Statistical Methods for Particle Physics Lecture 4: discovery, exclusion limits

www.pp.rhul.ac.uk/~cowan/stat_aachen.html

Graduierten-Kolleg RWTH Aachen 10-14 February 2014

Glen Cowan Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

Outline

1 Probability

Definition, Bayes' theorem, probability densities and their properties, catalogue of pdfs, Monte Carlo

2 Statistical tests

general concepts, test statistics, multivariate methods, goodness-of-fit tests

3 Parameter estimation

general concepts, maximum likelihood, variance of estimators, least squares

- → 4 Hypothesis tests for discovery and exclusion discovery significance, sensitivity, setting limits
 - 5 Further topics

systematic errors, Bayesian methods, MCMC

G. Cowan

Interval estimation — introduction

In addition to a 'point estimate' of a parameter we should report an interval reflecting its statistical uncertainty.

Desirable properties of such an interval may include: communicate objectively the result of the experiment; have a given probability of containing the true parameter; provide information needed to draw conclusions about the parameter possibly incorporating stated prior beliefs.

Often use +/- the estimated standard deviation of the estimator. In some cases, however, this is not adequate: estimate near a physical boundary, e.g., an observed event rate consistent with zero.

We will look briefly at Frequentist and Bayesian intervals.

G. Cowan

Confidence intervals by inverting a test

Frequentist confidence intervals for a parameter θ can be found by defining a test of the hypothesized value θ (do this for all θ):

Specify values of the data that are 'disfavoured' by θ (critical region) such that $P(\text{data in critical region}) \le \alpha$ for a prespecified α , e.g., 0.05 or 0.1.

If data observed in the critical region, reject the value θ .

Now invert the test to define a confidence interval as:

set of θ values that would not be rejected in a test of size α (confidence level is $1 - \alpha$).

The interval will cover the true value of θ with probability $\geq 1 - \alpha$. For multiparameter case, $\theta = (\theta_1, ..., \theta_n)$, this procedure leads to a "confidence region" (not, in general, rectangular).

G. Cowan

Relation between confidence interval and *p*-value

Equivalently we can consider a significance test for each hypothesized value of θ , resulting in a *p*-value, p_{θ} .

If $p_{\theta} < \alpha$, then we reject θ .

The confidence interval at $CL = 1 - \alpha$ consists of those values of θ that are not rejected.

E.g. an upper limit on θ is the greatest value for which $p_{\theta} \ge \alpha$.

In practice find by setting $p_{\theta} = \alpha$ and solve for θ .

G. Cowan

Approximate confidence intervals/regions from the likelihood function

Suppose we test parameter value(s) $\theta = (\theta_1, ..., \theta_n)$ using the ratio

$$\lambda(\theta) = \frac{L(\theta)}{L(\hat{\theta})} \qquad \qquad 0 \le \lambda(\theta) \le 1$$

Lower $\lambda(\theta)$ means worse agreement between data and hypothesized θ . Equivalently, usually define

$$t_{\theta} = -2\ln\lambda(\theta)$$

so higher t_{θ} means worse agreement between θ and the data.

p-value of
$$\theta$$
 therefore $p_{\theta} = \int_{t_{\theta,\text{obs}}}^{\infty} f(t_{\theta}|\theta) dt_{\theta}$
need pdf

G. Cowan

Confidence region from Wilks' theorem Wilks' theorem says (in large-sample limit and providing certain conditions hold...)

 $f(t_{\theta}|\theta) \sim \chi_n^2 \qquad \text{chi-square dist. with $\#$ d.o.f. =} \\ \# \text{ of components in $\theta = (\theta_1, ..., \theta_n)$.}$

Assuming this holds, the *p*-value is

$$p_{\theta} = 1 - F_{\chi_n^2}(t_{\theta})$$

To find boundary of confidence region set $p_{\theta} = \alpha$ and solve for t_{θ} :

$$t_{\theta} = -2\ln\frac{L(\theta)}{L(\hat{\theta})} = F_{\chi_n^2}^{-1}(1-\alpha)$$

G. Cowan

Confidence region from Wilks' theorem (cont.) i.e., boundary of confidence region in θ space is where

$$\ln L(\theta) = \ln L(\hat{\theta}) - \frac{1}{2}F_{\chi_n^2}^{-1}(1-\alpha)$$

For example, for $1 - \alpha = 68.3\%$ and n = 1 parameter,

$$F_{\chi_1^2}^{-1}(0.683) = 1$$

and so the 68.3% confidence level interval is determined by

$$\ln L(\theta) = \ln L(\hat{\theta}) - \frac{1}{2}$$

Same as recipe for finding the estimator's standard deviation, i.e.,

 $[\hat{\theta} - \sigma_{\hat{\theta}}, \hat{\theta} + \sigma_{\hat{\theta}}]$ is a 68.3% CL confidence interval.

G. Cowan

Example of interval from $\ln L(\theta)$

For n=1 parameter, CL = 0.683, $Q_{\alpha} = 1$.

Our exponential example, now with n = 5 observations:

 $\hat{\tau} = 0.85^{+0.52}_{-0.30}$

Multiparameter case

For increasing number of parameters, $CL = 1 - \alpha$ decreases for confidence region determined by a given

$$Q_{\alpha} = F_{\chi_n^2}^{-1}(1-\alpha)$$

Q_{lpha}	$1-\alpha$					
	n = 1	n = 2	n = 3	n = 4	n = 5	
1.0	0.683	0.393	0.199	0.090	0.037	
2.0	0.843	0.632	0.428	0.264	0.151	
4.0	0.954	0.865	0.739	0.594	0.451	
9.0	0.997	0.989	0.971	0.939	0.891	

Multiparameter case (cont.)

Equivalently, Q_{α} increases with *n* for a given $CL = 1 - \alpha$.

$1 - \alpha$	\widehat{Q}_{lpha}						
	n = 1	n = 2	n = 3	n = 4	n = 5		
0.683	1.00	2.30	3.53	4.72	5.89		
0.90	2.71	4.61	6.25	7.78	9.24		
0.95	3.84	5.99	7.82	9.49	11.1		
0.99	6.63	9.21	11.3	13.3	15.1		

Aachen 2014 / Statistics for Particle Physics, Lecture 4

Ingredients for a test / interval

Note that these confidence intervals can be found using only the likelihood function evaluated with the observed data. This is because the statistic

$$t_{\theta} = -2\ln\frac{L(\theta)}{L(\hat{\theta})}$$

approaches a well-defined distribution independent of the distribution of the data in the large sample limit.

For finite samples, however, the resulting intervals are approximate.

In general to carry out a test we need to know the distribution of the test statistic t(x), and this means we need the full model $P(x|\theta)$.

Frequentist upper limit on Poisson parameter

Consider again the case of observing $n \sim \text{Poisson}(s + b)$. Suppose b = 4.5, $n_{\text{obs}} = 5$. Find upper limit on *s* at 95% CL. Relevant alternative is s = 0 (critical region at low *n*) *p*-value of hypothesized *s* is P($n \le n_{\text{obs}}$; *s*, *b*) Upper limit s_{up} at CL = 1 – α found from

$$\begin{aligned} \alpha &= P(n \le n_{\text{obs}}; s_{\text{up}}, b) = \sum_{n=0}^{n_{\text{obs}}} \frac{(s_{\text{up}} + b)^n}{n!} e^{-(s_{\text{up}} + b)} \\ s_{\text{up}} &= \frac{1}{2} F_{\chi^2}^{-1} (1 - \alpha; 2(n_{\text{obs}} + 1)) - b \\ &= \frac{1}{2} F_{\chi^2}^{-1} (0.95; 2(5 + 1)) - 4.5 = 6.0 \end{aligned}$$

G. Cowan

$n \sim \text{Poisson}(s+b)$: frequentist upper limit on *s* For low fluctuation of *n* formula can give negative result for s_{up} ; i.e. confidence interval is empty.

G. Cowan

Aachen 2014 / Statistics for Particle Physics, Lecture 4

Limits near a physical boundary

Suppose e.g. b = 2.5 and we observe n = 0.

If we choose CL = 0.9, we find from the formula for s_{up}

$$s_{up} = -0.197$$
 (CL = 0.90)

Physicist:

We already knew $s \ge 0$ before we started; can't use negative upper limit to report result of expensive experiment!

Statistician:

The interval is designed to cover the true value only 90% of the time — this was clearly not one of those times.

Not uncommon dilemma when testing parameter values for which one has very little experimental sensitivity, e.g., very small *s*.

G. Cowan

Expected limit for s = 0

Physicist: I should have used CL = 0.95 — then $s_{up} = 0.496$

Even better: for CL = 0.917923 we get $s_{up} = 10^{-4}$!

Reality check: with b = 2.5, typical Poisson fluctuation in *n* is at least $\sqrt{2.5} = 1.6$. How can the limit be so low?

G. Cowan

The Bayesian approach to limits

In Bayesian statistics need to start with 'prior pdf' $\pi(\theta)$, this reflects degree of belief about θ before doing the experiment.

Bayes' theorem tells how our beliefs should be updated in light of the data *x*:

$$p(\theta|x) = \frac{L(x|\theta)\pi(\theta)}{\int L(x|\theta')\pi(\theta') d\theta'} \propto L(x|\theta)\pi(\theta)$$

Integrate posterior pdf $p(\theta | x)$ to give interval with any desired probability content.

For e.g interval $[\theta_{lo}, \theta_{up}]$ with probability content $1 - \alpha$ one has

$$1 - \alpha = \int_{\theta_{lo}}^{\theta_{up}} p(\theta|x) d\theta \qquad \begin{array}{l} \text{E.g., } \theta_{lo} = -\infty \text{ for upper limit,} \\ \theta_{up} = +\infty \text{ for lower limit.} \end{array}$$

G. Cowan

Bayesian prior for Poisson signal mean *s* Include knowledge that $s \ge 0$ by setting prior $\pi(s) = 0$ for s < 0. Could try to reflect 'prior ignorance' with e.g.

$$\pi(s) = \begin{cases} 1 & s \ge 0\\ 0 & \text{otherwise} \end{cases}$$

Not normalized but this is OK as long as L(s) dies off for large s.

Not invariant under change of parameter — if we had used instead a flat prior for, say, the mass of the Higgs boson, this would imply a non-flat prior for the expected number of Higgs events.

Doesn't really reflect a reasonable degree of belief, but often used as a point of reference;

or viewed as a recipe for producing an interval whose frequentist properties can be studied (coverage will depend on true *s*).

Bayesian upper limit with flat prior for *s* Put Poisson likelihood and flat prior into Bayes' theorem:

$$p(s|n) \propto \frac{(s+b)^n}{n!} e^{-(s+b)} \qquad (s \ge 0)$$

Normalize to unit area:

$$p(s|n) = \frac{(s+b)^n e^{-(s+b)}}{\Gamma(b,n+1)} \checkmark$$

upper incomplete gamma function

Upper limit s_{up} determined by requiring

$$1-\alpha = \int_0^{s_{\rm up}} p(s|n) \, ds$$

G. Cowan

Bayesian interval with flat prior for s

Solve to find limit s_{up} :

$$s_{\rm up} = \frac{1}{2} F_{\chi^2}^{-1} [p, 2(n+1)] - b$$

where

$$p = 1 - \alpha \left(1 - F_{\chi^2} \left[2b, 2(n+1) \right] \right)$$

For special case b = 0, Bayesian upper limit with flat prior numerically same as one-sided frequentist case ('coincidence').

G. Cowan

Bayesian interval with flat prior for s

For b > 0 Bayesian limit is everywhere greater than the (one sided) frequentist upper limit.

Never goes negative. Doesn't depend on *b* if n = 0.

G. Cowan

Aachen 2014 / Statistics for Particle Physics, Lecture 4

Priors from formal rules

Because of difficulties in encoding a vague degree of belief in a prior, one often attempts to derive the prior from formal rules, e.g., to satisfy certain invariance principles or to provide maximum information gain for a certain set of measurements.

> Often called "objective priors" Form basis of Objective Bayesian Statistics

The priors do not reflect a degree of belief (but might represent possible extreme cases).

In Objective Bayesian analysis, can use the intervals in a frequentist way, i.e., regard Bayes' theorem as a recipe to produce an interval with certain coverage properties.

Priors from formal rules (cont.)

For a review of priors obtained by formal rules see, e.g.,

Robert E. Kass and Larry Wasserman, *The Selection of Prior Distributions by Formal Rules*, J. Am. Stat. Assoc., Vol. 91, No. 435, pp. 1343-1370 (1996).

Formal priors have not been widely used in HEP, but there is recent interest in this direction, especially the reference priors of Bernardo and Berger; see e.g.

L. Demortier, S. Jain and H. Prosper, *Reference priors for high energy physics*, Phys. Rev. D 82 (2010) 034002, arXiv:1002.1111.

D. Casadei, *Reference analysis of the signal + background model in counting experiments*, JINST 7 (2012) 01012; arXiv:1108.4270.

Jeffreys' prior

According to Jeffreys' rule, take prior according to

$$\pi(\boldsymbol{\theta}) \propto \sqrt{\det(I(\boldsymbol{\theta}))}$$

where

$$I_{ij}(\boldsymbol{\theta}) = -E\left[\frac{\partial^2 \ln L(\boldsymbol{x}|\boldsymbol{\theta})}{\partial \theta_i \partial \theta_j}\right] = -\int \frac{\partial^2 \ln L(\boldsymbol{x}|\boldsymbol{\theta})}{\partial \theta_i \partial \theta_j} L(\boldsymbol{x}|\boldsymbol{\theta}) \, d\boldsymbol{x}$$

is the Fisher information matrix.

One can show that this leads to inference that is invariant under a transformation of parameters.

For a Gaussian mean, the Jeffreys' prior is constant; for a Poisson mean μ it is proportional to $1/\sqrt{\mu}$.

Jeffreys' prior for Poisson mean

Suppose $n \sim \text{Poisson}(\mu)$. To find the Jeffreys' prior for μ ,

$$L(n|\mu) = \frac{\mu^n}{n!} e^{-\mu} \qquad \qquad \frac{\partial^2 \ln L}{\partial \mu^2} = -\frac{n}{\mu^2}$$

$$I = -E\left[\frac{\partial^2 \ln L}{\partial \mu^2}\right] = \frac{E[n]}{\mu^2} = \frac{1}{\mu}$$

$$\pi(\mu) \propto \sqrt{I(\mu)} = \frac{1}{\sqrt{\mu}}$$

So e.g. for $\mu = s + b$, this means the prior $\pi(s) \sim 1/\sqrt{(s+b)}$, which depends on *b*. But this is not designed as a degree of belief about *s*.

G. Cowan

Prototype search analysis

Search for signal in a region of phase space; result is histogram of some variable *x* giving numbers:

$$\mathbf{n}=(n_1,\ldots,n_N)$$

Assume the n_i are Poisson distributed with expectation values

$$E[n_i] = \mu s_i + b_i$$

strength parameter
$$f_s(x; \boldsymbol{\theta}_s) \, dx \,, \quad b_i = b_{\text{tot}} \int f_b(x; \boldsymbol{\theta}_b) \, dx \,.$$

where

$$s_{i} = s_{\text{tot}} \int_{\text{bin } i} f_{s}(x; \boldsymbol{\theta}_{s}) \, dx \,, \quad b_{i} = b_{\text{tot}} \int_{\text{bin } i} f_{b}(x; \boldsymbol{\theta}_{b}) \, dx \,.$$

signal background

G. Cowan

Prototype analysis (II)

Often also have a subsidiary measurement that constrains some of the background and/or shape parameters:

$$\mathbf{m} = (m_1, \ldots, m_M)$$

Assume the m_i are Poisson distributed with expectation values

$$E[m_i] = u_i(\boldsymbol{\theta})$$

nuisance parameters ($\boldsymbol{\theta}_{s}, \boldsymbol{\theta}_{b}, b_{tot}$)

Likelihood function is

$$L(\mu, \theta) = \prod_{j=1}^{N} \frac{(\mu s_j + b_j)^{n_j}}{n_j!} e^{-(\mu s_j + b_j)} \quad \prod_{k=1}^{M} \frac{u_k^{m_k}}{m_k!} e^{-u_k}$$

G. Cowan

The profile likelihood ratio

Base significance test on the profile likelihood ratio:

The likelihood ratio of point hypotheses gives optimum test (Neyman-Pearson lemma).

The profile LR hould be near-optimal in present analysis with variable μ and nuisance parameters θ .

Test statistic for discovery

Try to reject background-only ($\mu = 0$) hypothesis using

$$q_0 = \begin{cases} -2\ln\lambda(0) & \hat{\mu} \ge 0\\ 0 & \hat{\mu} < 0 \end{cases}$$

i.e. here only regard upward fluctuation of data as evidence against the background-only hypothesis.

Note that even if physical models have $\mu \ge 0$, we allow $\hat{\mu}$ to be negative. In large sample limit its distribution becomes Gaussian, and this will allow us to write down simple expressions for distributions of our test statistics.

p-value for discovery

Large q_0 means increasing incompatibility between the data and hypothesis, therefore *p*-value for an observed $q_{0,obs}$ is

$$p_0 = \int_{q_{0,\text{obs}}}^{\infty} f(q_0|0) \, dq_0$$

will get formula for this later

From *p*-value get equivalent significance,

$$Z = \Phi^{-1}(1-p)$$

G. Cowan

Example of a *p*-value ATLAS, Phys. Lett. B 716 (2012) 1-29

Expected (or median) significance / sensitivity

When planning the experiment, we want to quantify how sensitive we are to a potential discovery, e.g., by given median significance assuming some nonzero strength parameter μ' .

So for *p*-value, need $f(q_0|0)$, for sensitivity, will need $f(q_0|\mu')$,

G. Cowan

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554

Distribution of q_0 in large-sample limit

Assuming approximations valid in the large sample (asymptotic) limit, we can write down the full distribution of q_0 as

$$f(q_0|\mu') = \left(1 - \Phi\left(\frac{\mu'}{\sigma}\right)\right)\delta(q_0) + \frac{1}{2}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{q_0}}\exp\left[-\frac{1}{2}\left(\sqrt{q_0} - \frac{\mu'}{\sigma}\right)^2\right]$$

The special case $\mu' = 0$ is a "half chi-square" distribution:

$$f(q_0|0) = \frac{1}{2}\delta(q_0) + \frac{1}{2}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{q_0}}e^{-q_0/2}$$

In large sample limit, $f(q_0|0)$ independent of nuisance parameters; $f(q_0|\mu')$ depends on nuisance parameters through σ .

G. Cowan

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554

Cumulative distribution of q_0 , significance

From the pdf, the cumulative distribution of q_0 is found to be

$$F(q_0|\mu') = \Phi\left(\sqrt{q_0} - \frac{\mu'}{\sigma}\right)$$

The special case $\mu' = 0$ is

$$F(q_0|0) = \Phi\left(\sqrt{q_0}\right)$$

The *p*-value of the $\mu = 0$ hypothesis is

$$p_0 = 1 - F(q_0|0)$$

Therefore the discovery significance Z is simply

$$Z = \Phi^{-1}(1 - p_0) = \sqrt{q_0}$$

G. Cowan

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 Monte Carlo test of asymptotic formula

 $n \sim ext{Poisson}(\mu s + b)$ $m \sim ext{Poisson}(\tau b)$ Here take $\tau = 1$.

Asymptotic formula is good approximation to 5σ level ($q_0 = 25$) already for $b \sim 20$.

Back to Poisson counting experiment

$n \sim \text{Poisson}(s+b)$, where

s = expected number of events from signal,

b = expected number of background events.

To test for discovery of signal compute p-value of s = 0 hypothesis,

$$p = P(n \ge n_{\text{obs}}|b) = \sum_{n=n_{\text{obs}}}^{\infty} \frac{b^n}{n!} e^{-b} = 1 - F_{\chi^2}(2b; 2n_{\text{obs}})$$

Usually convert to equivalent significance: $Z = \Phi^{-1}(1-p)$ where Φ is the standard Gaussian cumulative distribution, e.g., Z > 5 (a 5 sigma effect) means $p < 2.9 \times 10^{-7}$.

To characterize sensitivity to discovery, give expected (mean or median) Z under assumption of a given s.

G. Cowan

 s/\sqrt{b} for expected discovery significance For large s + b, $n \to x \sim \text{Gaussian}(\mu, \sigma)$, $\mu = s + b$, $\sigma = \sqrt{(s + b)}$. For observed value x_{obs} , *p*-value of s = 0 is $\text{Prob}(x > x_{\text{obs}} | s = 0)$,:

$$p_0 = 1 - \Phi\left(\frac{x_{\rm obs} - b}{\sqrt{b}}\right)$$

Significance for rejecting s = 0 is therefore

$$Z_0 = \Phi^{-1}(1 - p_0) = \frac{x_{\text{obs}} - b}{\sqrt{b}}$$

Expected (median) significance assuming signal rate s is

$$\mathrm{median}[Z_0|s+b] = \frac{s}{\sqrt{b}}$$

G. Cowan

Better approximation for significance Poisson likelihood for parameter *s* is

> $L(s) = \frac{(s+b)^n}{n!} e^{-(s+b)}$ For now no nuisance

To test for discovery use profile likelihood ratio:

$$q_0 = \begin{cases} -2\ln\lambda(0) & \hat{s} \ge 0 \ , \\ 0 & \hat{s} < 0 \ . \end{cases} \qquad \lambda(s) = \frac{L(s, \hat{\hat{\theta}}(s))}{L(\hat{s}, \hat{\theta})}$$

So the likelihood ratio statistic for testing s = 0 is

$$q_0 = -2\ln\frac{L(0)}{L(\hat{s})} = 2\left(n\ln\frac{n}{b} + b - n\right) \quad \text{for } n > b, \ 0 \text{ otherwise}$$

G. Cowan

Aachen 2014 / Statistics for Particle Physics, Lecture 4

params.

Approximate Poisson significance (continued)

For sufficiently large s + b, (use Wilks' theorem),

$$Z = \sqrt{2\left(n\ln\frac{n}{b} + b - n\right)} \quad \text{for } n > b \text{ and } Z = 0 \text{ otherwise.}$$

To find median[*Z*|*s*], let $n \rightarrow s + b$ (i.e., the Asimov data set):

$$Z_{\rm A} = \sqrt{2\left(\left(s+b\right)\ln\left(1+\frac{s}{b}\right) - s\right)}$$

This reduces to s/\sqrt{b} for s << b.

G. Cowan

 $n \sim \text{Poisson}(s+b)$, median significance, assuming *s*, of the hypothesis s = 0

CCGV, EPJC 71 (2011) 1554, arXiv:1007.1727

"Exact" values from MC, jumps due to discrete data.

Asimov $\sqrt{q_{0,A}}$ good approx. for broad range of *s*, *b*.

 s/\sqrt{b} only good for $s \ll b$.

G. Cowan

Extending s/\sqrt{b} to case where b uncertain

The intuitive explanation of s/\sqrt{b} is that it compares the signal, *s*, to the standard deviation of *n* assuming no signal, \sqrt{b} .

Now suppose the value of *b* is uncertain, characterized by a standard deviation σ_b .

A reasonable guess is to replace \sqrt{b} by the quadratic sum of \sqrt{b} and σ_b , i.e.,

$$\operatorname{med}[Z|s] = \frac{s}{\sqrt{b + \sigma_b^2}}$$

This has been used to optimize some analyses e.g. where σ_b cannot be neglected.

G. Cowan

Adding a control measurement for b

(The "on/off" problem: Cranmer 2005; Cousins, Linnemann, and Tucker 2008; Li and Ma 1983,...)

Measure two Poisson distributed values:

 $n \sim \text{Poisson}(s+b)$ $m \sim \text{Poisson}(\tau b)$ (primary or "search" measurement) (control measurement, τ known)

The likelihood function is

$$L(s,b) = \frac{(s+b)^n}{n!} e^{-(s+b)} \frac{(\tau b)^m}{m!} e^{-\tau b}$$

Use this to construct profile likelihood ratio (*b* is nuisance parmeter): $L(0, \hat{b}(0))$

$$\lambda(0) = \frac{L(0, b(0))}{L(\hat{s}, \hat{b})}$$

G. Cowan

Ingredients for profile likelihood ratio

To construct profile likelihood ratio from this need estimators:

$$\begin{split} \hat{s} &= n - m/\tau \ , \\ \hat{b} &= m/\tau \ , \\ \hat{b}(s) &= \frac{n + m - (1 + \tau)s + \sqrt{(n + m - (1 + \tau)s)^2 + 4(1 + \tau)sm}}{2(1 + \tau)} \end{split}$$

and in particular to test for discovery (s = 0),

$$\hat{\hat{b}}(0) = \frac{n+m}{1+\tau}$$

G. Cowan

Asymptotic significance

Use profile likelihood ratio for q_0 , and then from this get discovery significance using asymptotic approximation (Wilks' theorem):

$$Z = \sqrt{q_0}$$
$$= \left[-2\left(n\ln\left[\frac{n+m}{(1+\tau)n}\right] + m\ln\left[\frac{\tau(n+m)}{(1+\tau)m}\right]\right) \right]^{1/2}$$

for $n > \hat{b}$ and Z = 0 otherwise.

Essentially same as in:

Robert D. Cousins, James T. Linnemann and Jordan Tucker, NIM A 595 (2008) 480– 501; arXiv:physics/0702156.

Tipei Li and Yuqian Ma, Astrophysical Journal 272 (1983) 317–324.

G. Cowan

Asimov approximation for median significance

To get median discovery significance, replace *n*, *m* by their expectation values assuming background-plus-signal model:

$$n \to s + b$$

$$m \to \tau b$$

$$Z_{\rm A} = \left[-2\left((s+b) \ln\left[\frac{s+(1+\tau)b}{(1+\tau)(s+b)}\right] + \tau b \ln\left[1+\frac{s}{(1+\tau)b}\right] \right) \right]^{1/2}$$
Or use the variance of $\hat{b} = m/\tau$, $V[\hat{b}] \equiv \sigma_b^2 = \frac{b}{\tau}$, to eliminate τ :

$$Z_{\rm A} = \left[2\left((s+b) \ln\left[\frac{(s+b)(b+\sigma_b^2)}{b^2+(s+b)\sigma_b^2}\right] - \frac{b^2}{\sigma_b^2} \ln\left[1+\frac{\sigma_b^2 s}{b(b+\sigma_b^2)}\right] \right) \right]^{1/2}$$

G. Cowan

Limiting cases

Expanding the Asimov formula in powers of *s/b* and σ_b^2/b (= 1/ τ) gives

$$Z_{\rm A} = \frac{s}{\sqrt{b + \sigma_b^2}} \left(1 + \mathcal{O}(s/b) + \mathcal{O}(\sigma_b^2/b) \right)$$

So this "intuitive" formula can be justified as a limiting case of the significance from the profile likelihood ratio test evaluated with the Asimov data set. Testing the formulae: s = 5

G. Cowan

Aachen 2014 / Statistics for Particle Physics, Lecture 4

Using sensitivity to optimize a cut

Figure 1: (a) The expected significance as a function of the cut value x_{cut} ; (b) the distributions of signal and background with the optimal cut value indicated.

G. Cowan

Return to interval estimation

Suppose a model contains a parameter μ ; we want to know which values are consistent with the data and which are disfavoured.

Carry out a test of size α for all values of μ .

The values that are not rejected constitute a *confidence interval* for μ at confidence level CL = $1 - \alpha$.

The probability that the true value of μ will be rejected is not greater than α , so by construction the confidence interval will contain the true value of μ with probability $\geq 1 - \alpha$.

The interval depends on the choice of the test (critical region).

If the test is formulated in terms of a *p*-value, p_{μ} , then the confidence interval represents those values of μ for which $p_{\mu} > \alpha$. To find the end points of the interval, set $p_{\mu} = \alpha$ and solve for μ .

G. Cowan

Test statistic for upper limits

cf. Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554. For purposes of setting an upper limit on μ one can use

$$q_{\mu} = \begin{cases} -2\ln\lambda(\mu) & \hat{\mu} \leq \mu \\ 0 & \hat{\mu} > \mu \end{cases} \quad \text{where} \quad \lambda(\mu) = \frac{L(\mu, \hat{\hat{\theta}})}{L(\hat{\mu}, \hat{\theta})}$$

I.e. when setting an upper limit, an upwards fluctuation of the data is not taken to mean incompatibility with the hypothesized μ :

From observed
$$q_{\mu}$$
 find *p*-value: $p_{\mu} = \int_{q_{\mu,\text{obs}}}^{\infty} f(q_{\mu}|\mu) dq_{\mu}$

Large sample approximation: $p_{\mu} = 1 - \Phi$

$$p_{\mu} = 1 - \Phi\left(\sqrt{q_{\mu}}\right)$$

95% CL upper limit on μ is highest value for which *p*-value is not less than 0.05.

G. Cowan

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554

Monte Carlo test of asymptotic formulae

Consider again $n \sim \text{Poisson}(\mu s + b), m \sim \text{Poisson}(\tau b)$ Use q_{μ} to find *p*-value of hypothesized μ values.

E.g. $f(q_1|1)$ for *p*-value of $\mu = 1$. Typically interested in 95% CL, i.e., *p*-value threshold = 0.05, i.e., $q_1 = 2.69$ or $Z_1 = \sqrt{q_1} = 1.64$. Median[$q_1 | 0$] gives "exclusion sensitivity". Here asymptotic formulae good

for s = 6, b = 9.

Low sensitivity to μ

It can be that the effect of a given hypothesized μ is very small relative to the background-only ($\mu = 0$) prediction.

This means that the distributions $f(q_{\mu}|\mu)$ and $f(q_{\mu}|0)$ will be almost the same:

G. Cowan

Aachen 2014 / Statistics for Particle Physics, Lecture 4

Having sufficient sensitivity

In contrast, having sensitivity to μ means that the distributions $f(q_{\mu}|\mu)$ and $f(q_{\mu}|0)$ are more separated:

That is, the power (probability to reject μ if $\mu = 0$) is substantially higher than α . Use this power as a measure of the sensitivity.

G. Cowan

Spurious exclusion

Consider again the case of low sensitivity. By construction the probability to reject μ if μ is true is α (e.g., 5%).

And the probability to reject μ if $\mu = 0$ (the power) is only slightly greater than α .

This means that with probability of around $\alpha = 5\%$ (slightly higher), one excludes hypotheses to which one has essentially no sensitivity (e.g., $m_{\rm H} = 1000$ TeV).

"Spurious exclusion"

Ways of addressing spurious exclusion

The problem of excluding parameter values to which one has no sensitivity known for a long time; see e.g.,

Virgil L. Highland, *Estimation of Upper Limits from Experimental Data*, July 1986, Revised February 1987, Temple University Report C00-3539-38.

In the 1990s this was re-examined for the LEP Higgs search by Alex Read and others

T. Junk, Nucl. Instrum. Methods Phys. Res., Sec. A 434, 435 (1999); A.L. Read, J. Phys. G 28, 2693 (2002).

and led to the "CL_s" procedure for upper limits.

Unified intervals also effectively reduce spurious exclusion by the particular choice of critical region.

G. Cowan

The CL_s procedure

In the usual formulation of CL_s , one tests both the $\mu = 0$ (*b*) and $\mu > 0$ ($\mu s+b$) hypotheses with the same statistic $Q = -2\ln L_{s+b}/L_b$:

G. Cowan

The CL_s procedure (2)

As before, "low sensitivity" means the distributions of Q under b and s+b are very close:

G. Cowan

The CL_s procedure (3)

The CL_s solution (A. Read et al.) is to base the test not on the usual *p*-value (CL_{s+b}), but rather to divide this by CL_b (~ one minus the *p*-value of the *b*-only hypothesis), i.e.,

 $CL_s \leq \alpha$

Increases "effective" *p*-value when the two distributions become close (prevents exclusion if sensitivity is low).

Setting upper limits on $\mu = \sigma / \sigma_{\rm SM}$

Carry out the CLs procedure for the parameter $\mu = \sigma/\sigma_{SM}$, resulting in an upper limit μ_{up} .

In, e.g., a Higgs search, this is done for each value of $m_{\rm H}$.

At a given value of $m_{\rm H}$, we have an observed value of $\mu_{\rm up}$, and we can also find the distribution $f(\mu_{\rm up}|0)$:

 $\pm 1\sigma$ (green) and $\pm 2\sigma$ (yellow) bands from toy MC;

Vertical lines from asymptotic formulae.

G. Cowan

How to read the green and yellow limit plots For every value of $m_{\rm H}$, find the CLs upper limit on μ .

Also for each $m_{\rm H}$, determine the distribution of upper limits $\mu_{\rm up}$ one would obtain under the hypothesis of $\mu = 0$.

The dashed curve is the median μ_{up} , and the green (yellow) bands give the $\pm 1\sigma$ (2σ) regions of this distribution.

ATLAS, Phys. Lett. B 710 (2012) 49-66

G. Cowan

Aachen 2014 / Statistics for Particle Physics, Lecture 4

Choice of test for limits (2)

In some cases $\mu = 0$ is no longer a relevant alternative and we want to try to exclude μ on the grounds that some other measure of incompatibility between it and the data exceeds some threshold.

If the measure of incompatibility is taken to be the likelihood ratio with respect to a two-sided alternative, then the critical region can contain both high and low data values.

→ unified intervals, G. Feldman, R. Cousins, Phys. Rev. D 57, 3873–3889 (1998)

The Big Debate is whether to use one-sided or unified intervals in cases where small (or zero) values of the parameter are relevant alternatives. Professional statisticians have voiced support on both sides of the debate.

Unified (Feldman-Cousins) intervals

We can use directly

$$t_{\mu} = -2\ln\lambda(\mu)$$
 where

as a test statistic for a hypothesized μ .

Large discrepancy between data and hypothesis can correspond either to the estimate for μ being observed high or low relative to μ .

This is essentially the statistic used for Feldman-Cousins intervals (here also treats nuisance parameters).

G. Feldman and R.D. Cousins, Phys. Rev. D 57 (1998) 3873.

Lower edge of interval can be at $\mu = 0$, depending on data.

G. Cowan

Distribution of t_{μ}

Using Wald approximation, $f(t_{\mu}|\mu')$ is noncentral chi-square for one degree of freedom:

$$f(t_{\mu}|\mu') = \frac{1}{2\sqrt{t_{\mu}}} \frac{1}{\sqrt{2\pi}} \left[\exp\left(-\frac{1}{2}\left(\sqrt{t_{\mu}} + \frac{\mu - \mu'}{\sigma}\right)^2\right) + \exp\left(-\frac{1}{2}\left(\sqrt{t_{\mu}} - \frac{\mu - \mu'}{\sigma}\right)^2\right) \right]$$

Special case of $\mu = \mu'$ is chi-square for one d.o.f. (Wilks).

The *p*-value for an observed value of t_u is

$$p_{\mu} = 1 - F(t_{\mu}|\mu) = 2\left(1 - \Phi\left(\sqrt{t_{\mu}}\right)\right)$$

and the corresponding significance is

$$Z_{\mu} = \Phi^{-1}(1 - p_{\mu}) = \Phi^{-1} \left(2\Phi \left(\sqrt{t_{\mu}} \right) - 1 \right)$$

G. Cowan

Upper/lower edges of F-C interval for μ versus *b* for $n \sim \text{Poisson}(\mu+b)$

Lower edge may be at zero, depending on data. For n = 0, upper edge has (weak) dependence on *b*.

G. Cowan

Feldman-Cousins discussion

The initial motivation for Feldman-Cousins (unified) confidence intervals was to eliminate null intervals.

The F-C limits are based on a likelihood ratio for a test of μ with respect to the alternative consisting of all other allowed values of μ (not just, say, lower values).

The interval's upper edge is higher than the limit from the onesided test, and lower values of μ may be excluded as well. A substantial downward fluctuation in the data gives a low (but nonzero) limit.

This means that when a value of μ is excluded, it is because there is a probability α for the data to fluctuate either high or low in a manner corresponding to less compatibility as measured by the likelihood ratio.

G. Cowan