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1(a) [6 marks] The likelihood function is given by the binomial distribution evaluated with
the single observed value n and regarded as a function of the unknown parameter θ:

L(θ) =
N !

n!(N − n)!
θn(1− θ)N−n .

The log-likelihood function is therefore (3 marks)

lnL(θ) = n ln θ + (N − n) ln(1− θ) + C ,

where C represents terms not depending on θ. Setting the derivative of lnL equal to zero,

∂ lnL

∂θ
=

n

θ
−

N − n

1− θ
= 0 ,

we find the ML estimator to be (3 marks)

θ̂ =
n

N
.

1(b) [8 marks] We are given the expectation and variance of a binomial distributed variable
as E[n] = Nθ and V [n] = Nθ(1− θ). Using these results we find the expectation value of θ̂ to
be (4 marks)

E[θ̂] = E

[

n

N

]

=
E[n]

N
=

Nθ

N
= θ ,

and therefore the bias is b = E[θ̂]− θ = 0. Similarly we find the variance to be

V [θ̂] = V

[

n

N

]

=
1

N2
V [n] =

Nθ(1− θ)

N2
=

θ(1− θ)

N
.

1(c) [8 marks] Suppose we observe n = 0 for N = 10 trials. The upper limit on θ at a
confidence level of CL = 1− α is the value of θ for which there is a probability α to find as few
events as we found or fewer, i.e., (6 marks)

α = P (n ≤ 0;N, θ) =
N !

0!(N − 0)!
θ0(1− θ)N−0 .

Solving for θ gives the 95% CL upper limit (2 marks)

θup = 1− α1/N = 1− 0.051/10 = 0.26 .



1(d) [10 marks] To find the Jeffreys prior we need the second derivative of lnL, (2 marks)

∂2 lnL

∂θ2
= −

n

θ2
−

N − n

(1− θ)2
.

The expected Fisher information is therefore (2 marks)

I(θ) = −E

[

∂2 lnL

∂θ2

]

=
Nθ

θ2
+

N(1− θ)

(1− θ)2
=

N

θ
+

N

1− θ
=

N

θ(1− θ)
.

The Jeffreys prior is therefore (3 marks)

π(θ) ∝
1

√

θ(1− θ)
.

Using this in Bayes theorem to find the posterior pdf gives (3 marks)

p(θ|n) ∝ L(n|θ)π(θ) ∝
θn(1− θ)N−n

√

θ(1− θ)
= θn−1/2(1− θ)N−n−1/2 .

1(e) [8 marks] To find a Bayesian upper limit on θ one simply integrates the posterior pdf so
that a specified probability 1− α is contained below θup, i.e.,

1− α =

∫ θup

0

p(θ|n) dθ ,

solving for θup gives the upper limit. (3 marks)

A frequentist upper limit as found in (c) is a function of the data designed to be greater than
the true value of the parameter with a fixed probability (the confidence level) regardless of the
parameter’s actual value. A Bayesian interval can be regarded as reflecting a range for the
parameter where it is believed to lie with a fixed probability (the credibility level). Note that
with the Jeffreys prior, one may not necessary use the degree of belief interpretation of the
interval, but rather take it to have a certain probability to cover the true θ (which in general
will depend on θ). (5 marks)
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2(a) [4 points] The likelihood function is

L(θ) =
n
∏

i=1

f(xi; θ) =
n
∏

i=1

xi
θ2

e−xi/θ .

Taking the logarithm gives

lnL(θ) =
n
∑

i=1

(

ln
xi
θ2

−
xi
θ

)

=
n
∑

i=1

(

−2 ln θ + lnxi −
xi
θ

)

.

To find the ML estimator we set the derivative of lnL with respect to θ equal to zero,

∂

∂θ
lnL(θ) = −

2n

θ
+

1

θ2

n
∑

i=1

xi = 0 .

Solving for θ gives the ML estimator,

θ̂ =
1

2n

n
∑

i=1

xi =
x

2
.

2(b) [4 points] We are given E[x] = 2θ. The expectation value of θ̂ is therefore

E[θ̂] =
1

2n

n
∑

i=1

E[xi] =
1

2n

n
∑

i=1

2θ = θ ,

and so the bias is b = E[θ̂]− θ = 0.

We are given V [x] = 2θ2. When we take a constant outside of the variance operator, it
becomes squared, i.e., V [αx] = α2V [x]. We are also told that the xi are independent, so the
variance of their sum is the sum of the variances. Using this we find

V [θ̂] = V

[

1

2n

n
∑

i=1

xi

]

=
1

4n2

n
∑

i=1

V [xi] =
1

4n2

n
∑

i=1

2θ2 =
θ2

2n
.

2(c) [4 points] The minimum variance bound (MVB) is given by

MVB = −

(

1 + ∂b
∂θ

)2

E
[

∂2 lnL
∂θ2

] .

We already found the bias b is zero. For the denominator we need the second derivative of lnL,

∂2 lnL

∂θ2
=

2n

θ2
−

2

θ3

n
∑

i=1

xi
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Taking the expectation value and using E[x] = 2θ we find

E

[

∂2 lnL

∂θ2

]

=
2n

θ2
−

2

θ3

n
∑

i=1

E[xi] =
2n

θ2
−

2

θ3

n
∑

i=1

2θ = −
2n

θ2
.

Putting the ingredients into the equation for the MVB gives

MVB = −
(1 + 0)2

−2n
θ2

=
θ2

2n
.

The MVB is thus the same as the exact variance from (d) and so θ̂ is said to be efficient.

2(d) [4 points] A sketch of the log-likelihood function is shown in Fig. 1; the position of its
maximum gives θ̂. The standard deviation σθ̂ is found by moving the parameter away from θ̂
until lnL decreases by 1/2 from its maximum, as indicated.

Figure 1: Illustration of finding the
ML estimator θ̂ and its standard
deviation σ

θ̂
(see text).

2(e) [4 points] If we regard the number n as a Poisson distributed random variable with mean
c/θ, then the full (extended) likelihood function is

L(θ) =
(c/θ)n

n!
e−c/θ

n
∏

i=1

xi
θ2

e−xi/θ ,

and so the log-likelihood is

lnL(θ) = n ln
c

θ
−

c

θ
− 2n ln θ −

1

θ

n
∑

i=1

xi + const.

where the constant represents terms not depending on θ. Setting the derivative of lnL equal to
zero,

∂ lnL

∂θ
=

n

θ
−

c

θ2
−

2n

θ
+

nx

θ2
= 0 ,

and solving for θ gives the extended ML estimator

θ̂EML =
c+ nx

3n
.
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