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Outline 
1  Probability 

 Definition, Bayes’ theorem, probability densities  
 and their properties, catalogue of pdfs, Monte Carlo  

2  Statistical tests  
 general concepts, test statistics, multivariate methods, 
 goodness-of-fit tests 

3  Parameter estimation 
 general concepts, maximum likelihood, variance of  
 estimators, least squares 

4  Hypothesis tests for discovery and exclusion 
 discovery significance, sensitivity, setting limits 

5  Further topics 
 systematic errors, Bayesian methods, MCMC 



G. Cowan  Aachen 2014 / Statistics for Particle Physics, Lecture 3 3 

Frequentist parameter estimation 
Suppose we have a pdf characterized by one or more parameters: 

random variable 

Suppose we have a sample of observed values: 

parameter 

We want to find some function of the data to estimate the  
parameter(s): 

←  estimator written with a hat 

Sometimes we say ‘estimator’ for the function of x1, ..., xn; 
‘estimate’ for the value of the estimator with a particular data set. 
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Properties of estimators 
If we were to repeat the entire measurement, the estimates 
from each would follow a pdf: 

biased large 
variance 

best 

We want small (or zero) bias (systematic error): 
→  average of repeated measurements should tend to true value. 

And we want a small variance (statistical error): 
→  small bias & variance are in general conflicting criteria 
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Distribution, likelihood, model 
Suppose the outcome of a measurement is x. (e.g., a number of  
events, a histogram, or some larger set of numbers). 

The probability density (or mass) function or ‘distribution’ of x, 
which may depend on parameters θ, is: 

P(x|θ)       (Independent variable is x; θ is a constant.) 

If we evaluate P(x|θ) with the observed data and regard it as a 
function of the parameter(s), then this is the likelihood: 

We will use the term ‘model’ to refer to the full function P(x|θ) 
that contains the dependence both on x and θ. 

L(θ) = P(x|θ)         (Data x fixed; treat L as function of θ.) 
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Bayesian use of the term ‘likelihood’ 
We can write Bayes theorem as 

where L(x|θ) is the likelihood.   It is the probability for x given 
θ, evaluated with the observed x, and viewed as a function of θ. 

Bayes’ theorem only needs L(x|θ) evaluated with a given data  
set (the ‘likelihood principle’). 

For frequentist methods, in general one needs the full model. 

For some approximate frequentist methods, the likelihood  
is enough. 
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The likelihood function for i.i.d.*. data 

Consider n independent observations of x:  x1, ..., xn,  where  
x follows f (x; θ).  The joint pdf for the whole data sample is: 

In this case the likelihood function is 

(xi constant) 

* i.i.d. = independent and identically distributed 
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Maximum likelihood 
The most important frequentist method for 
constructing estimators is to take the value of  
the parameter(s) that maximize the likelihood: 

The resulting estimators are functions of  
the data and thus characterized by a sampling  
distribution with a given (co)variance: 

In general they may have a nonzero bias: 

Under conditions usually satisfied in practice, bias of ML estimators 
is zero in the large sample limit, and the variance is as small as 
possible for unbiased estimators.   

ML estimator may not in some cases be regarded as the optimal  
trade-off between these criteria (cf. regularized unfolding). 
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ML example:  parameter of exponential pdf 

Consider exponential pdf, 

and suppose we have i.i.d. data, 

The likelihood function is 

The value of τ for which L(τ) is maximum also gives the  
maximum value of its logarithm (the log-likelihood function): 
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ML example:  parameter of exponential pdf (2) 

Find its maximum by setting  

→ 

Monte Carlo test:   
 generate 50  values 
 using τ = 1: 

 
We find the ML estimate: 
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Variance of estimators:  Monte Carlo method 
Having estimated our parameter we now need to report its 
‘statistical error’, i.e., how widely distributed would estimates 
be if we were to repeat the entire measurement many times. 

One way to do this would be to simulate the entire experiment 
many times with a Monte Carlo program (use ML estimate for MC). 

For exponential example, from  
sample variance of estimates 
we find: 

Note distribution of estimates is roughly 
Gaussian − (almost) always true for  
ML in large sample limit. 
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Variance of estimators from information inequality 
The information inequality (RCF) sets a lower bound on the  
variance of any estimator (not only ML): 

Often the bias b is small, and equality either holds exactly or 
is a good approximation (e.g. large data sample limit).   Then, 

Estimate this using the 2nd derivative of  ln L at its maximum: 

Minimum Variance 
Bound (MVB)  
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Variance of estimators: graphical method 
Expand ln L (θ) about its maximum: 

First term is ln Lmax, second term is zero, for third term use  
information inequality (assume equality): 

i.e., 

→  to get , change θ away from until ln L decreases by 1/2. 
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Example of variance by graphical method 

ML example with exponential: 

Not quite parabolic ln L since finite sample size (n = 50). 
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Functions of ML estimators 

Suppose we had written the exponential pdf as 
i.e., we use λ = 1/τ.  What is the ML estimator for λ? 

Rewrite the likelihood replacing τ by 1/λ.  The λ that maximizes 
L(λ) is the λ that corresponds to the τ that maximizes L(τ), i.e., 

So for the decay constant we have 

Caveat:    is biased, even though is unbiased. 

(bias →0 for n →∞) Can show 
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Information inequality for n parameters 
Suppose we have estimated n parameters    

The (inverse) minimum variance bound is given by the  
Fisher information matrix: 

The information inequality then states that V - I-1 is a positive 
semi-definite matrix, where                                  Therefore 

Often use I-1 as an approximation for covariance matrix,  
estimate using e.g. matrix of 2nd derivatives at maximum of L. 
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Two-parameter example of ML 
Consider a scattering angle distribution with x = cos θ, 

Data:  x1,..., xn, n = 2000 events. 

As test generate with MC using α = 0.5, β = 0.5 

From data compute log-likelihood: 
 

Maximize numerically (e.g., program MINUIT) 
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Example of ML:  fit result 
Finding maximum of ln L(α, β) numerically (MINUIT) gives 

N.B.  Here no binning of data for fit, 
but can compare to histogram for 
goodness-of-fit (e.g. ‘visual’ or χ2).  

(Co)variances from (MINUIT routine  
HESSE) 
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Variance of ML estimators:  graphical method 
Often (e.g., large sample case) one can 
approximate the covariances using only 
the likelihood L(θ): 

→ Tangent lines to contours give standard deviations. 

→ Angle of ellipse φ related to correlation: 

This translates into a simple 
graphical recipe: 

ML fit result!



G. Cowan  Aachen 2014 / Statistics for Particle Physics, Lecture 3 20 

Variance of ML estimators:  MC 
To find the ML estimate itself one only needs the likelihood L(θ) . 

In principle to find the covariance of the estimators, one requires 
the full model L(x|θ).  E.g., simulate many times independent data  
sets and look at distribution of the resulting estimates: 
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Extended ML 
Sometimes regard n not as fixed, but as a Poisson r.v., mean ν. 

Result of experiment defined as: n, x1, ..., xn. 

The (extended) likelihood function is: 

Suppose theory gives ν = ν(θ), then the log-likelihood is  

where C represents terms not depending on θ. 
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Extended ML (2) 

Extended ML uses more info → smaller errors for  

Example:  expected number of events  
where the total cross section σ(θ) is predicted as a function of 
the parameters of a theory, as is the distribution of a variable x.  

If ν does not depend on θ but remains a free parameter, 
extended ML gives:  

Important e.g. for anomalous couplings in e+e- → W+W-	
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Extended ML example 
Consider two types of events (e.g., signal and background) each  
of which predict a given pdf for the variable x:  fs(x) and fb(x). 

We observe a mixture of the two event types, signal fraction = θ,  
expected total number = ν, observed total number = n. 

Let goal is to estimate µs, µb. 

→ 
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Extended ML example (2) 

Maximize log-likelihood in  
terms of µs and µb: 

Monte Carlo example 
with combination of 
exponential and Gaussian: 

Here errors reflect total Poisson 
fluctuation as well as that in  
proportion of signal/background. 
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ML with binned data 
Often put data into a histogram: 

Hypothesis is  where 

If we model the data as multinomial (ntot constant),   

then the log-likelihood function is: 



G. Cowan  Aachen 2014 / Statistics for Particle Physics, Lecture 3 26 

ML example with binned data 
Previous example with exponential, now put data into histogram: 

Limit of zero bin width → usual unbinned ML. 

If ni treated as Poisson, we get extended log-likelihood: 
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Relationship between ML and Bayesian estimators 
In Bayesian statistics, both θ and x are random variables: 

Recall the Bayesian method: 

Use subjective probability for hypotheses (θ); 

before experiment, knowledge summarized by prior pdf π(θ); 

use Bayes’ theorem to update prior in light of data: 

Posterior pdf (conditional pdf for θ given x) 
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ML and Bayesian estimators (2) 
Purist Bayesian:  p(θ | x) contains all knowledge about θ. 

Pragmatist Bayesian:  p(θ | x) could be a complicated function, 

→ summarize using an estimator  

Take mode of p(θ | x) ,  (could also use e.g. expectation value) 

What do we use for π(θ)?  No golden rule (subjective!), often 
represent ‘prior ignorance’ by π(θ) = constant, in which case 

But... we could have used a different parameter, e.g., λ = 1/θ, 
and if prior πθ(θ) is constant, then πλ(λ) is not!   

 ‘Complete prior ignorance’ is not well defined. 
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The method of least squares 
Suppose we measure N values, y1, ..., yN,  
assumed to be  independent Gaussian  
r.v.s with  

Assume known values of the control 
variable x1, ..., xN and known variances 

The likelihood function is 

We want to estimate θ, i.e., fit the curve to the data points. 
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The method of least squares (2) 

The log-likelihood function is therefore 

So maximizing the likelihood is equivalent to minimizing 

Minimum defines the least squares (LS) estimator  

Very often measurement errors are ~Gaussian and so ML 
and LS are essentially the same. 

Often minimize χ2 numerically (e.g. program MINUIT). 
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LS with correlated measurements 
If the yi follow a multivariate Gaussian, covariance matrix V, 

Then maximizing the likelihood is equivalent to minimizing 
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Example of least squares fit 

Fit a polynomial of order p: 
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Variance of LS estimators 
In most cases of interest we obtain the variance in a manner 
similar to ML.  E.g. for data ~ Gaussian we have 

and so 

or for the graphical method we  
take the values of θ where 

1.0 
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Two-parameter LS fit 
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Goodness-of-fit with least squares 
The value of the χ2 at its minimum is a measure of the level 
of agreement between the data and fitted curve: 

It can therefore be employed as a goodness-of-fit statistic to 
test the hypothesized functional form λ(x; θ). 

We can show that if the hypothesis is correct, then the statistic  
t = χ2

min follows the chi-square pdf, 

where the number of degrees of freedom is  

       nd  = number of data points - number of fitted parameters 
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Goodness-of-fit with least squares (2) 
The chi-square pdf has an expectation value equal to the number  
of degrees of freedom, so if χ2

min ≈  nd the fit is ‘good’. 

More generally, find the p-value: 

E.g. for the previous example with 1st order polynomial (line), 

whereas for the 0th order polynomial (horizontal line), 

This is the probability of obtaining a χ2
min as high as the one 

we got, or higher, if the hypothesis is correct. 
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Goodness-of-fit vs. statistical errors 
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Goodness-of-fit vs. stat. errors (2) 
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LS with binned data 
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LS with binned data (2) 
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LS with binned data — normalization 
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LS normalization example 
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Goodness of fit from the likelihood ratio 
Suppose we model data using a likelihood L(µ) that depends on N 
parameters µ = (µ1,..., µΝ).  Define the statistic 

Value of tµ reflects agreement between hypothesized µ and the 
data.   

 Good agreement means µ ≈ µ, so tµ is small; 

 Larger tµ means less compatibility between data and µ. 

 

Quantify “goodness of fit” with p-value: 

⌃ 
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Likelihood ratio (2) 

Now suppose the parameters µ = (µ1,..., µΝ) can be determined by 
another set of parameters θ = (θ1,..., θM), with M < N.   

E.g. in LS fit, use µi = µ(xi; θ) where x is a control variable. 

Define the statistic 

fit N parameters 

fit M parameters 

Use qµ to test hypothesized functional form of  µ(x; θ). 

To get p-value, need pdf f(qµ|µ). 
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Wilks’ Theorem (1938) 
Wilks’ Theorem: if the hypothesized parameters µ = (µ1,..., µΝ) are  
true then in the large sample limit (and provided certain conditions  
are satisfied) tµ and qµ follow chi-square distributions. 

For case with µ = (µ1,..., µΝ) fixed in numerator: 

Or if M parameters adjusted in numerator, degrees of 
freedom 



G. Cowan  Aachen 2014 / Statistics for Particle Physics, Lecture 3 46 

Goodness of fit with Gaussian data 
Suppose the data are N independent Gaussian distributed values: 

known want to estimate 

Likelihood: 

Log-likelihood: 

ML estimators: 
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Likelihood ratios for Gaussian data 

The goodness-of-fit statistics become 

So Wilks’ theorem formally states the well-known property 
of the minimized chi-squared from an LS fit. 
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Likelihood ratio for Poisson data 
Suppose the data are a set of values n = (n1,..., nΝ), e.g., the 
numbers of events in a histogram with N bins. 

Assume ni ~ Poisson(νi), i = 1,..., N, all independent.   

Goal is to estimate ν = (ν1,..., νΝ). 

Likelihood: 

Log-likelihood: 

ML estimators: 
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Goodness of fit with Poisson data 
The likelihood ratio statistic (all parameters fixed in numerator): 

Wilks’ theorem:   
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Goodness of fit with Poisson data (2) 
Or with M fitted parameters in numerator: 

Wilks’ theorem:   

Use tµ, qµ to quantify goodness of fit (p-value). 

Sampling distribution from Wilks’ theorem (chi-square). 

Exact in large sample limit; in practice good approximation for  
surprisingly small ni (~several). 
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Goodness of fit with multinomial data 
Similar if data n = (n1,..., nΝ) follow multinomial distribution: 

E.g. histogram with N bins but fix:  

Log-likelihood: 

ML estimators: (Only N-1 independent; one 
is ntot minus sum of rest.) 
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Goodness of fit with multinomial data (2) 

The likelihood ratio statistics become: 

One less degree of freedom than in Poisson case because  
effectively only N-1 parameters fitted in denominator. 
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Estimators and g.o.f. all at once 
Evaluate numerators with θ (not its estimator): 

(Poisson) 

(Multinomial) 

These are equal to the corresponding -2 ln L(θ) plus terms not  
depending on θ, so minimizing them gives the usual ML  
estimators for θ. 

The minimized value gives the statistic qµ, so we get 
goodness-of-fit for free. 
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Using LS to combine measurements 
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Combining correlated measurements with LS 
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Example: averaging two correlated measurements 
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Negative weights in LS average 
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Extra slides 
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Example of ML:  parameters of Gaussian pdf 
Consider independent x1, ..., xn,  with xi ~ Gaussian (µ,σ2) 

The log-likelihood function is 
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Example of ML:  parameters of Gaussian pdf (2) 
Set derivatives with respect to µ, σ2 to zero and solve, 

We already know that  the estimator for µ  is unbiased. 

But we find, however, so ML estimator 

for σ2 has a bias, but b→0 for n→∞.  Recall, however, that 

is an unbiased estimator for σ2. 
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Extended ML example:  an unphysical estimate 
A downwards fluctuation of data in the peak region can lead 
to even fewer events than what would be obtained from 
background alone. 

Estimate for µs here pushed 
negative (unphysical). 
 
We can let this happen as  
long as the (total) pdf stays 
positive everywhere. 
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Unphysical estimators (2)  
Here the unphysical estimator is unbiased and should  
nevertheless be reported, since average of a large number of  
unbiased estimates converges to the true value (cf. PDG). 

Repeat entire MC 
experiment many times,  
allow unphysical estimates:  


