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1(a) [6 marks| The likelihood function is given by the binomial distribution evaluated with
the single observed value n and regarded as a function of the unknown parameter 6:

n N—n
!9 (1-9) .
The log-likelihood function is therefore (3 marks)
InL(@) =nlnb+ (N —n)Iln(l-0)+C,

where C represents terms not depending on 6. Setting the derivative of In L equal to zero,
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we find the ML estimator to be (3 marks)
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1(b) [8 marks| We are given the expectation and variance of a binomial distributed variable
as Eln| = N0 and V[n] = N6(1 — 0). Using these results we find the expectation value of 6 to
be (4 marks)

E[é]:E{n}:EJE?]:]Xf:H,

and therefore the bias is b = F[f] — 0 = 0. Similarly we find the variance to be
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1(c) [8 marks] Suppose we observe n = 0 for N = 10 trials. The upper limit on 6 at a
confidence level of CLL = 1 — « is the value of 6 for which there is a probability « to find as few
events as we found or fewer, i.e., (6 marks)

a=Pn<0;N,0) =
Solving for 6 gives the 95% CL upper limit (2 marks)

fup =1 — /N =1-0.05"10 = 0.26 .



1(d) [10 marks] To find the Jeffreys prior we need the second derivative of In L, (2 marks)
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The expected Fisher information is therefore (2 marks)
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The Jeffreys prior is therefore (3 marks)
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Using this in Bayes theorem to find the posterior pdf gives (3 marks)
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1(e) [8 marks] To find a Bayesian upper limit on # one simply integrates the posterior pdf so
that a specified probability 1 — «r is contained below 6,;, i.e.,
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solving for 6, gives the upper limit. (3 marks)

A frequentist upper limit as found in (c) is a function of the data designed to be greater than
the true value of the parameter with a fixed probability (the confidence level) regardless of the
parameter’s actual value. A Bayesian interval can be regarded as reflecting a range for the
parameter where it is believed to lie with a fixed probability (the credibility level). Note that
with the Jeffreys prior, one may not necessary use the degree of belief interpretation of the
interval, but rather take it to have a certain probability to cover the true 6 (which in general
will depend on #). (5 marks)



2(a) [4 points| The likelihood function is

L(e) = H -’L'za H el _xZ/e
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Taking the logarithm gives
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To find the ML estimator we set the derivative of In L with respect to 6 equal to zero,
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Solving for 0 gives the ML estimator,
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2(b) [4 points] We are given E[z] = 20. The expectation value of 6 is therefore

Elf] = 5-> Elwi]=5-3 20=90,

and so the bias is b = E[f] — 0 = 0.

We are given V[z] = 262. When we take a constant outside of the variance operator, it
becomes squared, i.e., V]ax] = a?V]z]. We are also told that the x; are independent, so the
variance of their sum is the sum of the variances. Using this we find
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2(c) [4 points] The minimum variance bound (MVB) is given by
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We already found the bias b is zero. For the denominator we need the second derivative of In L,
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Taking the expectation value and using E[z| = 26 we find
0?InL 2n
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Putting the ingredients into the equation for the MVB gives
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The MVB is thus the same as the exact variance from (d) and so 0 is said to be efficient.

2(d) [4 points]| A sketch of the log-likelihood function is shown in Fig. 1; the position of its
maximum gives 6. The standard deviation 0, is found by moving the parameter away from 0
until In L decreases by 1/2 from its maximum, as indicated.
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Figure 1: [lustration of finding the
ML estimator 6 and its standard
deviation o, (see text).

2(e) [4 points]| If we regard the number n as a Poisson distributed random variable with mean
¢/0, then the full (extended) likelihood function is
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and so the log-likelihood is
InL(f) =nlns — < —2nlnd lfj + const
n =nln—-— - —2nlnd — = » x; + const.
0 0 0 = !
where the constant represents terms not depending on 6. Setting the derivative of In L equal to
ZET0,
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and solving for 6 gives the extended ML estimator
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