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Exercise 1: Consider N independent observations n1, . . . , nN of a Poisson random variable
with the same unknown mean value ν.

(a) Write down the likelihood function for the parameter ν. (Since the Poisson distribution
is not a pdf but rather a probability, here the likelihood is found directly from the joint
probability for the data.) Find the maximum-likelihood estimator for ν.

(b) Show that the estimator is unbiased and find its variance in closed form (use the known
mean and variance of a Poisson variable).

(c) Show that the variance of ν̂ is equal to the minimum variance bound (the right-hand side
of the information inequality).

Exercise 2: This exercise provides an introduction to the class TMinuit, used in ROOT for
function minimization. You should turn in any code where you have made modifications and
program output in the form of numerical values and plots as appropriate. You do not need to
turn in code supplied to you that you did not modify.

The exercises uses TMinuit to carry out a Maximum Likelihood fit where we minimize the
quantity −2 lnL. For more information on TMminuit see

root.cern.ch/root/html/TMinuit.html

First we will generate some data using a simple Monte Carlo program. Download, build and
test the program makeData from the course website. makeData generates values according to an
exponential distribution

f(x; ξ) =
1

ξ
e−x/ξ (x ≥ 0)

and writes the values to a file.

In a separate directory, download and build the program expFit from the course website.
This program reads in the file of individual values provided by makeData and does a maximum
likelihood fit of the parameter ξ nof the exponential pdf. Run makeData and generate a file
with 200 data values. Use this as the input for expFit and find the estimate ξ̂ and its standard
deviation σξ̂.

Now modify makeData so that it generates values according to the pdf

f(x;α, ξ1, ξ2) = α
1

ξ1
e−x/ξ1 + (1− α)

1

ξ2
e−x/ξ2 , (1)

with α = 0.2, ξ1 = 1.0 and ξ2 = 5. To do this, first generate a random number r uniform in
[0, 1]. If r < α, then generate x according to an exponential with mean ξ1, otherwise use ξ2.
Run the program and save 200 individual values to a text file.



2 Now modify the program expFit so that it reads in the values and carries out an ML fit
of the parameters α, ξ1 and ξ2. You will have to supply start values and “step sizes” for the
parameters. Choose start values not too far (say, within a factor of two) to the true values used
in makeData. For the step sizes you can take, e.g., 0.1.

Try running the program with the minimum and maximum values (in the arrays minVal

and maxVal) set equal to zero; this is equivalent to having no bounds on the parameters. If the
program runs into a region of parameter space that it shouldn’t, e.g., ξ1 < 0, then you can place
appropriate bounds on the parameter values. In the end it is best to see if you can rerun the fit
with improved guesses for start values but without any bounds on the parameters.

Modify the program so it makes a reasonable plot of the fit (extend the limit of the horizontal
axis as appropriate). Find the ML estimators and their covariance matrix using the routines
mnpout and mnemat. This requires that you add lines of the form

double covmat[npar][npar];

minuit.mnemat(&covmat[0][0], npar);

where npar (here 3) is the number of fitted parameters. Determine as well the matrix of
correlation coefficients.

Exercise 3: For this problem refer to the root macro SimpleFit.C and the data file
testData.txt from the course website. The code is basically C++, but it is executed through
the program root rather than being run as an independent program. First run root and at the
prompt, type

.L simpleFit.C

simpleFit()

The first command loads the contents of the file simpleFit.C and thus defines the functions
contained in it. The second command calls the function simpleFit(). This prompts the user
for a data file containing columns of numbers representing here the usual ingredients of a least-
squares fit, x, y and σ.

The macro contains a fit function, which is currently set up as a polynomial,

f(x;θ) =
n∑

k=0

θkx
k .

After reading in the data, the parameters of the polynomial are fitted using the method of
least squares. The results are extracted and displayed, including the fitted parameter values,
their standard deviations, the minimized χ2, the corresponding p-value, the covariance matrix
Vij = cov[θ̂i, θ̂j ] and its inverse.

3(a) Try different orders for the polynomial by changing the variable npar (i.e., to obtain an
order n = npar - 1). What is the smallest order giving a p-value greater than 0.1?

3(b) Consider the cases of order n = 2, 3 and 4 (i.e., 3, 4 and 5 parameters). By using the
polynomial together with the fitted parameters, find the predicted value of the function at x = 5,
x = 6 and x = 10. The program contains an object called f of type TF1* that you can use to
access the fit function. You will need (in a loop over the parameters)



3f->SetParameter(i, thetaHat[i]);

to set the parameter values to the fitted ones and

f->Eval([x[i]);

to evaluate the function at the point x[i]. Please refer to the root documentation for more
details.

Using error propagation, find the standard deviations of the differences

d1 = f(x = 6; θ̂)− f(x = 5; θ̂) ,

d2 = f(x = 10; θ̂)− f(x = 5; θ̂) .

Comment on how one expects the variance in the difference to behave as the difference between
the x values decreases.

3(c) Suppose for the case of order n = 3, a certain model predicts the parameter values:
θ0 = −0.75, θ1 = 2.5, θ2 = −0.5 and θ3 = 0.026. By using the inverse of the covariance matrix
found in the macro (variable Vinv), compute the χ2 statistic comparing your fitted values with
the model predictions,

χ2 =
n∑

i,j=0

(θmod,i − θ̂i)(V
−1)ij(θmod,j − θ̂j)

Note that here the estimators θ̂ are treated as a set of 4 measured quantities and they are
compared to 4 fixed model predictions. Find the corresponding p-value. Is the model in
acceptable agreement with the estimated parameter values?

For purposes of comparison, try computing the χ2 using only the diagonal elements of the
covariance matrix (note this is incorrect!). That is, use the formula

χ2

bad =
n∑

i=0

(θmod,i − θ̂i)
2

V [θ̂i]
.

Find the corresponding p-value under the (false) assumption that the statistic follows a chi-
square pdf and notice that it leads to a completely erroneous conclusion.

Finally compute the χ2 by comparing the measured (x, y, σ) values to the prediction
f(x;θmod). This will not give exactly the same value as obtained from the fitted parameters but
it should lead to the same conclusion.
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