A number of boosting algorithms on the market; differ in the 
update rule for the weights. 

B. Roe et al., NIM 543 (2005) 577 
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Testing significance / goodness-of-fit 
Suppose hypothesis H predicts pdf  
observations 

for a set of 

We observe a single point in this space: 

What can we say about the validity of H in light of the data? 

Decide what part of the  
data space represents less  
compatibility with H than  
does the point       less  

compatible 
with H 

     more  
compatible 
with H 

(Not unique!) 
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p-values 

where π (H) is the prior probability for H. 

Express ‘goodness-of-fit’ by giving the p-value for H: 

p = probability, under assumption of H, to observe data with  
equal or lesser compatibility with H relative to the data we got.  

This is not the probability that H is true! 

In frequentist statistics we don’t talk about P(H) (unless H  
represents a repeatable observation). In Bayesian statistics we do;  
use Bayes’ theorem to obtain 

For now stick with the frequentist approach;  
result is p-value, regrettably easy to misinterpret as P(H). 
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p-value example:  testing whether a coin is ‘fair’ 

i.e. p = 0.0026 is the probability of obtaining such a bizarre 
result (or more so) ‘by chance’, under the assumption of H. 

Probability to observe n heads in N coin tosses is binomial: 

Hypothesis H:  the coin is fair (p = 0.5). 

Suppose we toss the coin N = 20 times and get n = 17 heads. 

Region of data space with equal or lesser compatibility with  
H relative to n = 17 is:  n = 17, 18, 19, 20, 0, 1, 2, 3.  Adding 
up the probabilities for these values gives: 
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Distribution of  the p-value 
The p-value is a function of the data, and is thus itself a random 
variable with a given distribution.  Suppose the p-value of H is  
found from a test statistic t(x) as 

Aachen 2014 / Statistics for Particle Physics, Lecture 2 

The pdf of pH under assumption of H is 

In general for continuous data,  under  
assumption of H, pH ~ Uniform[0,1] 
and is concentrated toward zero for  
Some (broad) class of alternatives. pH 

g(pH|H) 

0 1 

g(pH|H′) 
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Using a p-value to define test of H0 

So the probability to find the p-value of H0, p0, less than α is 

Aachen 2014 / Statistics for Particle Physics, Lecture 2 

We started by defining critical region in the original data 
space (x), then reformulated this in terms of a scalar test  
statistic t(x). 

We can take this one step further and define the critical region  
of a test of H0 with size α as the set of data space where p0 ≤ α. 

Formally the p-value relates only to H0, but the resulting test will 
have a given power with respect to a given alternative H1. 
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The significance of an observed signal 
Suppose we observe n events; these can consist of: 

nb events from known processes (background) 
ns events from a new process (signal) 

If ns, nb are Poisson r.v.s with means s, b, then n = ns + nb 
is also Poisson, mean = s + b: 

Suppose b = 0.5, and we observe nobs = 5.  Should we claim 
evidence for a new discovery?   

    Give p-value for hypothesis s = 0: 
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Significance from p-value 
Often define significance Z as the number of standard deviations 
that a Gaussian variable would fluctuate in one direction 
to give the same p-value. 

1 - TMath::Freq 

TMath::NormQuantile 

Aachen 2014 / Statistics for Particle Physics, Lecture 2 
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Pearson’s χ2 statistic 

Test statistic for comparing observed data 
(ni independent) to predicted mean values 

For ni ~ Poisson(νi) we have V[ni] = νi, so this becomes  

(Pearson’s χ2  
statistic) 

χ2 = sum of squares of the deviations of the ith measurement from  
the ith prediction, using σi as the ‘yardstick’ for the comparison. 
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Pearson’s χ2 test 
If ni are Gaussian with mean νi and std. dev. σi, i.e., ni ~ N(νi , σi

2),  
then Pearson’s χ2 will follow the χ2 pdf (here for χ2 = z): 

If the ni are Poisson with νi >> 1 (in practice OK for νi > half dozen) 
then the Poisson dist. becomes Gaussian and therefore Pearson’s 
χ2 statistic here as well follows the χ2 pdf. 

The χ2 value obtained from the data then gives the p-value: 
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The ‘χ2 per degree of freedom’ 
Recall that for the chi-square pdf for N degrees of freedom, 

This makes sense:  if the hypothesized νi are right, the rms  
deviation of ni from νi is σi, so each term in the sum contributes ~ 1. 

One often sees χ2/N reported as a measure of goodness-of-fit. 
But...  better to give χ2and N separately.  Consider, e.g., 

i.e. for N large, even a χ2 per dof only a bit greater than one can 
imply a small p-value, i.e., poor goodness-of-fit. 
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Pearson’s χ2 with multinomial data 

If  is fixed, then we might model ni ~ binomial  

I.e.  with pi = ni / ntot. ~ multinomial. 

In this case we can take Pearson’s χ2 statistic to be 

If all pi ntot >> 1 then this will follow the chi-square pdf for 
N-1 degrees of freedom. 
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Example of a χ2 test 

← This gives 

for N = 20 dof. 

Now need to find p-value, but... many bins have few (or no) 
entries, so here we do not expect χ2 to follow the chi-square pdf. 
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Using MC to find distribution of χ2 statistic  

The Pearson χ2 statistic still reflects the level of agreement 
between data and prediction, i.e., it is still a ‘valid’ test statistic. 

To find its sampling distribution, simulate the data with a 
Monte Carlo program: 

Here data sample simulated 106 

times.  The fraction of times we  
find χ2 > 29.8 gives the  p-value: 

 p = 0.11 

If we had used the chi-square pdf 
we would find p = 0.073. 
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Extra slides 
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Kernel-based PDE (KDE, Parzen window) 
Consider d dimensions, N training events, x1, ..., xN,  
estimate f (x) with 

Use e.g. Gaussian kernel: 

kernel 
bandwidth  
(smoothing parameter) 

Need to sum N terms to evaluate function (slow);  
faster algorithms only count events in vicinity of x  
(k-nearest neighbor, range search). 


