Solutions for Problem Sheet 4 (2014 Aachen Graduierten-Kolleg)

1(a) [10 marks| The exponentially distributed time measurements, t1, ..., t,, and the Gaussian
distributed calibration measurement y are all independent, so the likelihood is simply the product
of the corresponding pdfs:
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The log-likelihood is therefore
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where C' represents terms that do not depend on the parameters and therefore can be dropped.
Differentiating In L with respect to the parameters gives
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Setting the derivatives to zero and solving for 7 and A gives the ML estimators,
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1(b) [10 marks] The variances of A and 7 and their covariance are
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For the covariance we used the fact that ¢; and y are independent and thus have zero covariance.

1(c) [10 marks] The standard deviations of 7 and A can be determined from the contour of
In L(7,A\) = In Liax—1/2, as shown in Fig. 1. The standard can be approximated by the distance
from the maximum of In L to the tangent line to the contour (in either direction).
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Figure 1: Tllustration of the method
to find o7 and o5 from the contour of
T InL(7,A) = In Lyyax — 1/2 (see text).

If \ were to be known exactly, then the standard deviation of 7 would be less. This can be seen
from Fig. 1, for example, since the distance one need to move 7 away from the maximum of In L
to get to In Lyyax — 1/2 would be less if A were to be fixed at A.

1(d) [10 marks| The second derivatives of InL are
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Using Et;] = 7+ A we find the expectation values of the second derivatives,
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The inverse covariance matrix of the estimators is given by

2
P [a 1nL]

06:00;

where here we can take, e.g., 81 = 7 and 0 = A. We are given the formula for the inverse of the
corresponding 2 X 2 matrix, and by substituting in the ingredients we find
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which are the same as what was found in (c).



2(a) [10 marks| The likelihood function in terms of v, and vy, is the product of two Poisson
terms,
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where C represents terms that do not depend on the parameters and thus can be dropped.

The parameters v, and v, can be written in terms of v and « as
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so that the log-likelihood is (dropping the constant C),
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The derivatives with respect to v and « are
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Setting the derivatives to zero and solving for v and « gives the ML estimators,
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2(b) [10 marks| Using error propagation, the variance of & can be approximated as
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Computing the derivatives, which are evaluated at n, = v, and np = v, and using Vn,| = v,
and V[ny] = 1, gives
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2(c) [14 marks| Writing the likelihood in terms of v and « (see, e.g., In L from (a)) gives
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Using the prior given, 7(v, «) o< 1/4/v, the joint posterior for a and v is
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This factorizes into a function of v times a function of «, so we can therefore conclude o and v
are independent with
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2(d) [6 marks] The posterior modes for o and v are found by setting the corresponding
derivatives to zero:
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Solving for v and « gives the Bayesian highest probability density (HPD) estimators,
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The posterior mode for « is the same as the ML estimator, which follows from the fact that the
prior for o and v was taken to be independent of .. As the prior does, however, depend on v,
one does not expect the ML estimator and posterior mode to agree for v.



