Statistical Methods for Particle Physics Lecture 3: parameter estimation

www.pp.rhul.ac.uk/~cowan/stat_aachen.html

Graduierten-Kolleg RWTH Aachen 10-14 February 2014

Glen Cowan Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

Outline

1 Probability

Definition, Bayes' theorem, probability densities and their properties, catalogue of pdfs, Monte Carlo

2 Statistical tests

general concepts, test statistics, multivariate methods, goodness-of-fit tests

- 3 Parameter estimation
 - general concepts, maximum likelihood, variance of estimators, least squares
 - 4 Hypothesis tests for discovery and exclusion discovery significance, sensitivity, setting limits
 - 5 Further topics

systematic errors, Bayesian methods, MCMC

G. Cowan

Frequentist parameter estimation

Suppose we have a pdf characterized by one or more parameters:

$$f(x;\theta) = \frac{1}{\theta}e^{-x/\theta}$$

random variable

parameter

Suppose we have a sample of observed values: $\vec{x} = (x_1, \ldots, x_n)$

We want to find some function of the data to estimate the parameter(s):

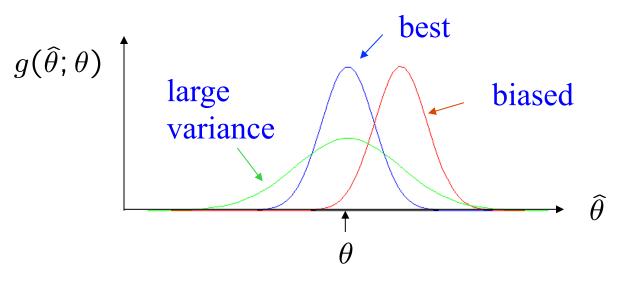
 $\hat{\theta}(\vec{x}) \leftarrow \text{estimator written with a hat}$

Sometimes we say 'estimator' for the function of $x_1, ..., x_n$; 'estimate' for the value of the estimator with a particular data set.

G. Cowan

Properties of estimators

If we were to repeat the entire measurement, the estimates from each would follow a pdf:



We want small (or zero) bias (systematic error): $b = E[\hat{\theta}] - \theta$

→ average of repeated measurements should tend to true value.
 And we want a small variance (statistical error): V[θ̂]
 → small bias & variance are in general conflicting criteria

G. Cowan

Distribution, likelihood, model

Suppose the outcome of a measurement is *x*. (e.g., a number of events, a histogram, or some larger set of numbers).

The probability density (or mass) function or 'distribution' of x, which may depend on parameters θ , is:

 $P(x|\theta)$ (Independent variable is x; θ is a constant.)

If we evaluate $P(x|\theta)$ with the observed data and regard it as a function of the parameter(s), then this is the likelihood:

 $L(\theta) = P(x|\theta)$ (Data x fixed; treat L as function of θ .)

We will use the term 'model' to refer to the full function $P(x|\theta)$ that contains the dependence both on *x* and θ .

G. Cowan

Bayesian use of the term 'likelihood'

We can write Bayes theorem as

$$p(\theta|x) = \frac{L(x|\theta)\pi(\theta)}{\int L(x|\theta)\pi(\theta) \, d\theta}$$

where $L(x|\theta)$ is the likelihood. It is the probability for x given θ , evaluated with the observed x, and viewed as a function of θ .

Bayes' theorem only needs $L(x|\theta)$ evaluated with a given data set (the 'likelihood principle').

For frequentist methods, in general one needs the full model. For some approximate frequentist methods, the likelihood is enough.

G. Cowan

The likelihood function for i.i.d.*. data

* i.i.d. = independent and identically distributed

Consider *n* independent observations of *x*: $x_1, ..., x_n$, where *x* follows $f(x; \theta)$. The joint pdf for the whole data sample is:

$$f(x_1,\ldots,x_n;\theta) = \prod_{i=1}^n f(x_i;\theta)$$

In this case the likelihood function is

$$L(\vec{\theta}) = \prod_{i=1}^{n} f(x_i; \vec{\theta}) \qquad (x_i \text{ constant})$$

G. Cowan

Maximum likelihood

The most important frequentist method for constructing estimators is to take the value of the parameter(s) that maximize the likelihood: $\hat{\theta} = \operatorname{argmax} L(x|\theta)$

The resulting estimators are functions of the data and thus characterized by a sampling distribution with a given (co)variance:

In general they may have a nonzero bias:

 $V_{ij} = \operatorname{cov}[\hat{\theta}_i, \hat{\theta}_j]$

 $b = E[\hat{\theta}] - \theta$

Under conditions usually satisfied in practice, bias of ML estimators is zero in the large sample limit, and the variance is as small as possible for unbiased estimators.

ML estimator may not in some cases be regarded as the optimal trade-off between these criteria (cf. regularized unfolding).

G. Cowan

ML example: parameter of exponential pdf

Consider exponential pdf,
$$f(t; \tau) = \frac{1}{\tau}e^{-t/\tau}$$

and suppose we have i.i.d. data, t_1, \ldots, t_n

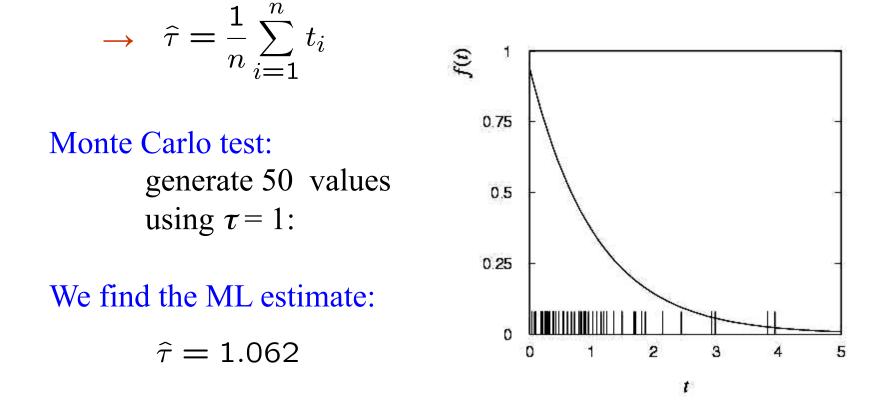
The likelihood function is
$$L(\tau) = \prod_{i=1}^{n} \frac{1}{\tau} e^{-t_i/\tau}$$

The value of τ for which $L(\tau)$ is maximum also gives the maximum value of its logarithm (the log-likelihood function):

$$\ln L(\tau) = \sum_{i=1}^{n} \ln f(t_i; \tau) = \sum_{i=1}^{n} \left(\ln \frac{1}{\tau} - \frac{t_i}{\tau} \right)$$

G. Cowan

ML example: parameter of exponential pdf (2) Find its maximum by setting $\frac{\partial \ln L(\tau)}{\partial \tau} = 0$,



Variance of estimators: Monte Carlo method

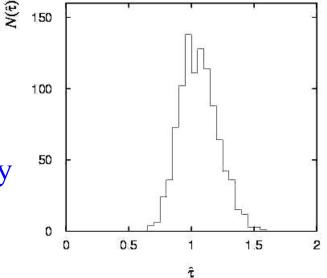
Having estimated our parameter we now need to report its 'statistical error', i.e., how widely distributed would estimates be if we were to repeat the entire measurement many times.

One way to do this would be to simulate the entire experiment many times with a Monte Carlo program (use ML estimate for MC).

For exponential example, from sample variance of estimates we find:

 $\hat{\sigma}_{\hat{\tau}} = 0.151$

Note distribution of estimates is roughly Gaussian – (almost) always true for ML in large sample limit.



G. Cowan

Variance of estimators from information inequality

The information inequality (RCF) sets a lower bound on the variance of any estimator (not only ML):

$$V[\hat{\theta}] \ge \left(1 + \frac{\partial b}{\partial \theta}\right)^2 / E\left[-\frac{\partial^2 \ln L}{\partial \theta^2}\right] \qquad \text{Bound (MVB)} \\ (b = E[\hat{\theta}] - \theta)$$

Often the bias b is small, and equality either holds exactly or is a good approximation (e.g. large data sample limit). Then,

$$V[\hat{\theta}] \approx -1 \left/ E\left[\frac{\partial^2 \ln L}{\partial \theta^2}\right] \right.$$

Estimate this using the 2nd derivative of $\ln L$ at its maximum:

$$\widehat{V}[\widehat{\theta}] = -\left(\frac{\partial^2 \ln L}{\partial \theta^2}\right)^{-1} \bigg|_{\theta = \widehat{\theta}}$$

G. Cowan

Variance of estimators: graphical method Expand $\ln L(\theta)$ about its maximum:

$$\ln L(\theta) = \ln L(\hat{\theta}) + \left[\frac{\partial \ln L}{\partial \theta}\right]_{\theta = \hat{\theta}} (\theta - \hat{\theta}) + \frac{1}{2!} \left[\frac{\partial^2 \ln L}{\partial \theta^2}\right]_{\theta = \hat{\theta}} (\theta - \hat{\theta})^2 + \dots$$

First term is $\ln L_{max}$, second term is zero, for third term use information inequality (assume equality):

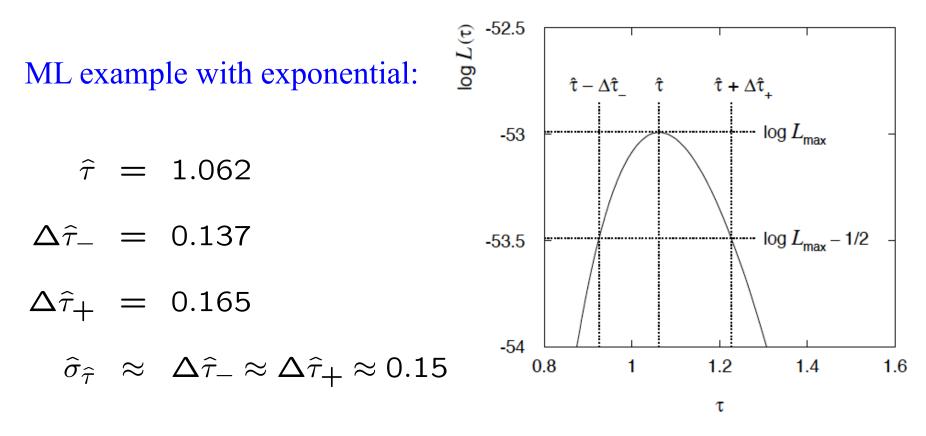
$$\ln L(\theta) \approx \ln L_{\max} - \frac{(\theta - \widehat{\theta})^2}{2\widehat{\sigma^2}_{\widehat{\theta}}}$$

i.e.,
$$\ln L(\hat{\theta} \pm \hat{\sigma}_{\hat{\theta}}) \approx \ln L_{\max} - \frac{1}{2}$$

 \rightarrow to get $\hat{\sigma}_{\hat{\theta}}$, change θ away from $\hat{\theta}$ until ln *L* decreases by 1/2.

G. Cowan

Example of variance by graphical method



Not quite parabolic $\ln L$ since finite sample size (n = 50).

G. Cowan

Functions of ML estimators

Suppose we had written the exponential pdf as $f(t; \lambda) = \lambda e^{-\lambda t}$, i.e., we use $\lambda = 1/\tau$. What is the ML estimator for λ ?

Rewrite the likelihood replacing τ by $1/\lambda$. The λ that maximizes $L(\lambda)$ is the λ that corresponds to the τ that maximizes $L(\tau)$, i.e.,

So for the decay constant we have
$$\hat{\lambda} = \frac{1}{\hat{\tau}} = \left(\frac{1}{n}\sum_{i=1}^{n} t_i\right)^{-1}$$

Caveat: $\hat{\lambda}$ is biased, even though $\hat{\tau}$ is unbiased.

Can show
$$E[\hat{\lambda}] = \lambda \frac{n}{n-1}$$
. (bias $\rightarrow 0$ for $n \rightarrow \infty$)

G. Cowan

Information inequality for *n* parameters Suppose we have estimated *n* parameters $\vec{\theta} = (\theta_1, \dots, \theta_n)$. The (inverse) minimum variance bound is given by the

Fisher information matrix:

$$I_{ij} = E\left[-\frac{\partial^2 \ln L}{\partial \theta_i \partial \theta_j}\right] = -n \int f(x; \vec{\theta}) \frac{\partial^2 \ln f(x; \vec{\theta})}{\partial \theta_i \partial \theta_j} dx$$

The information inequality then states that $V - I^{-1}$ is a positive semi-definite matrix, where $V_{ij} = \text{cov}[\hat{\theta}_i, \hat{\theta}_j]$. Therefore

$$V[\widehat{\theta}_i] \ge (I^{-1})_{ii}$$

Often use I^{-1} as an approximation for covariance matrix, estimate using e.g. matrix of 2nd derivatives at maximum of L.

G. Cowan

Two-parameter example of ML

Consider a scattering angle distribution with $x = \cos \theta$,

$$f(x;\alpha,\beta) = \frac{1+\alpha x + \beta x^2}{2+2\beta/3}$$

Data: $x_1, ..., x_n, n = 2000$ events.

As test generate with MC using $\alpha = 0.5$, $\beta = 0.5$

From data compute log-likelihood:

$$\ln L(\alpha,\beta) = \sum_{i=1}^{n} \ln f(x_i;\alpha,\beta)$$

Maximize numerically (e.g., program MINUIT)

G. Cowan

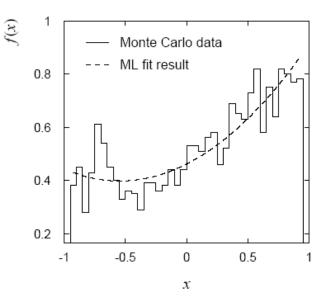
Example of ML: fit result Finding maximum of $\ln L(\alpha, \beta)$ numerically (MINUIT) gives

$$\hat{\alpha} = 0.508$$

$$\hat{\beta} = 0.47$$

N.B. Here no binning of data for fit, but can compare to histogram for goodness-of-fit (e.g. 'visual' or χ^2).

0.11



(Co)variances from
$$(\widehat{V^{-1}})_{ij} = -\frac{\partial^2 \ln L}{\partial \theta_i \partial \theta_j}\Big|_{\vec{\theta} = \hat{\vec{\theta}}}$$

 $\widehat{\sigma}_{\widehat{\alpha}} = 0.052 \quad \operatorname{cov}[\widehat{\alpha}, \widehat{\beta}] = 0.0026$

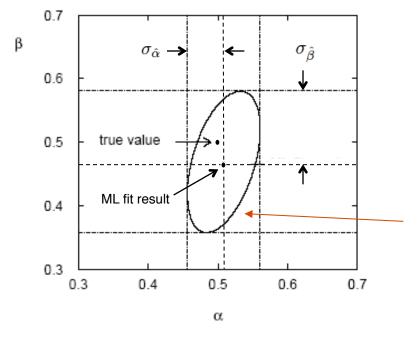
(MINUIT routine HESSE)

G. Cowan

Aachen 2014 / Statistics for Particle Physics, Lecture 3

0.46

Variance of ML estimators: graphical method Often (e.g., large sample case) one can approximate the covariances using only $\hat{V}_{ij}^{-1} \approx -\frac{\partial^2 \ln L}{\partial \theta_i \partial \theta_j}\Big|_{\theta=0}$ the likelihood $L(\theta)$:



This translates into a simple graphical recipe:

$$n L(\alpha, \beta) = ln L_{max} - 1/2$$

 \rightarrow Tangent lines to contours give standard deviations.

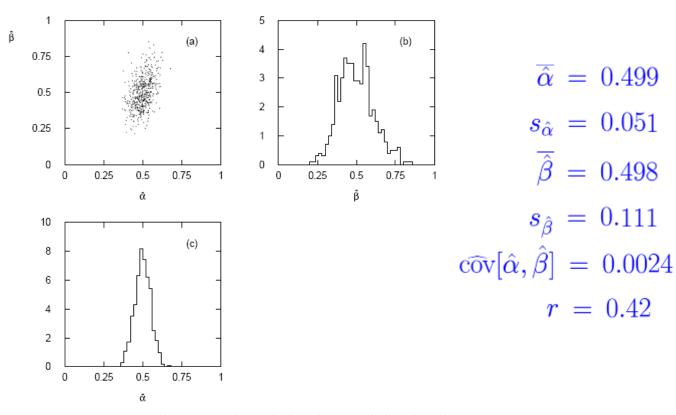
 \rightarrow Angle of ellipse ϕ related to correlation: tan 2ϕ

$$\phi = \frac{2\rho\sigma_{\widehat{\alpha}}\sigma_{\widehat{\beta}}}{\sigma_{\widehat{\alpha}}^2 - \sigma\widehat{\beta}^2}$$

G. Cowan

Variance of ML estimators: MC

To find the ML estimate itself one only needs the likelihood $L(\theta)$. In principle to find the covariance of the estimators, one requires the full model $L(x|\theta)$. E.g., simulate many times independent data sets and look at distribution of the resulting estimates:



Extended ML

Sometimes regard *n* not as fixed, but as a Poisson r.v., mean *v*. Result of experiment defined as: $n, x_1, ..., x_n$.

The (extended) likelihood function is:

$$L(\nu,\vec{\theta}) = \frac{\nu^n}{n!} e^{-\nu} \prod_{i=1}^n f(x_i;\vec{\theta})$$

Suppose theory gives $v = v(\theta)$, then the log-likelihood is

$$\ln L(\vec{\theta}) = -\nu(\vec{\theta}) + \sum_{i=1}^{n} \ln(\nu(\vec{\theta})f(x_i;\vec{\theta})) + C$$

where C represents terms not depending on θ .

G. Cowan

Extended ML (2)

Example: expected number of events $\nu(\vec{\theta}) = \sigma(\vec{\theta}) \int L dt$ where the total cross section $\sigma(\theta)$ is predicted as a function of the parameters of a theory, as is the distribution of a variable *x*.

Extended ML uses more info \rightarrow smaller errors for $\vec{\theta}$

Important e.g. for anomalous couplings in $e^+e^- \rightarrow W^+W^-$

If v does not depend on θ but remains a free parameter, extended ML gives:

$$\hat{\nu} = n$$

 $\hat{\theta} = \text{same as ML}$

Extended ML example

Consider two types of events (e.g., signal and background) each of which predict a given pdf for the variable *x*: $f_s(x)$ and $f_b(x)$.

We observe a mixture of the two event types, signal fraction = θ , expected total number = v, observed total number = n.

Let $\mu_{s} = \theta \nu$, $\mu_{b} = (1 - \theta) \nu$, goal is to estimate μ_{s} , μ_{b} .

$$f(x; \mu_{\rm S}, \mu_{\rm b}) = \frac{\mu_{\rm S}}{\mu_{\rm S} + \mu_{\rm b}} f_{\rm S}(x) + \frac{\mu_{\rm b}}{\mu_{\rm S} + \mu_{\rm b}} f_{\rm b}(x)$$

$$P(n; \mu_{\rm S}, \mu_{\rm b}) = \frac{(\mu_{\rm S} + \mu_{\rm b})^n}{n!} e^{-(\mu_{\rm S} + \mu_{\rm b})}$$

$$\rightarrow \ln L(\mu_{\rm S},\mu_{\rm b}) = -(\mu_{\rm S}+\mu_{\rm b}) + \sum_{i=1}^{n} \ln \left[(\mu_{\rm S}+\mu_{\rm b})f(x_i;\mu_{\rm S},\mu_{\rm b}) \right]$$

G. Cowan

Extended ML example (2)

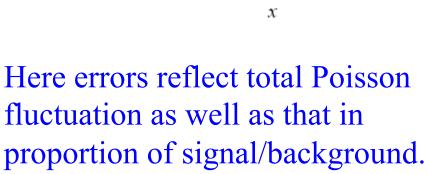
Monte Carlo example with combination of exponential and Gaussian:

$$\mu_{\rm S} = 6$$
$$\mu_{\rm b} = 60$$

Maximize log-likelihood in terms of μ_s and μ_b :

$$\hat{\mu}_{s} = 8.7 \pm 5.5$$

 $\hat{\mu}_{b} = 54.3 \pm 8.8$



G. Cowan

ML with binned data

Often put data into a histogram: $\vec{n} = (n_1, \dots, n_N), n_{tot} = \sum_{i=1}^N n_i$

A T

Hypothesis is
$$\vec{\nu} = (\nu_1, \dots, \nu_N), \ \nu_{tot} = \sum_{i=1}^N \nu_i$$
 where

$$\nu_i(\vec{\theta}) = \nu_{\text{tot}} \int_{\text{bin } i} f(x; \vec{\theta}) \, dx$$

If we model the data as multinomial (n_{tot} constant),

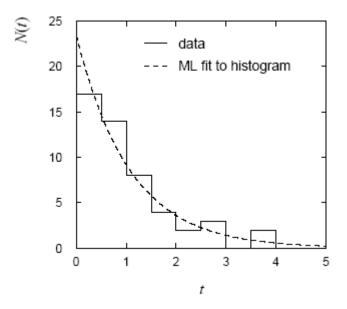
$$f(\vec{n};\vec{\nu}) = \frac{n_{\text{tot}}!}{n_1! \dots n_N!} \left(\frac{\nu_1}{n_{\text{tot}}}\right)^{n_1} \cdots \left(\frac{\nu_N}{n_{\text{tot}}}\right)^{n_N}$$

then the log-likelihood function is: $\ln L(\vec{\theta}) = \sum_{i=1}^{N} n_i \ln \nu_i(\vec{\theta}) + C$

G. Cowan

ML example with binned data

Previous example with exponential, now put data into histogram:



 $\hat{\tau} = 1.07 \pm 0.17$ (1.06 \pm 0.15 for unbinned ML with same sample)

Limit of zero bin width \rightarrow usual unbinned ML.

If n_i treated as Poisson, we get extended log-likelihood:

$$\ln L(\nu_{\text{tot}}, \vec{\theta}) = -\nu_{\text{tot}} + \sum_{i=1}^{N} n_i \ln \nu_i(\nu_{\text{tot}}, \vec{\theta}) + C$$

G. Cowan

Relationship between ML and Bayesian estimators

In Bayesian statistics, both θ and x are random variables:

 $L(\theta) = L(\vec{x}|\theta) = f_{\text{joint}}(\vec{x}|\theta)$

Recall the Bayesian method:

Use subjective probability for hypotheses (θ); before experiment, knowledge summarized by prior pdf $\pi(\theta)$; use Bayes' theorem to update prior in light of data:

$$p(\theta|\vec{x}) = \frac{L(\vec{x}|\theta)\pi(\theta)}{\int L(\vec{x}|\theta')\pi(\theta') d\theta'}$$

Posterior pdf (conditional pdf for θ given x)

G. Cowan

ML and Bayesian estimators (2) Purist Bayesian: $p(\theta | x)$ contains all knowledge about θ . Pragmatist Bayesian: $p(\theta | x)$ could be a complicated function, \rightarrow summarize using an estimator $\hat{\theta}_{Bayes}$ Take mode of $p(\theta | x)$, (could also use e.g. expectation value)

What do we use for $\pi(\theta)$? No golden rule (subjective!), often represent 'prior ignorance' by $\pi(\theta)$ = constant, in which case

$$\hat{\theta}_{\mathsf{Bayes}} = \hat{\theta}_{\mathsf{ML}}$$

But... we could have used a different parameter, e.g., $\lambda = 1/\theta$, and if prior $\pi_{\theta}(\theta)$ is constant, then $\pi_{\lambda}(\lambda)$ is not!

'Complete prior ignorance' is not well defined.

G. Cowan

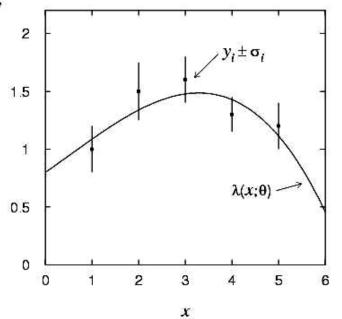
The method of least squares

Suppose we measure N values, $y_1, ..., y_N$, assumed to be independent Gaussian r.v.s with

$$E[y_i] = \lambda(x_i; \theta)$$
.

Assume known values of the control variable $x_1, ..., x_N$ and known variances

$$V[y_i] = \sigma_i^2 \, .$$



We want to estimate θ , i.e., fit the curve to the data points.

The likelihood function is

$$L(\theta) = \prod_{i=1}^{N} f(y_i; \theta) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma_i}} \exp\left[-\frac{(y_i - \lambda(x_i; \theta))^2}{2\sigma_i^2}\right]$$

G. Cowan

The method of least squares (2)

The log-likelihood function is therefore

$$\ln L(\theta) = -\frac{1}{2} \sum_{i=1}^{N} \frac{(y_i - \lambda(x_i; \theta))^2}{\sigma_i^2} + \text{ terms not depending on } \theta$$

So maximizing the likelihood is equivalent to minimizing

$$\chi^{2}(\theta) = \sum_{i=1}^{N} \frac{(y_{i} - \lambda(x_{i}; \theta))^{2}}{\sigma_{i}^{2}}$$

Minimum defines the least squares (LS) estimator $\hat{\theta}$.

Very often measurement errors are ~Gaussian and so ML and LS are essentially the same.

Often minimize χ^2 numerically (e.g. program **MINUIT**).

G. Cowan

LS with correlated measurements

If the y_i follow a multivariate Gaussian, covariance matrix V,

$$g(\vec{y}, \vec{\lambda}, V) = \frac{1}{(2\pi)^{N/2} |V|^{1/2}} \exp\left[-\frac{1}{2}(\vec{y} - \vec{\lambda})^T V^{-1}(\vec{y} - \vec{\lambda})\right]$$

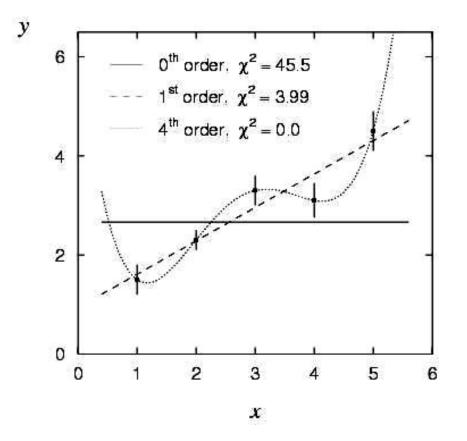
Then maximizing the likelihood is equivalent to minimizing

$$\chi^2(\vec{\theta}) = \sum_{i,j=1}^N (y_i - \lambda(x_i; \vec{\theta}))(V^{-1})_{ij}(y_j - \lambda(x_j; \vec{\theta}))$$

G. Cowan

Example of least squares fit

Fit a polynomial of order *p*: $\lambda(x; \theta_0, \dots, \theta_p) = \sum_{n=0}^{p} \theta_n x^n$



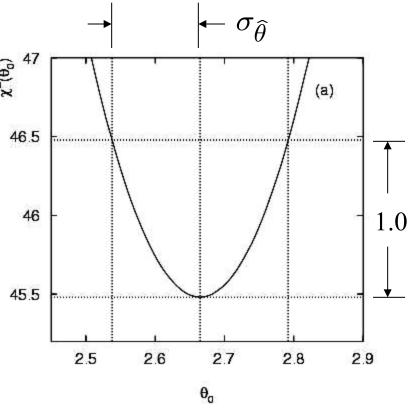
G. Cowan

Aachen 2014 / Statistics for Particle Physics, Lecture 3

Variance of LS estimators

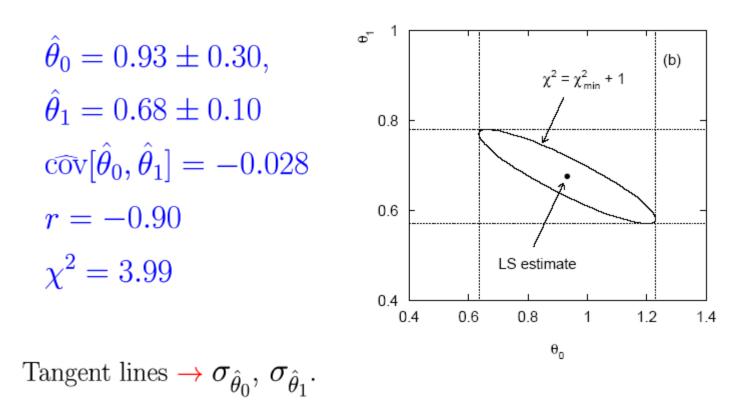
In most cases of interest we obtain the variance in a manner similar to ML. E.g. for data \sim Gaussian we have

$$\chi^{2}(\theta) = -2 \ln L(\theta)$$
and so
$$\widehat{\sigma^{2}}_{\theta} \approx 2 \left[\frac{\partial^{2} \chi^{2}}{\partial \theta^{2}} \right]_{\theta=\hat{\theta}}^{-1}$$
46.5
or for the graphical method we
take the values of θ where
$$\chi^{2}(\theta) = \chi^{2}_{\min} + 1$$



Two-parameter LS fit

2-parameter case (line with nonzero slope):



Angle of ellipse \rightarrow correlation (same as for ML)

G. Cowan

Goodness-of-fit with least squares

The value of the χ^2 at its minimum is a measure of the level of agreement between the data and fitted curve:

$$\chi^2_{\min} = \sum_{i=1}^{N} \frac{(y_i - \lambda(x_i; \hat{\theta}))^2}{\sigma_i^2}$$

It can therefore be employed as a goodness-of-fit statistic to test the hypothesized functional form $\lambda(x; \theta)$.

We can show that if the hypothesis is correct, then the statistic $t = \chi^2_{\text{min}}$ follows the chi-square pdf,

$$f(t; n_{\rm d}) = \frac{1}{2^{n_{\rm d}/2} \Gamma(n_{\rm d}/2)} t^{n_{\rm d}/2 - 1} e^{-t/2}$$

where the number of degrees of freedom is

 $n_{\rm d}$ = number of data points – number of fitted parameters

G. Cowan

Goodness-of-fit with least squares (2)

The chi-square pdf has an expectation value equal to the number of degrees of freedom, so if $\chi^2_{\rm min} \approx n_{\rm d}$ the fit is 'good'.

More generally, find the *p*-value: $p = \int_{\chi^2_{\min}}^{\infty} f(t; n_d) dt$

This is the probability of obtaining a χ^2_{min} as high as the one we got, or higher, if the hypothesis is correct.

E.g. for the previous example with 1st order polynomial (line),

 $\chi^2_{\rm min} = 3.99$, $n_{\rm d} = 5 - 2 = 3$, p = 0.263

whereas for the 0th order polynomial (horizontal line),

$$\chi^2_{\rm min} = 45.5$$
, $n_{\rm d} = 5 - 1 = 4$, $p = 3.1 \times 10^{-9}$

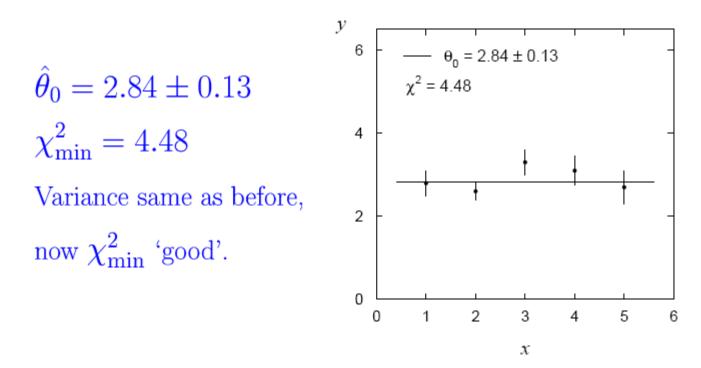
G. Cowan

Goodness-of-fit vs. statistical errors

Small statistical error does not mean a good fit (nor vice versa).

Curvature of χ^2 near its minimum \rightarrow statistical errors $(\sigma_{\hat{\theta}})$ Value of $\chi^2_{\min} \rightarrow$ goodness-of-fit

Horizontal line fit, move the data points, keep errors on points same:



G. Cowan

Goodness-of-fit vs. stat. errors (2)

 $\rightarrow \chi^2(\theta_0)$ shifted down, same curvature as before.

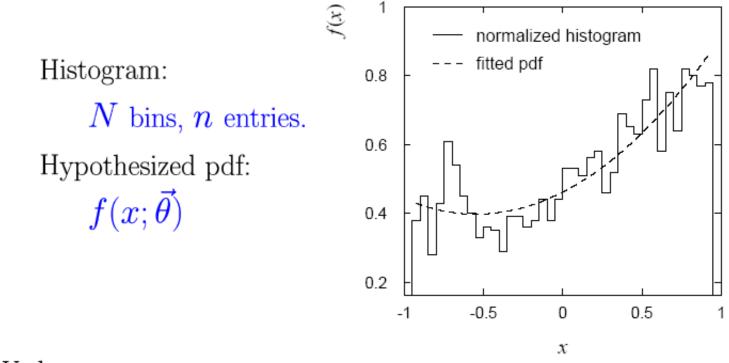
Variance of estimator (statistical error) tells us:

if experiment repeated many times, how wide is the distribution of the estimates $\hat{\theta}$. (Doesn't tell us whether hypothesis correct.) P-value tells us:

if hypothesis is correct and experiment repeated many times, what fraction will give equal or worse agreement between data and hypothesis according to the statistic χ^2_{\min} .

Low P-value \rightarrow hypothesis may be wrong \rightarrow systematic error.

LS with binned data



We have

 $y_i =$ number of entries in bin i,

$$\lambda_i(ec{ heta}) = n \int_{x_i^{\min}}^{x_i^{\max}} f(x; ec{ heta}) dx = n p_i(ec{ heta})$$

G. Cowan

LS with binned data (2)

LS fit: minimize

$$\chi^2(ec{ heta}) = \sum\limits_{i=1}^N rac{(y_i - \lambda_i(ec{ heta}))^2}{\sigma_i^2}$$

where $\sigma_i^2 = V[y_i]$, here not known a priori.

Treat the y_i as Poisson r.v.s, in place of true variance take either

 $\sigma_i^2 = \lambda_i(\vec{\theta})$ (LS method)

 $\sigma_i^2 = y_i$ (Modified LS method)

MLS sometimes easier computationally, but χ^2_{min} no longer follows chi-square pdf (or is undefined) if some bins have few (or no) entries.

G. Cowan

LS with binned data — normalization Do not 'fit the normalization':

$$\lambda_i(ec{ heta},
u) =
u \int_{x_i^{\min}}^{x_i^{\max}} f(x;ec{ heta}) dx =
u p_i(ec{ heta})$$

i.e. introduce adjustable ν , fit along with $\vec{\theta}$.

 $\hat{\nu}$ is a bad estimator for n (which we know, anyway!)

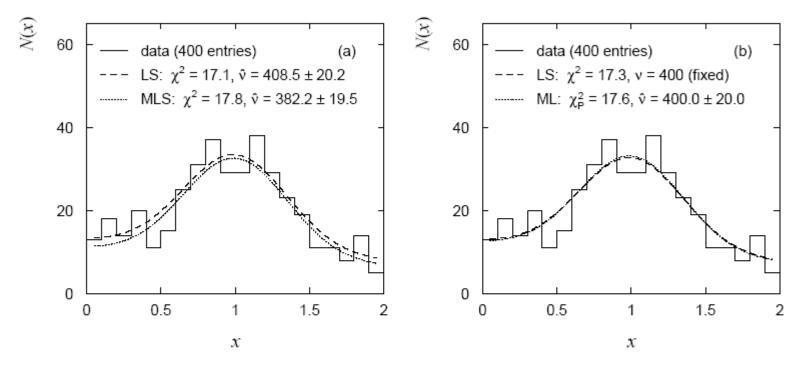
$$\hat{\nu}_{\rm LS} = n + \frac{\chi^2_{\rm min}}{2}$$

$$\hat{
u}_{ ext{MLS}} = n - \chi^2_{ ext{min}}$$

G. Cowan

LS normalization example

Example with n = 400 entries, N = 20 bins:



Expect χ^2_{\min} around N-m,

 \rightarrow relative error in $\hat{\nu}$ large when N large, n small Either get n directly from data for LS (or better, use ML).

G. Cowan

Goodness of fit from the likelihood ratio

Suppose we model data using a likelihood $L(\mu)$ that depends on N parameters $\mu = (\mu_1, ..., \mu_N)$. Define the statistic

$$t_{\boldsymbol{\mu}} = -2\ln\frac{L(\boldsymbol{\mu})}{L(\hat{\boldsymbol{\mu}})}$$

Value of t_{μ} reflects agreement between hypothesized μ and the data.

Good agreement means $\hat{\mu} \approx \mu$, so t_{μ} is small;

Larger t_{μ} means less compatibility between data and μ .

Quantify "goodness of fit" with *p*-value:
$$p_{\mu} = \int_{t_{\mu,\text{obs}}}^{\infty} f(t_{\mu}|\mu) dt_{\mu}$$

G. Cowan

Likelihood ratio (2)

Now suppose the parameters $\boldsymbol{\mu} = (\mu_1, ..., \mu_N)$ can be determined by another set of parameters $\boldsymbol{\theta} = (\theta_1, ..., \theta_M)$, with M < N.

E.g. in LS fit, use $\mu_i = \mu(x_i; \theta)$ where x is a control variable.

Define the statistic

fit *M* parameters

$$q_{\mu} = -2 \ln \frac{L(\mu(\hat{\theta}))}{L(\hat{\mu})}$$
fit *N* parameters

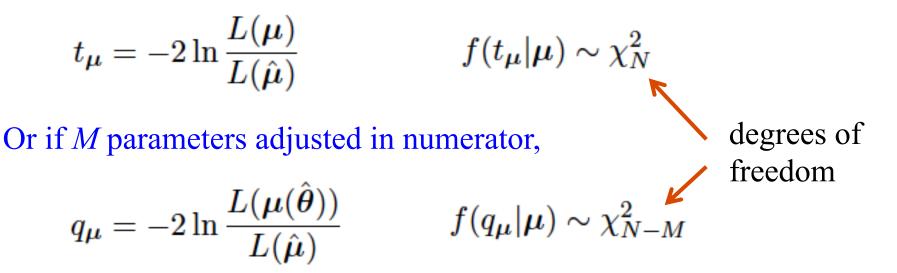
Use q_{μ} to test hypothesized functional form of $\mu(x; \theta)$. To get *p*-value, need pdf $f(q_{\mu}|\mu)$.

G. Cowan

Wilks' Theorem (1938)

Wilks' Theorem: if the hypothesized parameters $\mu = (\mu_1, ..., \mu_N)$ are true then in the large sample limit (and provided certain conditions are satisfied) t_{μ} and q_{μ} follow chi-square distributions.

For case with $\boldsymbol{\mu} = (\mu_1, ..., \mu_N)$ fixed in numerator:



S.S. Wilks, The large-sample distribution of the likelihood ratio for testing composite hypotheses, Ann. Math. Statist. 9 (1938) 60-2.

G. Cowan

Goodness of fit with Gaussian data

Suppose the data are *N* independent Gaussian distributed values:

$$y_i \sim \text{Gauss}(\mu_i, \sigma_i)$$
, $i = 1, \dots, N$
want to estimate known

Likelihood:
$$L(\mu) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma_i}} e^{-(y_i - \mu_i)^2/2\sigma_i^2}$$

. .

Log-likelihood:
$$\ln L(\boldsymbol{\mu}) = -\frac{1}{2} \sum_{i=1}^{N} \frac{(y_i - \mu_i)^2}{\sigma_i^2} + C$$

ML estimators: $\hat{\mu}_i = y_i$ $i = 1, \dots, N$

G. Cowan

Likelihood ratios for Gaussian data

The goodness-of-fit statistics become

$$t_{\mu} = -2\ln\frac{L(\mu)}{L(\hat{\mu})} = \sum_{i=1}^{N} \frac{(y_i - \mu_i)^2}{\sigma_i^2} \qquad \qquad f(t_{\mu}|\mu) \sim \chi_N^2$$

$$q_{\mu} = -2\ln\frac{L(\mu(\hat{\theta}))}{L(\hat{\mu})} = \sum_{i=1}^{N} \frac{(y_i - \mu_i(\hat{\theta}))^2}{\sigma_i^2} \qquad f(q_{\mu}|\mu) \sim \chi^2_{N-M}$$

So Wilks' theorem formally states the well-known property of the minimized chi-squared from an LS fit.

G. Cowan

Likelihood ratio for Poisson data

Suppose the data are a set of values $\mathbf{n} = (n_1, ..., n_N)$, e.g., the numbers of events in a histogram with *N* bins.

Assume $n_i \sim \text{Poisson}(v_i)$, i = 1, ..., N, all independent. Goal is to estimate $v = (v_1, ..., v_N)$.

Likelihood:
$$L(\boldsymbol{\nu}) = \prod_{i=1}^{N} \frac{\nu_i^{n_i}}{n_i!} e^{-\nu_i}$$

Log-likelihood:
$$\ln L(\boldsymbol{\nu}) = \sum_{i=1}^{N} [n_i \ln \nu_i - \nu_i] + C$$

ML estimators: $\hat{
u}_i = n_i \;, \qquad i=1,\ldots,N$

G. Cowan

Goodness of fit with Poisson data

The likelihood ratio statistic (all parameters fixed in numerator):

$$t_{oldsymbol{
u}} = -2\lnrac{L(oldsymbol{
u})}{L(\hat{oldsymbol{
u}})}$$

$$= -2\sum_{i=1}^{N} \left[n_i \ln \frac{\nu_i}{\hat{\nu}_i} - \nu_i + \hat{\nu}_i \right]$$

$$= -2\sum_{i=1}^{N} \left[n_i \ln \frac{\nu_i}{n_i} - \nu_i + n_i \right]$$

Wilks' theorem: $f(t_{\nu}|\nu) \sim \chi_N^2$

G. Cowan

Goodness of fit with Poisson data (2)

Or with *M* fitted parameters in numerator:

$$q_{\nu} = -2\ln\frac{L(\nu(\hat{\theta}))}{L(\hat{\nu})} = -2\sum_{i=1}^{N} \left[n_i \ln\frac{\nu_i(\hat{\theta})}{n_i} - \nu_i(\hat{\theta}) + n_i\right]$$

Wilks' theorem: $f(q_{\nu}|\nu) \sim \chi^2_{N-M}$

Use t_{μ} , q_{μ} to quantify goodness of fit (*p*-value). Sampling distribution from Wilks' theorem (chi-square). Exact in large sample limit; in practice good approximation for surprisingly small n_i (~several).

G. Cowan

Goodness of fit with multinomial data

Similar if data $\mathbf{n} = (n_1, ..., n_N)$ follow multinomial distribution:

$$P(\mathbf{n}|\mathbf{p}, n_{\text{tot}}) = \frac{n_{\text{tot}}!}{n_1! n_2! \dots n_N!} p_1^{n_1} p_2^{n_2} \dots p_N^{n_N}$$

E.g. histogram with N bins but fix: $n_{\text{tot}} = \sum_{i=1}^{N} n_i$

Log-likelihood:
$$\ln L(\nu) = \sum_{i=1}^{N} n_i \ln \frac{\nu_i}{n_{\text{tot}}} + C$$
 $(\nu_i = p_i n_{\text{tot}})$

ML estimators: $\hat{\nu}_i = n_i$ (Only *N*-1 independent; one is n_{tot} minus sum of rest.)

G. Cowan

Goodness of fit with multinomial data (2)

The likelihood ratio statistics become:

$$t_{\nu} = -2\sum_{i=1}^{N} n_i \ln \frac{\nu_i}{n_i} \qquad f(t_{\nu}|\nu) \sim \chi^2_{N-1}$$
$$q_{\nu} = -2\sum_{i=1}^{N} n_i \ln \frac{\nu_i(\hat{\theta})}{n_i} \qquad f(q_{\nu}|\nu) \sim \chi^2_{N-M-1}$$

One less degree of freedom than in Poisson case because effectively only *N*–1 parameters fitted in denominator.

G. Cowan

Estimators and g.o.f. all at once Evaluate numerators with θ (not its estimator):

$$\chi_{\rm P}^2(\theta) = -2\sum_{i=1}^N \left[n_i \ln \frac{\nu_i(\theta)}{n_i} - \nu_i(\theta) + n_i \right]$$
(Poisson)
$$\chi_{\rm M}^2(\theta) = -2\sum_{i=1}^N n_i \ln \frac{\nu_i(\theta)}{n_i}$$
(Multinomial)

These are equal to the corresponding $-2 \ln L(\theta)$ plus terms not depending on θ , so minimizing them gives the usual ML estimators for θ .

The minimized value gives the statistic q_{μ} , so we get goodness-of-fit for free.

Steve Baker and Robert D. Cousins, *Clarification of the use of the chi-square and likelihood functions in fits to histograms*, NIM **221** (1984) 437.

G. Cowan

Using LS to combine measurements

Use LS to obtain weighted average of N measurements of λ :

 y_i = result of measurement i, i = 1, ..., N; $\sigma_i^2 = V[y_i]$, assume known; λ = true value (plays role of θ).

For uncorrelated y_i , minimize

$$\chi^2(\lambda) = \sum_{i=1}^N rac{(y_i - \lambda)^2}{\sigma_i^2},$$

Set
$$\frac{\partial \chi^2}{\partial \lambda} = 0$$
 and solve,
 $\rightarrow \quad \hat{\lambda} = \frac{\sum_{i=1}^N y_i / \sigma_i^2}{\sum_{j=1}^N 1 / \sigma_j^2} \qquad \qquad V[\hat{\lambda}] = \frac{1}{\sum_{i=1}^N 1 / \sigma_i^2}$

G. Cowan

Combining correlated measurements with LS

If $\operatorname{cov}[y_i, y_j] = V_{ij}$, minimize $\chi^2(\lambda) = \sum_{i,j=1}^N (y_i - \lambda)(V^{-1})_{ij}(y_j - \lambda),$ $\rightarrow \quad \hat{\lambda} = \sum_{i=1}^N w_i y_i, \qquad w_i = \frac{\sum_{j=1}^N (V^{-1})_{ij}}{\sum_{k,l=1}^N (V^{-1})_{kl}}$ $V[\hat{\lambda}] = \sum_{i,j=1}^N w_i V_{ij} w_j$

LS λ has zero bias, minimum variance (Gauss–Markov theorem).

G. Cowan

Example: averaging two correlated measurements

Suppose we have
$$y_1, y_2$$
, and $V = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$

$$\rightarrow \quad \hat{\lambda} = wy_1 + (1 - w)y_2, \quad w = \frac{\sigma_2^2 - \rho\sigma_1\sigma_2}{\sigma_1^2 + \sigma_2^2 - 2\rho\sigma_1\sigma_2}$$
$$V[\hat{\lambda}] = \frac{(1 - \rho^2)\sigma_1^2\sigma_2^2}{\sigma_1^2 + \sigma_2^2 - 2\rho\sigma_1\sigma_2} = \sigma^2$$

The increase in inverse variance due to 2nd measurement is

$$\frac{1}{\sigma^2} - \frac{1}{\sigma_1^2} = \frac{1}{1 - \rho^2} \left(\frac{\rho}{\sigma_1} - \frac{1}{\sigma_2} \right)^2 > 0$$

 \rightarrow 2nd measurement can only help.

G. Cowan

Negative weights in LS average

If $\rho > \sigma_1/\sigma_2$, $\rightarrow w < 0$,

 \rightarrow weighted average is not between y_1 and y_2 (!?) Cannot happen if correlation due to common data, but possible for shared random effect; very unreliable if e.g. ρ , σ_1 , σ_2 incorrect.

See example in SDA Section 7.6.1 with two measurements at same temperature using two rulers, different thermal expansion coefficients: average is outside the two measurements; used to improve estimate of temperature.

G. Cowan, Statistical Data Analysis, Oxford University Press, 1998.

G. Cowan

Extra slides

G. Cowan

Example of ML: parameters of Gaussian pdf

Consider independent $x_1, ..., x_n$, with $x_i \sim \text{Gaussian}(\mu, \sigma^2)$

$$f(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$$

The log-likelihood function is

$$\ln L(\mu, \sigma^2) = \sum_{i=1}^n \ln f(x_i; \mu, \sigma^2)$$

=
$$\sum_{i=1}^n \left(\ln \frac{1}{\sqrt{2\pi}} + \frac{1}{2} \ln \frac{1}{\sigma^2} - \frac{(x_i - \mu)^2}{2\sigma^2} \right)$$

G. Cowan

Example of ML: parameters of Gaussian pdf (2)

Set derivatives with respect to μ , σ^2 to zero and solve,

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i, \qquad \widehat{\sigma^2} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \widehat{\mu})^2.$$

We already know that the estimator for μ is unbiased.

But we find, however, $E[\widehat{\sigma^2}] = \frac{n-1}{n}\sigma^2$, so ML estimator for σ^2 has a bias, but $b \rightarrow 0$ for $n \rightarrow \infty$. Recall, however, that

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \hat{\mu})^{2}$$

is an unbiased estimator for σ^2 .

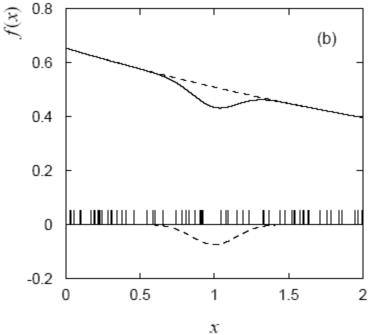
G. Cowan

Extended ML example: an unphysical estimate

A downwards fluctuation of data in the peak region can lead to even fewer events than what would be obtained from background alone.

Estimate for μ_s here pushed negative (unphysical).

We can let this happen as long as the (total) pdf stays positive everywhere.



Unphysical estimators (2)

Here the unphysical estimator is unbiased and should nevertheless be reported, since average of a large number of unbiased estimates converges to the true value (cf. PDG).

Repeat entire MC experiment many times, allow unphysical estimates:

