Exercise 1: The binomial distribution is given by

$$
f(n ; N, \theta)=\frac{N!}{n!(N-n)!} \theta^{n}(1-\theta)^{N-n}
$$

where n is the number of 'successes' in N independent trials, with a success probability of θ for each trial. Recall that the expectation value and variance of n are $E[n]=N \theta$ and $V[n]=N \theta(1-\theta)$, respectively. Suppose we have a single observation of n and using this we want to estimate the parameter θ.

1. Find the maximum likelihood estimator $\hat{\theta}$.
2. Show that $\hat{\theta}$ has zero bias and find its variance.
3. Suppose we observe $n=0$ for $N=10$ trials. Find the upper limit for θ at a confidence level of $\mathrm{CL}=95 \%$ and evaluate numerically.
4. Suppose we treat the problem with the Bayesian approach using the Jeffreys prior, $\pi(\theta) \propto \sqrt{I(\theta)}$, where

$$
I(\theta)=-E\left[\frac{\partial^{2} \ln L}{\partial \theta^{2}}\right]
$$

is the expected Fisher information. Find the Jeffreys prior $\pi(\theta)$ and the posterior pdf $p(\theta \mid n)$ as proportionalities.
5. Explain how in the Bayesian approach how one would determine an upper limit on θ using the result from (d). (You do not actually have to calculate the upper limit.)
Explain briefly the differences in the interpretation between frequentist and Bayesian upper limits.

Exercise 2: Consider the pdf for the continuous random variable x

$$
f(x ; \theta)=\frac{x}{\theta^{2}} e^{-x / \theta},
$$

where $0 \leq x<\infty$ and $\theta>0$. The expectation value and variance of x are $E[x]=2 \theta$ and $V[x]=2 \theta^{2}$. Suppose we have independent values x_{1}, \ldots, x_{n} sampled from this pdf.
$\mathbf{2 (a)}$: Show that the maximum likelihood estimator for θ is

$$
\hat{\theta}=\frac{\bar{x}}{2},
$$

where \bar{x} is the arithmetic average of the x values.
$\mathbf{2 (b) : ~ F i n d ~ t h e ~ e s t i m a t o r ' s ~ b i a s ~ a n d ~ v a r i a n c e ~ u s i n g ~ t h e ~ i n f o r m a t i o n ~ g i v e n ~ a b o v e ~ f o r ~ t h e ~}$ expectation value and variance of x.

2(c) Find the minimum variance bound (MVB) of the estimator.
2(d) Make a sketch of the log-likelihood function indicating the estimator $\hat{\theta}$ and show on the sketch now to find the standard deviation of $\hat{\theta}$ graphically.
2(e) Suppose how that the number of x values, n, is regarded not as constant but as following a Poisson distribution with an expectation value $E[n]=c / \theta$, where c is a given constant. Find the (extended) maximum likelihood estimator for θ. (Recall the Poisson distribution for a mean value ν is given by $P(n ; \nu)=\nu^{n} e^{-\nu} / n!$.)

