
Solutions for Problem Sheet 4 (2014 Aachen Graduierten-Kolleg)

1(a) [10 marks] The exponentially distributed time measurements, t1, . . . , tn, and the Gaussian
distributed calibration measurement y are all independent, so the likelihood is simply the product
of the corresponding pdfs:

L(τ, λ) =
n
∏

i=1

1

τ + λ
e−ti/(τ+λ) 1√

2πσ
e−(y−λ)2/2σ2

.

The log-likelihood is therefore

lnL(τ, λ) = −n ln(τ + λ)− 1

τ + λ

n
∑

i=1

ti −
(y − λ)2

2σ2
+ C ,

where C represents terms that do not depend on the parameters and therefore can be dropped.
Differentiating lnL with respect to the parameters gives

∂ lnL

∂τ
= − n

τ + λ
+

∑n
i=1 ti

(τ + λ)2

∂ lnL

∂λ
= − n

τ + λ
+

∑n
i=1 ti

(τ + λ)2
+

y − λ

σ2
.

Setting the derivatives to zero and solving for τ and λ gives the ML estimators,

τ̂ =
1

n

n
∑

i=1

ti − y

λ̂ = y .

1(b) [10 marks] The variances of λ̂ and τ̂ and their covariance are

V [λ̂] = V [y] = σ2 ,

V [τ̂ ] = V

[

1

n

n
∑

i=1

ti − y

]

=
1

n2

n
∑

i=1

V [ti] + V [y] =
(τ + λ)2

n
+ σ2

cov[τ̂ , λ̂] = cov

[

1

n

n
∑

i=1

ti − y, y

]

= −V [y] = −σ2 ,

For the covariance we used the fact that ti and y are independent and thus have zero covariance.

1(c) [10 marks] The standard deviations of τ̂ and λ̂ can be determined from the contour of
lnL(τ, λ) = lnLmax−1/2, as shown in Fig. 1. The standard can be approximated by the distance
from the maximum of lnL to the tangent line to the contour (in either direction).
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Figure 1: Illustration of the method
to find στ̂ and σ

λ̂
from the contour of

lnL(τ, λ) = lnLmax − 1/2 (see text).

If λ were to be known exactly, then the standard deviation of τ̂ would be less. This can be seen
from Fig. 1, for example, since the distance one need to move τ away from the maximum of lnL
to get to lnLmax − 1/2 would be less if λ were to be fixed at λ̂.

1(d) [10 marks] The second derivatives of lnL are

∂2 lnL

∂τ2
=

n

(τ + λ)2
− 2

∑n
i=1 ti

(τ + λ)3
,

∂2 lnL

∂λ2
=

n

(τ + λ)2
− 2

∑n
i=1 ti

(τ + λ)3
− 1

σ2
,

∂2 lnL

∂τ∂λ
=

n

(τ + λ)2
− 2

∑n
i=1 ti

(τ + λ)3
.

Using E[ti] = τ + λ we find the expectation values of the second derivatives,

E

[

∂2 lnL

∂τ2

]

=
n

(τ + λ)2
− 2n(τ + λ)

(τ + λ)3
= − n

(τ + λ)2
,

E

[

∂2 lnL

∂λ2

]

= − n

(τ + λ)2
− 1

σ2
,

E

[

∂2 lnL

∂τ∂λ

]

= − n

(τ + λ)2
.

The inverse covariance matrix of the estimators is given by

V −1
ij = −E

[

∂2 lnL

∂θi∂θj

]

where here we can take, e.g., θ1 = τ and θ2 = λ. We are given the formula for the inverse of the
corresponding 2× 2 matrix, and by substituting in the ingredients we find

V =





(τ+λ)2

n + σ2 −σ2

−σ2 σ2





which are the same as what was found in (c).
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2(a) [10 marks] The likelihood function in terms of νa and νb is the product of two Poisson
terms,

L(νa, νb) =
νna

a

na!
e−νa

νnb

b

nb!
e−νb .

The log-likelihood is therefore

lnL(νa, νb) = na ln νa − νa + nb ln νb − νb + C ,

where C represents terms that do not depend on the parameters and thus can be dropped.

The parameters νa and νb can be written in terms of ν and α as

νa =
ν

2
(1 + α)

νb =
ν

2
(1− α) ,

so that the log-likelihood is (dropping the constant C),

lnL(ν, α) = na ln

[

ν

2
(1 + α)

]

− ν

2
(1 + α) + nb ln

[

ν

2
(1− α)

]

− ν

2
(1− α)

= (na + nb) ln ν − ν + na ln(1 + α) + nb ln(1− α) .

The derivatives with respect to ν and α are

∂ lnL

∂ν
=

na + nb

ν
− 1 ,

∂ lnL

∂α
=

na

1 + α
− nb

1− α
.

Setting the derivatives to zero and solving for ν and α gives the ML estimators,

ν̂ = na + nb

α̂ =
na − nb

na + nb
.

2(b) [10 marks] Using error propagation, the variance of α̂ can be approximated as

V [α̂] ≈
(

∂α̂

∂na

)2
∣

∣

∣

∣

∣

n=ν

V [na] +

(

∂α̂

∂nb

)2
∣

∣

∣

∣

∣

n=ν

V [nb] ,
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Computing the derivatives, which are evaluated at na = νa and nb = νb, and using V [na] = νa
and V [nb] = νb gives

V [α̂] =

(

2νb
ν2

)2

νa +

(

2νa
ν2

)2

νb

=

(

ν(1− α)

ν2

)2 ν

2
(1 + α) +

(

ν(1 + α)

ν2

)2 ν

2
(1− α)

=
1− α2

ν
.

2(c) [14 marks] Writing the likelihood in terms of ν and α (see, e.g., lnL from (a)) gives

L(ν, α) ∝ ν(na+nb)e−ν(1 + α)na(1− α)nb .

Using the prior given, π(ν, α) ∝ 1/
√
ν, the joint posterior for α and ν is

p(ν, α|na, nb) ∝ ν(na+nb−1/2)e−ν(1 + α)na(1− α)nb .

This factorizes into a function of ν times a function of α, so we can therefore conclude α and ν
are independent with

p(ν, α|na, nb) = p(ν|na, nb)p(α|na, nb) ,

p(ν|na, nb) ∝ ν(na+nb−1/2)e−ν ,

p(α|na, nb) ∝ (1 + α)na(1− α)nb .

2(d) [6 marks] The posterior modes for α and ν are found by setting the corresponding
derivatives to zero:

∂p(ν|na, nb)

∂ν
∝

(

na + nb −
1

2

)

ν(na+nb−3/2)e−ν − ν(na+nb−1/2)e−ν = 0 ,

∂p(α|na, nb)

∂α
∝ (1 + α)nanb(1− α)nb−1(−1) + na(1− α)nb(1 + α)na−1 = 0 .

Solving for ν and α gives the Bayesian highest probability density (HPD) estimators,

ν̂Bayes = na + nb −
1

2
,

α̂Bayes =
na − nb

na + nb
.

The posterior mode for α is the same as the ML estimator, which follows from the fact that the
prior for α and ν was taken to be independent of α. As the prior does, however, depend on ν,
one does not expect the ML estimator and posterior mode to agree for ν.
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