$\mathbf{1}$ (a) [$\mathbf{1 0}$ marks] The exponentially distributed time measurements, t_{1}, \ldots, t_{n}, and the Gaussian distributed calibration measurement y are all independent, so the likelihood is simply the product of the corresponding pdfs:

$$
L(\tau, \lambda)=\prod_{i=1}^{n} \frac{1}{\tau+\lambda} e^{-t_{i} /(\tau+\lambda)} \frac{1}{\sqrt{2 \pi} \sigma} e^{-(y-\lambda)^{2} / 2 \sigma^{2}} .
$$

The log-likelihood is therefore

$$
\ln L(\tau, \lambda)=-n \ln (\tau+\lambda)-\frac{1}{\tau+\lambda} \sum_{i=1}^{n} t_{i}-\frac{(y-\lambda)^{2}}{2 \sigma^{2}}+C
$$

where C represents terms that do not depend on the parameters and therefore can be dropped. Differentiating $\ln L$ with respect to the parameters gives

$$
\begin{aligned}
\frac{\partial \ln L}{\partial \tau} & =-\frac{n}{\tau+\lambda}+\frac{\sum_{i=1}^{n} t_{i}}{(\tau+\lambda)^{2}} \\
\frac{\partial \ln L}{\partial \lambda} & =-\frac{n}{\tau+\lambda}+\frac{\sum_{i=1}^{n} t_{i}}{(\tau+\lambda)^{2}}+\frac{y-\lambda}{\sigma^{2}}
\end{aligned}
$$

Setting the derivatives to zero and solving for τ and λ gives the ML estimators,

$$
\begin{aligned}
\hat{\tau} & =\frac{1}{n} \sum_{i=1}^{n} t_{i}-y \\
\hat{\lambda} & =y
\end{aligned}
$$

1(b) [10 marks] The variances of $\hat{\lambda}$ and $\hat{\tau}$ and their covariance are

$$
\begin{aligned}
V[\hat{\lambda}] & =V[y]=\sigma^{2}, \\
V[\hat{\tau}] & =V\left[\frac{1}{n} \sum_{i=1}^{n} t_{i}-y\right]=\frac{1}{n^{2}} \sum_{i=1}^{n} V\left[t_{i}\right]+V[y]=\frac{(\tau+\lambda)^{2}}{n}+\sigma^{2} \\
\operatorname{cov}[\hat{\tau}, \hat{\lambda}] & =\operatorname{cov}\left[\frac{1}{n} \sum_{i=1}^{n} t_{i}-y, y\right]=-V[y]=-\sigma^{2},
\end{aligned}
$$

For the covariance we used the fact that t_{i} and y are independent and thus have zero covariance.
$\mathbf{1}$ (c) [10 marks] The standard deviations of $\hat{\tau}$ and $\hat{\lambda}$ can be determined from the contour of $\ln L(\tau, \lambda)=\ln L_{\max }-1 / 2$, as shown in Fig. 1. The standard can be approximated by the distance from the maximum of $\ln L$ to the tangent line to the contour (in either direction).

Figure 1: Illustration of the method to find $\sigma_{\hat{\tau}}$ and $\sigma_{\hat{\lambda}}$ from the contour of $\ln L(\tau, \lambda)=\ln L_{\text {max }}-1 / 2$ (see text).

If λ were to be known exactly, then the standard deviation of $\hat{\tau}$ would be less. This can be seen from Fig. 1, for example, since the distance one need to move τ away from the maximum of $\ln L$ to get to $\ln L_{\max }-1 / 2$ would be less if λ were to be fixed at $\hat{\lambda}$.
$\mathbf{1}(\mathbf{d})$ [$\mathbf{1 0}$ marks] The second derivatives of $\ln L$ are

$$
\begin{aligned}
\frac{\partial^{2} \ln L}{\partial \tau^{2}} & =\frac{n}{(\tau+\lambda)^{2}}-\frac{2 \sum_{i=1}^{n} t_{i}}{(\tau+\lambda)^{3}} \\
\frac{\partial^{2} \ln L}{\partial \lambda^{2}} & =\frac{n}{(\tau+\lambda)^{2}}-\frac{2 \sum_{i=1}^{n} t_{i}}{(\tau+\lambda)^{3}}-\frac{1}{\sigma^{2}} \\
\frac{\partial^{2} \ln L}{\partial \tau \partial \lambda} & =\frac{n}{(\tau+\lambda)^{2}}-\frac{2 \sum_{i=1}^{n} t_{i}}{(\tau+\lambda)^{3}}
\end{aligned}
$$

Using $E\left[t_{i}\right]=\tau+\lambda$ we find the expectation values of the second derivatives,

$$
\begin{aligned}
E\left[\frac{\partial^{2} \ln L}{\partial \tau^{2}}\right] & =\frac{n}{(\tau+\lambda)^{2}}-\frac{2 n(\tau+\lambda)}{(\tau+\lambda)^{3}}=-\frac{n}{(\tau+\lambda)^{2}} \\
E\left[\frac{\partial^{2} \ln L}{\partial \lambda^{2}}\right] & =-\frac{n}{(\tau+\lambda)^{2}}-\frac{1}{\sigma^{2}} \\
E\left[\frac{\partial^{2} \ln L}{\partial \tau \partial \lambda}\right] & =-\frac{n}{(\tau+\lambda)^{2}} .
\end{aligned}
$$

The inverse covariance matrix of the estimators is given by

$$
V_{i j}^{-1}=-E\left[\frac{\partial^{2} \ln L}{\partial \theta_{i} \partial \theta_{j}}\right]
$$

where here we can take, e.g., $\theta_{1}=\tau$ and $\theta_{2}=\lambda$. We are given the formula for the inverse of the corresponding 2×2 matrix, and by substituting in the ingredients we find

$$
V=\left(\begin{array}{cc}
\frac{(\tau+\lambda)^{2}}{n}+\sigma^{2} & -\sigma^{2} \\
-\sigma^{2} & \sigma^{2}
\end{array}\right)
$$

which are the same as what was found in (c).

2(a) [10 marks] The likelihood function in terms of ν_{a} and ν_{b} is the product of two Poisson terms,

$$
L\left(\nu_{\mathrm{a}}, \nu_{\mathrm{b}}\right)=\frac{\nu_{\mathrm{a}}^{n_{\mathrm{a}}}}{n_{\mathrm{a}}!} e^{-\nu_{\mathrm{a}}} \frac{\nu_{\mathrm{b}}^{n_{\mathrm{b}}}}{n_{\mathrm{b}}!} e^{-\nu_{\mathrm{b}}} .
$$

The log-likelihood is therefore

$$
\ln L\left(\nu_{\mathrm{a}}, \nu_{\mathrm{b}}\right)=n_{\mathrm{a}} \ln \nu_{\mathrm{a}}-\nu_{\mathrm{a}}+n_{\mathrm{b}} \ln \nu_{\mathrm{b}}-\nu_{\mathrm{b}}+C,
$$

where C represents terms that do not depend on the parameters and thus can be dropped. The parameters ν_{a} and ν_{b} can be written in terms of ν and α as

$$
\begin{aligned}
\nu_{\mathrm{a}} & =\frac{\nu}{2}(1+\alpha) \\
\nu_{\mathrm{b}} & =\frac{\nu}{2}(1-\alpha),
\end{aligned}
$$

so that the log-likelihood is (dropping the constant C),

$$
\begin{aligned}
\ln L(\nu, \alpha) & =n_{\mathrm{a}} \ln \left[\frac{\nu}{2}(1+\alpha)\right]-\frac{\nu}{2}(1+\alpha)+n_{\mathrm{b}} \ln \left[\frac{\nu}{2}(1-\alpha)\right]-\frac{\nu}{2}(1-\alpha) \\
& =\left(n_{\mathrm{a}}+n_{\mathrm{b}}\right) \ln \nu-\nu+n_{\mathrm{a}} \ln (1+\alpha)+n_{\mathrm{b}} \ln (1-\alpha)
\end{aligned}
$$

The derivatives with respect to ν and α are

$$
\begin{aligned}
& \frac{\partial \ln L}{\partial \nu}=\frac{n_{\mathrm{a}}+n_{\mathrm{b}}}{\nu}-1, \\
& \frac{\partial \ln L}{\partial \alpha}=\frac{n_{\mathrm{a}}}{1+\alpha}-\frac{n_{\mathrm{b}}}{1-\alpha} .
\end{aligned}
$$

Setting the derivatives to zero and solving for ν and α gives the ML estimators,

$$
\begin{aligned}
\hat{\nu} & =n_{\mathrm{a}}+n_{\mathrm{b}} \\
\hat{\alpha} & =\frac{n_{\mathrm{a}}-n_{\mathrm{b}}}{n_{\mathrm{a}}+n_{\mathrm{b}}} .
\end{aligned}
$$

2(b) [10 marks] Using error propagation, the variance of $\hat{\alpha}$ can be approximated as

$$
\left.V[\hat{\alpha}] \approx\left(\frac{\partial \hat{\alpha}}{\partial n_{\mathrm{a}}}\right)^{2}\right|_{\mathbf{n}=\nu} V\left[n_{\mathrm{a}}\right]+\left.\left(\frac{\partial \hat{\alpha}}{\partial n_{\mathrm{b}}}\right)^{2}\right|_{\mathbf{n}=\boldsymbol{\nu}} V\left[n_{\mathrm{b}}\right],
$$

Computing the derivatives, which are evaluated at $n_{\mathrm{a}}=\nu_{\mathrm{a}}$ and $n_{\mathrm{b}}=\nu_{\mathrm{b}}$, and using $V\left[n_{\mathrm{a}}\right]=\nu_{\mathrm{a}}$ and $V\left[n_{\mathrm{b}}\right]=\nu_{\mathrm{b}}$ gives

$$
\begin{aligned}
V[\hat{\alpha}] & =\left(\frac{2 \nu_{\mathrm{b}}}{\nu^{2}}\right)^{2} \nu_{\mathrm{a}}+\left(\frac{2 \nu_{\mathrm{a}}}{\nu^{2}}\right)^{2} \nu_{\mathrm{b}} \\
& =\left(\frac{\nu(1-\alpha)}{\nu^{2}}\right)^{2} \frac{\nu}{2}(1+\alpha)+\left(\frac{\nu(1+\alpha)}{\nu^{2}}\right)^{2} \frac{\nu}{2}(1-\alpha) \\
& =\frac{1-\alpha^{2}}{\nu}
\end{aligned}
$$

$\mathbf{2 (c)}[\mathbf{1 4}$ marks] Writing the likelihood in terms of ν and α (see, e.g., $\ln L$ from (a)) gives

$$
L(\nu, \alpha) \propto \nu^{\left(n_{\mathrm{a}}+n_{\mathrm{b}}\right)} e^{-\nu}(1+\alpha)^{n_{\mathrm{a}}}(1-\alpha)^{n_{\mathrm{b}}}
$$

Using the prior given, $\pi(\nu, \alpha) \propto 1 / \sqrt{\nu}$, the joint posterior for α and ν is

$$
p\left(\nu, \alpha \mid n_{\mathrm{a}}, n_{\mathrm{b}}\right) \propto \nu^{\left(n_{\mathrm{a}}+n_{\mathrm{b}}-1 / 2\right)} e^{-\nu}(1+\alpha)^{n_{\mathrm{a}}}(1-\alpha)^{n_{\mathrm{b}}} .
$$

This factorizes into a function of ν times a function of α, so we can therefore conclude α and ν are independent with

$$
\begin{aligned}
p\left(\nu, \alpha \mid n_{\mathrm{a}}, n_{\mathrm{b}}\right) & =p\left(\nu \mid n_{\mathrm{a}}, n_{\mathrm{b}}\right) p\left(\alpha \mid n_{\mathrm{a}}, n_{\mathrm{b}}\right) \\
p\left(\nu \mid n_{\mathrm{a}}, n_{\mathrm{b}}\right) & \propto \nu^{\left(n_{\mathrm{a}}+n_{\mathrm{b}}-1 / 2\right)} e^{-\nu} \\
p\left(\alpha \mid n_{\mathrm{a}}, n_{\mathrm{b}}\right) & \propto(1+\alpha)^{n_{\mathrm{a}}}(1-\alpha)^{n_{\mathrm{b}}}
\end{aligned}
$$

$\mathbf{2 (d)}$ [6 marks] The posterior modes for α and ν are found by setting the corresponding derivatives to zero:

$$
\begin{aligned}
& \frac{\partial p\left(\nu \mid n_{\mathrm{a}}, n_{\mathrm{b}}\right)}{\partial \nu} \propto\left(n_{\mathrm{a}}+n_{\mathrm{b}}-\frac{1}{2}\right) \nu^{\left(n_{\mathrm{a}}+n_{\mathrm{b}}-3 / 2\right)} e^{-\nu}-\nu^{\left(n_{\mathrm{a}}+n_{\mathrm{b}}-1 / 2\right)} e^{-\nu}=0 \\
& \frac{\partial p\left(\alpha \mid n_{\mathrm{a}}, n_{\mathrm{b}}\right)}{\partial \alpha} \propto(1+\alpha)^{n_{\mathrm{a}}} n_{\mathrm{b}}(1-\alpha)^{n_{\mathrm{b}}-1}(-1)+n_{\mathrm{a}}(1-\alpha)^{n_{\mathrm{b}}}(1+\alpha)^{n_{\mathrm{a}}-1}=0
\end{aligned}
$$

Solving for ν and α gives the Bayesian highest probability density (HPD) estimators,

$$
\begin{aligned}
\hat{\nu}_{\text {Bayes }} & =n_{\mathrm{a}}+n_{\mathrm{b}}-\frac{1}{2} \\
\hat{\alpha}_{\text {Bayes }} & =\frac{n_{\mathrm{a}}-n_{\mathrm{b}}}{n_{\mathrm{a}}+n_{\mathrm{b}}}
\end{aligned}
$$

The posterior mode for α is the same as the ML estimator, which follows from the fact that the prior for α and ν was taken to be independent of α. As the prior does, however, depend on ν, one does not expect the ML estimator and posterior mode to agree for ν.

