Statistical Methods for Particle Physics
Graduierten-Kolleg RWTH Aachen, February 2014
Problem sheet 5 solutions
$\mathbf{1}(\mathbf{a})$ [6 marks] The likelihood function is given by the binomial distribution evaluated with the single observed value n and regarded as a function of the unknown parameter θ :

$$
L(\theta)=\frac{N!}{n!(N-n)!} \theta^{n}(1-\theta)^{N-n}
$$

The log-likelihood function is therefore (3 marks)

$$
\ln L(\theta)=n \ln \theta+(N-n) \ln (1-\theta)+C
$$

where C represents terms not depending on θ. Setting the derivative of $\ln L$ equal to zero,

$$
\frac{\partial \ln L}{\partial \theta}=\frac{n}{\theta}-\frac{N-n}{1-\theta}=0
$$

we find the ML estimator to be (3 marks)

$$
\hat{\theta}=\frac{n}{N}
$$

1(b) [8 marks] We are given the expectation and variance of a binomial distributed variable as $E[n]=N \theta$ and $V[n]=N \theta(1-\theta)$. Using these results we find the expectation value of $\hat{\theta}$ to be (4 marks)

$$
E[\hat{\theta}]=E\left[\frac{n}{N}\right]=\frac{E[n]}{N}=\frac{N \theta}{N}=\theta
$$

and therefore the bias is $b=E[\hat{\theta}]-\theta=0$. Similarly we find the variance to be

$$
V[\hat{\theta}]=V\left[\frac{n}{N}\right]=\frac{1}{N^{2}} V[n]=\frac{N \theta(1-\theta)}{N^{2}}=\frac{\theta(1-\theta)}{N}
$$

1(c) [8 marks] Suppose we observe $n=0$ for $N=10$ trials. The upper limit on θ at a confidence level of $\mathrm{CL}=1-\alpha$ is the value of θ for which there is a probability α to find as few events as we found or fewer, i.e., (6 marks)

$$
\alpha=P(n \leq 0 ; N, \theta)=\frac{N!}{0!(N-0)!} \theta^{0}(1-\theta)^{N-0}
$$

Solving for θ gives the 95% CL upper limit (2 marks)

$$
\theta_{\mathrm{up}}=1-\alpha^{1 / N}=1-0.05^{1 / 10}=0.26
$$

$\mathbf{1}(\mathbf{d})$ [10 marks] To find the Jeffreys prior we need the second derivative of $\ln L$, (2 marks)

$$
\frac{\partial^{2} \ln L}{\partial \theta^{2}}=-\frac{n}{\theta^{2}}-\frac{N-n}{(1-\theta)^{2}}
$$

The expected Fisher information is therefore (2 marks)

$$
I(\theta)=-E\left[\frac{\partial^{2} \ln L}{\partial \theta^{2}}\right]=\frac{N \theta}{\theta^{2}}+\frac{N(1-\theta)}{(1-\theta)^{2}}=\frac{N}{\theta}+\frac{N}{1-\theta}=\frac{N}{\theta(1-\theta)}
$$

The Jeffreys prior is therefore (3 marks)

$$
\pi(\theta) \propto \frac{1}{\sqrt{\theta(1-\theta)}}
$$

Using this in Bayes theorem to find the posterior pdf gives (3 marks)

$$
p(\theta \mid n) \propto L(n \mid \theta) \pi(\theta) \propto \frac{\theta^{n}(1-\theta)^{N-n}}{\sqrt{\theta(1-\theta)}}=\theta^{n-1 / 2}(1-\theta)^{N-n-1 / 2}
$$

$\mathbf{1}(\mathbf{e})$ [8 marks] To find a Bayesian upper limit on θ one simply integrates the posterior pdf so that a specified probability $1-\alpha$ is contained below $\theta_{\text {up }}$, i.e.,

$$
1-\alpha=\int_{0}^{\theta_{\mathrm{up}}} p(\theta \mid n) d \theta
$$

solving for $\theta_{\text {up }}$ gives the upper limit. (3 marks)
A frequentist upper limit as found in (c) is a function of the data designed to be greater than the true value of the parameter with a fixed probability (the confidence level) regardless of the parameter's actual value. A Bayesian interval can be regarded as reflecting a range for the parameter where it is believed to lie with a fixed probability (the credibility level). Note that with the Jeffreys prior, one may not necessary use the degree of belief interpretation of the interval, but rather take it to have a certain probability to cover the true θ (which in general will depend on θ). (5 marks)

2(a) [4 points] The likelihood function is

$$
L(\theta)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)=\prod_{i=1}^{n} \frac{x_{i}}{\theta^{2}} e^{-x_{i} / \theta} .
$$

Taking the logarithm gives

$$
\ln L(\theta)=\sum_{i=1}^{n}\left(\ln \frac{x_{i}}{\theta^{2}}-\frac{x_{i}}{\theta}\right)=\sum_{i=1}^{n}\left(-2 \ln \theta+\ln x_{i}-\frac{x_{i}}{\theta}\right) .
$$

To find the ML estimator we set the derivative of $\ln L$ with respect to θ equal to zero,

$$
\frac{\partial}{\partial \theta} \ln L(\theta)=-\frac{2 n}{\theta}+\frac{1}{\theta^{2}} \sum_{i=1}^{n} x_{i}=0
$$

Solving for θ gives the ML estimator,

$$
\hat{\theta}=\frac{1}{2 n} \sum_{i=1}^{n} x_{i}=\frac{\bar{x}}{2} .
$$

2(b) [4 points] We are given $E[x]=2 \theta$. The expectation value of $\hat{\theta}$ is therefore

$$
E[\hat{\theta}]=\frac{1}{2 n} \sum_{i=1}^{n} E\left[x_{i}\right]=\frac{1}{2 n} \sum_{i=1}^{n} 2 \theta=\theta
$$

and so the bias is $b=E[\hat{\theta}]-\theta=0$.
We are given $V[x]=2 \theta^{2}$. When we take a constant outside of the variance operator, it becomes squared, i.e., $V[\alpha x]=\alpha^{2} V[x]$. We are also told that the x_{i} are independent, so the variance of their sum is the sum of the variances. Using this we find

$$
V[\hat{\theta}]=V\left[\frac{1}{2 n} \sum_{i=1}^{n} x_{i}\right]=\frac{1}{4 n^{2}} \sum_{i=1}^{n} V\left[x_{i}\right]=\frac{1}{4 n^{2}} \sum_{i=1}^{n} 2 \theta^{2}=\frac{\theta^{2}}{2 n} .
$$

2(c) [4 points] The minimum variance bound (MVB) is given by

$$
\mathrm{MVB}=-\frac{\left(1+\frac{\partial b}{\partial \theta}\right)^{2}}{E\left[\frac{\partial^{2} \ln L}{\partial \theta^{2}}\right]}
$$

We already found the bias b is zero. For the denominator we need the second derivative of $\ln L$,

$$
\frac{\partial^{2} \ln L}{\partial \theta^{2}}=\frac{2 n}{\theta^{2}}-\frac{2}{\theta^{3}} \sum_{i=1}^{n} x_{i}
$$

Taking the expectation value and using $E[x]=2 \theta$ we find

$$
E\left[\frac{\partial^{2} \ln L}{\partial \theta^{2}}\right]=\frac{2 n}{\theta^{2}}-\frac{2}{\theta^{3}} \sum_{i=1}^{n} E\left[x_{i}\right]=\frac{2 n}{\theta^{2}}-\frac{2}{\theta^{3}} \sum_{i=1}^{n} 2 \theta=-\frac{2 n}{\theta^{2}} .
$$

Putting the ingredients into the equation for the MVB gives

$$
\mathrm{MVB}=-\frac{(1+0)^{2}}{-\frac{2 n}{\theta^{2}}}=\frac{\theta^{2}}{2 n}
$$

The MVB is thus the same as the exact variance from (d) and so $\hat{\theta}$ is said to be efficient.
$\mathbf{2 (d)}[4$ points] A sketch of the log-likelihood function is shown in Fig. 1; the position of its maximum gives $\hat{\theta}$. The standard deviation $\sigma_{\hat{\theta}}$ is found by moving the parameter away from $\hat{\theta}$ until $\ln L$ decreases by $1 / 2$ from its maximum, as indicated.

Figure 1: Illustration of finding the ML estimator $\hat{\theta}$ and its standard deviation $\sigma_{\hat{\theta}}$ (see text).

2(e) [4 points] If we regard the number n as a Poisson distributed random variable with mean c / θ, then the full (extended) likelihood function is

$$
L(\theta)=\frac{(c / \theta)^{n}}{n!} e^{-c / \theta} \prod_{i=1}^{n} \frac{x_{i}}{\theta^{2}} e^{-x_{i} / \theta}
$$

and so the log-likelihood is

$$
\ln L(\theta)=n \ln \frac{c}{\theta}-\frac{c}{\theta}-2 n \ln \theta-\frac{1}{\theta} \sum_{i=1}^{n} x_{i}+\text { const. }
$$

where the constant represents terms not depending on θ. Setting the derivative of $\ln L$ equal to zero,

$$
\frac{\partial \ln L}{\partial \theta}=\frac{n}{\theta}-\frac{c}{\theta^{2}}-\frac{2 n}{\theta}+\frac{n \bar{x}}{\theta^{2}}=0
$$

and solving for θ gives the extended ML estimator

$$
\hat{\theta}_{\mathrm{EML}}=\frac{c+n \bar{x}}{3 n} .
$$

