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Definition, Bayes’ theorem, probability densities
and their properties, catalogue of pdfs, Monte Carlo
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general concepts, test statistics, multivariate methods,
goodness-of-fit tests

= 3 Parameter estimation
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estimators, least squares

4 Hypothesis tests for discovery and exclusion
discovery significance, sensitivity, setting limits

5 Further topics
systematic errors, Bayesian methods, MCMC
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Frequentist parameter estimation

Suppose we have a pdf characterized by one or more parameters:

f(x;0) = —e_x/e

7N

random variable parameter

Suppose we have a sample of observed values: © = (x1,...,xn)

We want to find some function of the data to estimate the
parameter(s):

o(z) «— estimator written with a hat

Sometimes we say ‘estimator’ for the function of x, ..., x,;
‘estimate’ for the value of the estimator with a particular data set.
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Properties of estimators

If we were to repeat the entire measurement, the estimates
from each would follow a pdf:

_ Y best

large
variance

g(0;0)

biased

—p
%

v
)

We want small (or zero) bias (systematic error): b= E[0] — 0

— average of repeated measurements should tend to true value.

And we want a small variance (statistical error): V0]

— small bias & variance are in general conflicting criteria
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Distribution, likelthood, model

Suppose the outcome of a measurement 1s x. (€.g., a number of
events, a histogram, or some larger set of numbers).

The probability density (or mass) function or ‘distribution’ of x,
which may depend on parameters 6, 1s:

P(x|0) (Independent variable is x; 0 is a constant.)

If we evaluate P(x|f) with the observed data and regard it as a
function of the parameter(s), then this 1s the likelthood:

L(6) = P(x|0) (Data x fixed; treat L as function of 6.)

We will use the term ‘model’ to refer to the full function P(x|6)
that contains the dependence both on x and 6.
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Bayesian use of the term ‘likelihood’

We can write Bayes theorem as

L(z|0)m(0)
PUOIE) = T z10)m(0) db

where L(x|0) is the likelihood. It 1s the probability for x given
0, evaluated with the observed x, and viewed as a function of 6.

Bayes’ theorem only needs L(x|0) evaluated with a given data
set (the ‘likelihood principle’).

For frequentist methods, in general one needs the full model.

For some approximate frequentist methods, the likelihood
1s enough.
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The likelihood function for 1.1.d.*. data

* 1.1.d. = independent and identically distributed

Consider n independent observations of x: x,, ..., x,, where
x follows f (x; 6). The joint pdf for the whole data sample is:

1=1

In this case the likelihood function is

L(0) = [ f(xi; 6) (x; constant)
i=1
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Maximum likelihood

The most important frequentist method for
constructing estimators 1s to take the value of
the parameter(s) that maximize the likelihood: § = argmax L(z|0)

0
The resulting estimators are functions of
the data and thus characterized by a sampling
distribution with a given (co)variance: Vij = cov [é ;. éj]
In general they may have a nonzero bias: b= E[é] — 0

Under conditions usually satisfied in practice, bias of ML estimators
1s zero 1n the large sample limit, and the variance 1s as small as
possible for unbiased estimators.

ML estimator may not in some cases be regarded as the optimal
trade-off between these criteria (cf. regularized unfolding).
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ML example: parameter of exponential pdf

1
Consider exponential pdf, — f(t;7) = —e t/7
-

and suppose we have 1.1.d. data, t1,...,tn
L |
The likelihood function is L(7) = [[ —e /"
i=1"7

The value of 7 for which L(7) 1s maximum also gives the
maximum value of 1its logarithm (the log-likelihood function):

L) =S Infltgm) =Y (lnl_ﬁ)
1=1

i—=1 T T
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ML example: parameter of exponential pdf (2)

o : . In L
Find its maximum by setting 0 5 (7) =0,
T
1 n
— ; Z tz 1

J®

1=1

075

Monte Carlo test:
generate 50 values

05
using 7= 1:
025 |
We find the ML estimate:
O 11
T = 1.062 0 1 2 3 4 5
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Variance of estimators: Monte Carlo method

Having estimated our parameter we now need to report its
‘statistical error’, 1.e., how widely distributed would estimates

be if we were to repeat the entire measurement many times.

One way to do this would be to simulate the entire experiment
many times with a Monte Carlo program (use ML estimate for MC).

For exponential example, from CREN!
sample variance of estimates Jm
we find: 100 %
o> = 0.151
Note distribution of estimates is roughly ~ | % ‘
Gaussian — (almost) always true for -
ML 1n large sample limit. "o o5 1 15
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Variance of estimators from information inequality

The information inequality (RCF) sets a lower bound on the

variance of any estimator (not only ML): . ,
Minimum Variance

9N 2 921n I, Bound (MVB)
sz(““%) /E[_ 962 ] (b= E[0] - 0)

Often the bias b 1s small, and equality either holds exactly or
1s a good approximation (e.g. large data sample limit). Then,

821In L
s f[EE

Estimate this using the 2nd derivative of In L at its maximum:

_1
18] = — (82In L)

062

-~

0=0
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Variance of estimators: graphical method

Expand In L (6) about 1ts maximum:

. [0InL _ 921In L _
InL(9)=InL(9)—|—[ 8”9 ]9 5(9—9)+%[ 89”2 ] (0-0)2+...
— ' 60=0

Firstterm1s In L., second term 1s zero, for third term use
information inequality (assume equality):
0 — 0)2
In L(0) =~ In Lmax — ( — )
2025

ie., InL(O+ G5) ~ IN Lmax —%

— to get 05, change 6 away from & until In L decreases by 1/2.
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Example of variance by graphical method

o 525 . . I
Q
ML example with exponential: 8
7 = 1.062
A7, = 0.165
5
oz ~ AT~ A7; ~0.15 0.8 1 1.2 1.4 1.6

Not quite parabolic In L since finite sample size (n = 50).
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Functions of ML estimators

Suppose we had written the exponential pdf as f(t;A) = Xe M
1.e., we use A= 1/7. What 1s the ML estimator for A?

Rewrite the likelihood replacing t by 1/4. The 4 that maximizes
L(2) 1s the A that corresponds to the 7 that maximizes L(7), 1.€.,

—1
~ 1 1 2
So for the decay constant we have \ = — = ( pR? :
T "i=1
Caveat: ) is biased, even though 7 is unbiased.

n

Can show E[)\] = )

S (bias —0 for n — )
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Information inequality for n parameters

Suppose we have estimated n parameters 0= (01,...,00).

The (inverse) minimum variance bound 1s given by the
Fisher information matrix:

I =E

2 a2 o
_o%inLy _ f(a:;@)a In f(z:0)
86,00 80,00 ;

The information inequality then states that V' — I"! is a positive
semi-definite matrix, where V;; = cov([f;,0;]. Therefore

Vgl > (I Yy

Often use I'! as an approximation for covariance matrix
92

estimate using e.g. matrix of 2nd derivatives at maximum of L.
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Two-parameter example of ML

Consider a scattering angle distribution with x = cos 6,

A
> \)( _
1+ ax + Bx & P\ e

N\
Data: x,..., x,, n = 2000 events. “

*9 Vo

As test generate with MC using = 0.5, =0.5

From data compute log-likelihood:

In L(a, B) Zlnf (33 v, B)

Maximize numerically (e.g., program MINUIT)

G. Cowan Aachen 2014 / Statistics for Particle Physics, Lecture 3
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Example of ML: fit result

Finding maximum of In L( ¢, 3) numerically (MINUIT) gives

1

f(x)

a = 0.508
= 0.47

—— Monte Carlo data
- - ML fit result

08

X

06

N.B. Here no binning of data for fit,
but can compare to histogram for

04 FI[fF~Y4--=3 .

goodness-of-fit (e.g. ‘visual’ or y?). 02 | .
: ] 021In L :
(Co)variances from (V—4);; = — A (MINUIT routine
00,005 |5_5 HESSE)
55 = 0.052 cov[a,B] = 0.0026
53 = 0.11 r = 0.46
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Variance of ML estimators: graphical method

Often (e.g., large sample case) one can 9
approximate the covariances using only Vij R —-
the likelihood L(6): 00; 003 |9—g

07

This translates into a simple
graphical recipe:

06 |

05 | truevalue —

. A
04 F ML fit result

—— In L(Oé,ﬁ) = In Lmax — 1/2

03 1 1 1
0.3 0.4 0.5 0.6 07

o

— Tangent lines to contours give standard deviations.

— Angle of ellipse ¢ related to correlation: tan2¢ =

G. Cowan Aachen 2014 / Statistics for Particle Physics, Lecture 3 19



Variance of ML estimators: MC

To find the ML estimate itself one only needs the likelihood L(6) .

In principle to find the covariance of the estimators, one requires
the full model L(x|0). E.g., simulate many times independent data
sets and look at distribution of the resulting estimates:

1
B

075

G. Cowan

(a)

5
4
3 L
2
1
0

1l

®

1 1 1
0.25 05 0.75 1 0 0.25 05 0.75

1 1 1
025 05 0.75 1

& = 0.499

sq = 0.051

B = 0.498

sz = 0.111
covla, B] = 0.0024
ro= 0.42
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G. Cowan

Extended ML

Sometimes regard z not as fixed, but as a Poisson r.v., mean v.
Result of experiment defined as: n, x, ..., x,.
The (extended) likelihood function 1s:

Vn

L(v,0) = Ze T] f(:0)
e i=1

Suppose theory gives v =v(6), then the log-likelihood 1s

InL@) = —v(@) + 3. In(w(@) (i ) + C
1=1

where C represents terms not depending on 6.

Aachen 2014 / Statistics for Particle Physics, Lecture 3
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Extended ML (2)

Example: expected number of events v(0) = o(0) / Ldt
where the total cross section o( 6) 1s predicted as a function of

the parameters of a theory, as 1s the distribution of a variable x.

Extended ML uses more info — smaller errors for 6

Important e.g. for anomalous couplings in etfe™ > W™W~

If v does not depend on @ but remains a free parameter,
extended ML gives:
v = n

same as ML

)
|

G. Cowan Aachen 2014 / Statistics for Particle Physics, Lecture 3
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Extended ML example

Consider two types of events (e.g., signal and background) each
of which predict a given pdf for the variable x: f(x) and f, (x).

We observe a mixture of the two event types, signal fraction = 6,
expected total number = v, observed total number = n.

Let us = 0v, pup = (1 — 0)v, goal is to estimate u, u,.

. _ bs Kb
f(@; ps, pp) MS+bes(a:)+us+ubfb(x)

P(n; ps, pp) = (s ‘?:I/ib) e (kstip)

— In L(us, pp) = —(,UJS‘|‘Mb)‘|‘.Z In [Cus + pp) f(xi; s, )]

=1
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Extended ML example (2)

f(x)

Monte Carlo example
with combination of 08
exponential and Gaussian:

(a)

06

04

ps = 6

60 02 r
o LU L Ot SR L

0 0.5 1 1.5 2

Hb

Maximize log-likelithood 1n
terms of u, and w,:

X

Here errors reflect total Poisson
fis = 8.7 £5.5 / fluctuation as well as that in

p = 54.31£8.8 proportion of signal/background.

G. Cowan Aachen 2014 / Statistics for Particle Physics, Lecture 3
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ML with binned data

N
Often put data into a histogram: 7@ = (nq,...,ny), ntet = »_ 7y
i=1
N
Hypothesisis 7= (v1,...,vN), tot = »_ v;  Where
i=1

vi0) = vot | f(a;0) da

bin<

If we model the data as multinomial (n,,, constant),

ni ny
. Ntot! V1 VN
£ 7) = — .( ) ( )
ni:-... NN \Ntot Ntot

N
then the log-likelihood function is: InL(F) = 3 n;Iny;(0) + C
i=1
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ML example with binned data

Previous example with exponential, now put data into histogram:

S 25
= — data
]
20 H --- ML fit to histogram
\
)
5 Lo 1 7 =1.07=+0.17
A
\
P A | (1.06 &= 0.15 for unbinned
\
\ 1L with same sample
s L N . ML witl pl
I I o e N
0 1 2 3 4 5

t

Limit of zero bin width — usual unbinned ML.

If n. treated as Poisson, we get extended log-likelihood:

N
In L(vtot, 0) = —vtot + > niInv;(viot, 0) + C
i=1
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Relationship between ML and Bayesian estimators

In Bayesian statistics, both @ and x are random variables:
L(0) = L(f|9) — fjoint(fW)

Recall the Bayesian method:

Use subjective probability for hypotheses (6);
before experiment, knowledge summarized by prior pdf 7( 6);
use Bayes’ theorem to update prior in light of data:

L(Z|0)m(0)
[ L(Z6D (") db’

p(0|T) =
/'

Posterior pdf (conditional pdf for 6 given x)
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ML and Bayesian estimators (2)

Purist Bayesian: p(6|x) contains all knowledge about 6.
Pragmatist Bayesian: p(0|x) could be a complicated function,

— summarize using an estimator 9Bayes

Take mode of p(60 | x) , (could also use e.g. expectation value)

What do we use for i(60)? No golden rule (subjective!), often
represent ‘prior ignorance’ by si( 6) = constant, in which case

eBayes = OmL

But... we could have used a different parameter, e.g., A= 1/6,
and 1f prior 7, 0) 1s constant, then i,(A) 1s not!

‘Complete prior ignorance’ is not well defined.
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The method of least squares

Suppose we measure N values, y,, ..., Yy,
assumed to be independent Gaussian
r.v.s with

Ely;] = Axs;0) .

Assume known values of the control
variable x,, ..., x,, and known variances

Vil = o7 .

We want to estimate 6, 1.e., fit the curve to the data points.

The likelithood function is

(0) IJ_V[ f(yi; 0) IJ_V[ /—1

G. Cowan Aachen 2014 / Statistics for Particle Physics, Lecture 3
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The method of least squares (2)

The log-likelihood function 1s therefore

N . 2
- — Xz 0
In L(0) = _1 E (s (;32 ) + terms not depending on 0
2 . 1
1=

g,

So maximizing the likelihood is equivalent to minimizing

N (v — Nz 0))2
co=3 (= A 0)

Minimum defines the least squares (LS) estimator 0.

Very often measurement errors are ~Gaussian and so ML
and LS are essentially the same.

Often minimize y? numerically (e.g. program MINUIT).
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LS with correlated measurements

If the y, follow a multivariate Gaussian, covariance matrix V,

- 1
y, A\, V)= ex
9y ) (2m) N2V |1/2

1 . - L o
P —5(9 — A)TV 1(y —A)
Then maximizing the likelihood 1s equivalent to minimizing

N
X2(0) = 3 (yi— Az 0) (V1 (y; — M(xj; 0))
1,J=1
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Example of least squares fit

p
Fit a polynomial of order p: A(z;00,...,0p) = >  Onpz"
n=0

Y ' ' ' ' 3
6 — O"order. x2=455 :
-~ - 1% order. x2= 399 :
4" order, ¥2=0.0 I,"
4 - e -
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Variance of LS estimators

In most cases of interest we obtain the variance in a manner
similar to ML. E.g. for data ~ Gaussian we have

2 — _
x~(0) = —21In L(6) = — 5
and so ;;; : | | [ (@
/i 82X2 —1 465
0~g ~ 2 002
0=0

or for the graphical method we
take the values of 6 where 455 |

X2(9) — Xr2nin +1 25 | 2..6 | 217 28 29
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Two-parameter LS fit

2-parameter case (line with nonzero slope):

08

06

O = 0.93 =+ 0.30, °
01 = 0.68 £ 0.10

cov|fy, 01] = —0.028
r=—0.90

Y2 = 3.99 )

Tangent lines — T4, Ty

(b)

04

06

0.8 1

Angle of ellipse — correlation (same as for ML)
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Goodness-of-fit with least squares

The value of the »? at its minimum is a measure of the level
of agreement between the data and fitted curve:

N -\ \2
Xmin — Z Z 2Z
i=1 g

It can therefore be employed as a goodness-of-fit statistic to
test the hypothesized functional form A(x; 6).

We can show that if the hypothesis is correct, then the statistic
t = .. follows the chi-square pdf,

1
. _ ng/2—1_—t/2
na) = e ngray” ¢

where the number of degrees of freedom i1s

ny = number of data points — number of fitted parameters

G. Cowan Aachen 2014 / Statistics for Particle Physics, Lecture 3
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Goodness-of-fit with least squares (2)

The chi-square pdf has an expectation value equal to the number
of degrees of freedom, so if )?_. = n,the fitis ‘good’.

@)

More generally, find the p-value: p = / ) f(t;ng) dt

Xmin
This is the probability of obtaining a »?, . as high as the one
we got, or higher, if the hypothesis is correct.

E.g. for the previous example with 1st order polynomial (line),

X2 = 3.99, ng=>5-2=3, p = 0.263

whereas for the Oth order polynomial (horizontal line),

X2 = 45.5, ng=5-1=4, p=3.1x10""7

G. Cowan Aachen 2014 / Statistics for Particle Physics, Lecture 3
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Goodness-of-fit vs. statistical errors

Small statistical error does not mean a good fit (nor vice versa).
Curvature of X2 near its minimum — statistical errors (0'9*)

Value of X12nin — goodness-of-fit

Horizontal line fit, move the data points, keep errors on points same:

y

I I I I I

. 6 — 6,=284+013 .
Op = 2.84 +0.13 =448
2 B -
Xmin = 4.48 ! + {
| |
Variance same as before, _ 1 1

2 ;
NOW Xpmin good’.
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Goodness-of-fit vs. stat. errors (2)

— XQ(HO) shifted down, same curvature as before.

Variance of estimator (statistical error) tells us:
if experiment repeated many times, how wide is the distribution

of the estimates @. (Doesn’t tell us whether hypothesis correct.)

P-value tells us:
if hypothesis is correct and experiment repeated many times,
what fraction will give equal or worse agreement between data

and hypothesis according to the statistic X12ni11'

Low P-value — hypothesis may be wrong — systematic error.

G. Cowan Aachen 2014 / Statistics for Particle Physics, Lecture 3
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LS with binned data

1 1 T

Jix)

Histogram: 0g | - fited pdf

N bins, 1 entries.
06 r

Hypothesized pdf:
f(z;0) 04 |

02 r

— normalized histogram

We have
Y; = number of entries in bin 2,

— max — -

Xi(0) =n [ fz;0)dz = npi(0)

2

G. Cowan Aachen 2014 / Statistics for Particle Physics, Lecture 3
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LS with binned data (2)
LS fit: minimize

N
2 _
X (9) B igl o

where 03 = V[yz-], here not known a priori.

Treat the y; as Poisson r.v.s, in place of true variance take either

)

o7 = X\i(6) (LS method)

0% =1v;  (Modified LS method)

MLS sometimes easier computationally, but X12nin no longer follows

chi-square pdf (or is undefined) if some bins have few (or no) entries.
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LS with binned data — normalization

Do not ‘fit the normalization’:

max — —

/\z-(ﬁ—', V) = I//men f(z;0)dx = vp;(0)

Ly

i.e. introduce adjustable v, fit along with 6.

U is a bad estimator for 1 (which we know, anyway!)

X 12nin
2

IQLSI’I?J-}-

A . 9
VMLS = T — Xmin
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LS normalization example
Example with n = 400 entries, N = 20 bins:

< 80 I 4ata (400 entries) @ 1 = 60— data (400 entries) (b)

-—— LS: ¥*=17.1,v=4085+20.2 -—- LS: ¥*=17.3, v = 400 (fixed)

---------- MLS: y2=17.8,v=3822+195 wwee ML: %2 =17.6, 9= 400.0 £20.0

40 R
20
0 1 1 1 0 1 1 1
0 0.5 1 15 2 0 05 1 15
X

2
Expect Xz, around N — m,
— relative error in © large when /N large, n small

Either get n directly from data for LS (or better, use ML).

Aachen 2014 / Statistics for Particle Physics, Lecture 3
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Goodness of fit from the likelithood ratio

Suppose we model data using a likelihood L(u) that depends on N
parameters u = (u,,..., it,). Define the statistic

L(p)
L(f)

Value of 7, retlects agreement between hypothesized 4 and the
data.
Good agreement means s = u, SO t, 1s small;

tpy=—2In

Larger ¢, means less compatibility between data and p.

oo
Quantify “goodness of fit” with p-value: p, = / f(tu|p)dt,

tp, ,obs
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Likelihood ratio (2)

Now suppose the parameters u = (y,,..., ) can be determined by
another set of parameters 0 = (0,,..., 0,,), with M < N.

E.g. in LS fit, use u, = u(x;; @) where x 1s a control variable.

Define the statistic
/ fit M parameters

\ fit N parameters

Use g, to test hypothesized functional form of u(x; 6).
To get p-value, need pdf flg,|).

G. Cowan Aachen 2014 / Statistics for Particle Physics, Lecture 3 e



Wilks’ Theorem (1938)

Wilks’ Theorem: 1f the hypothesized parameters g = (u,..., ) are
true then in the large sample limit (and provided certain conditions
are satisfied) ¢, and g, follow chi-square distributions.

For case with g = (uy,..., 1) fixed in numerator:

L(p)

ty = —2In—— f(tulp) ~ X3
H L (”’) H N\
Or if M parameters adjusted in numerator, degrees of
L (é)) / freedom
H 2
= —2In —— F(qulre) ~ XN-m
" L(i)

S.S. Wilks, The large-sample distribution of the likelihood ratio for testing composite
hypotheses, Ann. Math. Statist. 9 (1938) 60-2.

G. Cowan Aachen 2014 / Statistics for Particle Physics, Lecture 3 45



Goodness of fit with Gaussian data

Suppose the data are N independent Gaussian distributed values:

y; ~ Gauss(pi, ;) , i=1,...,N

want to estimate

N
Likelihood: Lip)=T1] e~ (Wi—pi)*/207

1
—1 \/271'0’7;

1 N (yi — pi)?
Log-likelihood: InL(p) = —3 Z i — 1) +C

2
i—1 i
ML estimators:  [i; = y; 1=1,...,N

G. Cowan Aachen 2014 / Statistics for Particle Physics, Lecture 3



Likelihood ratios for Gaussian data

The goodness-of-fit statistics become

; ftulm) ~ X%

5 N A
qu = —2In ngflé;)) =) (Y _5;(0))2 F(@ulr) ~ XN-m
i=1 i

So Wilks’ theorem formally states the well-known property
of the minimized chi-squared from an LS fit.
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[Likelihood ratio for Poisson data

Suppose the data are a set of values n = (n,,..., n,), €.g., the
numbers of events in a histogram with N bins.

Assume n; ~ Poisson(v,), i = 1,..., IV, all independent.

Goal 1s to estimate v = (v,,..., V).

n;

N
Likelihood: Lv) =[] Z5e™
i=1 "

n
N

Log-likelihood: InL(v) = Z niny; — ] +C
i=1

ML estimators: v; =n; , 1=1,...,N
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Goodness of fit with Poisson data

The likelihood ratio statistic (all parameters fixed in numerator):

L(v)

t, = _QIHL(f/)

N
— —QZ [nzlni —Vi+19i]
i=1 Vi

N .
= —QZ [nilnﬁ—ui+ni]

: T
1=1 )

Wilks’ theorem:  f(t,|v) ~ x4
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Goodness of fit with Poisson data (2)

Or with M fitted parameters in numerator:

L(v(9)) al vi(0)
gy = —21In L) _—2; n; In n —v;(0) + n;

Wilks’ theorem:  f(qu|V) ~ X%

Use ¢,, g, to quantity goodness of fit (p-value).

Sampling distribution from Wilks’ theorem (chi-square).

Exact in large sample limit; in practice good approximation for
surprisingly small 7, (~several).
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Goodness of fit with multinomial data

Similar 1f data n = (n,,..., n,) follow multinomial distribution:

Ntot!

nilne!...n

P(n|p,not) = N!p?1p32 DAY

E.g. histogram with N bins but fix: 7Ntot = Z n;

Log-likelihood: In L(v Z n; In (Vi = piftot)

ntot

ML estimators: U; = n; (Only N—1 independent; one
1s n,,, minus sum of rest.)
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Goodness of fit with multinomial data (2)

The likelihood ratio statistics become:

U
tV:—QZniln# ftulv) ~ xnv_q
i—1 i

flau|v) ~ X?V—M—l

quv

||
o
]
S
=
S

One less degree of freedom than in Poisson case because
effectively only N—1 parameters fitted in denominator.
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Estimators and g.o.f. all at once
Evaluate numerators with @ (not its estimator):

N
2 _ . Vi(e)_ _ | Po;
xp(0) = 22-2::1 |:nzln n; vi(0) + n; (Poisson)
N
V; 7]
xi(0) = —2) n;ln 75/,) (Multinomial)
1=1 s

These are equal to the corresponding -2 In L(#) plus terms not
depending on #, so minimizing them gives the usual ML

estimators for 6.

The minimized value gives the statistic g,, so we get
goodness-of-fit for free.

Steve Baker and Robert D. Cousins, Clarification of the use of the chi-square and
likelihood functions in fits to histograms, NIM 221 (1984) 437.
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Using LS to combine measurements

Use LS to obtain weighted average of /N measurements of A:

Y; = result of measurement ¢, ¢ = 1, ..., IV;
U,l-? = V[yi], assume known;

A = true value (plays role of ).

For uncorrelated ;, minimize

2 N (yi — )’
A) = ,
% igl o?
Set %\E = () and solve,
N 2
< il Yo ) 1
- A= : VAl =
w1 1/03 xy1/07
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Combining correlated measurements with LS

If COV[y?;, y]] = V;'j, minimize

) = 5 (i — NV Visly; = N,

i,J=1
N —1
. N o (V7
)\ - w;Yy;. w,; = j=1 Y
— El iYi () Z]]Xlzl(v_l)kl

N
VIAl= X wiVijw;

t,J=1

LS A has zero bias, minimum variance (Gauss-Markov theorem).
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Example: averaging two correlated measurements

2
o{ pPO103 )

Suppose we have y1, ¢2, and V' = ( 9
po102 05

A 2—
LA =wp + (- w), w =2 PO

0% + 03 — 2p0,09

R 2\ 2 2
V[)\] . (1 P )0102 2

p— = g
0? + 03 — 2p0109

The increase in inverse variance due to 2nd measurement is

— 2nd measurement can only help.
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Negative weights 1in LS average

If p > o1/09, — w < 0,

— weighted average is not between 1 and ys (!7)

Cannot happen if correlation due to common data, but
possible for shared random effect; very unreliable if e.g.

P, 01, 09 ncorrect.

See example in SDA Section 7.6.1 with two measurements at same
temperature using two rulers, different thermal expansion coefficients:
average is outside the two measurements; used to improve

estimate of temperature.

G. Cowan, Statistical Data Analysis, Oxford University Press, 1998.
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Example of ML: parameters of Gaussian pdf

Consider independent x,, ..., x,, with x, ~ Gaussian (u,0?)

Fain,0?) = e (0007207
o

The log-likelihood function 1s

NL(wo?) = 3 In faipo?)
1=1

1=1

G. Cowan Aachen 2014 / Statistics for Particle Physics, Lecture 3

L 1 1 1 (- p)?
Z('“m%'“az‘ 202 )

59



Example of ML: parameters of Gaussian pdf (2)

Set derivatives with respect to u, o> to zero and solve,
1 n 12
2 _ 2
— o = — x; — :
- ; - Z ( 1 U)

We already know that the estimator for u 1s unbiased.

n—1 .
But we find, however, E[0?] = ~ ~6?, so ML estimator
n

for ¢ has a bias, but »—0 for n—o0. Recall, however, that

> 1 & 2
s° = > (@ — 1)

n—1,2

1s an unbiased estimator for .
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Extended ML example: an unphysical estimate

A downwards fluctuation of data in the peak region can lead
to even fewer events than what would be obtained from

background alone.

Estimate for y, here pushed 06
negative (unphysical).

04

We can let this happen as 02 |
long s the (total) pdf stays TR AR TRRT TR TR
positive everywhere.

2 05 : 15 2

X
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Unphysical estimators (2)

Here the unphysical estimator 1s unbiased and should
nevertheless be reported, since average of a large number of
unbiased estimates converges to the true value (cf. PDG).

—~, 30

v
«=.
Nt
-

Repeat entire MC 20 | _
experiment many times,

allow unphysical estimates:
10 +  unphysical -

estimates

g =
; % L U ln

‘ 20 10 0 10 20 30

Hy
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