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Lecture 4
1  Probability

Definition, Bayes’ theorem, probability densities 
and their properties, catalogue of pdfs, Monte Carlo 

2  Statistical tests 
general concepts, test statistics, multivariate methods,
goodness-of-fit tests

3  Parameter estimation
general concepts, maximum likelihood, variance of 
estimators, least squares

4  Interval estimation
setting limits

5  Further topics
systematic errors, MCMC
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Interval estimation — introduction

Often use +/ the estimated standard deviation of the estimator.
In some cases, however, this is not adequate:

estimate near a physical boundary, 
e.g., an observed event rate consistent with zero.

In addition to a ‘point estimate’ of a parameter we should report 
an interval reflecting its statistical uncertainty.  

Desirable properties of such an interval may include:
communicate objectively the result of the experiment;
have a given probability of containing the true parameter;
provide information needed to draw conclusions about
the parameter possibly incorporating stated prior beliefs.

We will look briefly at Frequentist and Bayesian intervals.
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Frequentist confidence intervals

Consider an estimator for a parameter  and an estimate

We also need for all possible  its sampling distribution

Specify upper and lower tail probabilities, e.g.,  = 0.05,  = 0.05,
then find functions u() and v() such that:
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Confidence interval from the confidence 
belt

Find points where observed 
estimate intersects the 
confidence belt.  

The region between u() and v() is called the confidence belt.

This gives the confidence interval [a, b]

Confidence level = 1  = probability for the interval to
cover true value of the parameter (holds for any possible true ).
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Confidence intervals by inverting a test

Confidence intervals for a parameter  can be found by 
defining a test of the hypothesized value  (do this for all ): 

Specify values of the data that are ‘disfavoured’ by  
(critical region) such that P(data in critical region) ≤  
for a prespecified , e.g., 0.05 or 0.1.

If data observed in the critical region, reject the value  .

Now invert the test to define a confidence interval as:

set of  values that would not be rejected in a test of
size  (confidence level is 1  ).

The interval will cover the true value of  with probability ≥ 1 .

Equivalent to confidence belt construction; confidence belt is 
acceptance region of a test.
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Confidence intervals in practice
The recipe to find the interval [a, b] boils down to solving

→ a is hypothetical value of  such that 

→ b is hypothetical value of  such that
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Meaning of a confidence interval
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Central vs. one-sided confidence intervals
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Intervals from the likelihood function 

In the large sample limit it can be shown for ML estimators:

defines a hyper-ellipsoidal confidence region,

If then

(n-dimensional Gaussian, covariance V)



G. Cowan Lectures on Statistical Data Analysis Lecture 4  page 10

Approximate confidence regions from L() 
So the recipe to find the confidence region with CL = 1  is:

For finite samples, these are approximate confidence regions.

Coverage probability not guaranteed to be equal to ;

no simple theorem to say by how far off it will be (use MC).

Remember here the interval is random, not the parameter.
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Example of interval from ln L() 
For n=1 parameter, CL = 0.683, Q = 1.



G. Cowan Lectures on Statistical Data Analysis Lecture 4  page 12

Setting limits on Poisson parameter

Consider again the case of finding n = ns + nb events where

nb events from known processes (background)
ns events from a new process (signal)

are Poisson r.v.s with means s, b, and thus n = ns + nb

is also Poisson with mean = s + b.  Assume b is known.

Suppose we are searching for evidence of the signal process,
but the number of events found is roughly equal to the
expected number of background events, e.g., b = 4.6 and we 
observe nobs = 5 events.

→  set upper limit on the parameter s.

The evidence for the presence of signal events is not
statistically significant,
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Upper limit for Poisson parameter

Find the hypothetical value of s such that there is a given small
probability, say,  = 0.05, to find as few events as we did or less:

Solve numerically for s = sup, this gives an upper limit on s at a

confidence level of 1.

Example:  suppose b = 0 and we find nobs = 0.  For 1 = 0.95,

→
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Calculating Poisson parameter limits

To solve for slo, sup, can exploit relation to 2 distribution:

Quantile of 2 distribution

For low fluctuation of n this 
can give negative result for sup; 
i.e. confidence interval is empty.
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Limits near a physical boundary
Suppose e.g. b = 2.5 and we observe n = 0.  

If we choose CL = 0.9, we find from the formula for sup

Physicist:  
We already knew s ≥ 0 before we started; can’t use negative 
upper limit to report result of expensive experiment!

Statistician:
The interval is designed to cover the true value only 90%
of the time — this was clearly not one of those times.

Not uncommon dilemma when limit of parameter is close to a 
physical boundary, cf. m estimated using E2  p2 . 
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Expected limit for s = 0

Physicist:  I should have used CL = 0.95 — then sup = 0.496

Even better:  for CL = 0.917923 we get sup = 10!

Reality check:  with b = 2.5, typical Poisson fluctuation in n is
at least √2.5 = 1.6.  How can the limit be so low?

Look at the mean limit for the 
no-signal (s = 0) hypothesis
(sensitivity).

Distribution of 95% CL limits
with b = 2.5, s = 0.
Mean upper limit = 4.44
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The Bayesian approach

In Bayesian statistics need to start with ‘prior pdf’ (), this 
reflects degree of belief about  before doing the experiment.

Bayes’ theorem tells how our beliefs should be updated in
light of the data x:

Integrate posterior pdf  p(| x) to give interval with any desired
probability content.  

For e.g. Poisson parameter 95% CL upper limit from



G. Cowan Lectures on Statistical Data Analysis Lecture 4  page 18

Bayesian prior for Poisson parameter

Include knowledge that s ≥0 by setting prior (s) = 0 for s<0.

Often try to reflect ‘prior ignorance’ with e.g. 

Not normalized but this is OK as long as L(s) dies off for large s.

Not invariant under change of parameter — if we had used instead
a flat prior for, say, the mass of the Higgs boson, this would 
imply a non-flat prior for the expected number of Higgs events.

Doesn’t really reflect a reasonable degree of belief, but often used
as a point of reference;

or viewed as a recipe for producing an interval whose frequentist
properties can be studied (coverage will depend on true s). 
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Bayesian interval with flat prior for s

Solve numerically to find limit sup.

For special case b = 0, Bayesian upper limit with flat prior
numerically same as classical case (‘coincidence’). 

Otherwise Bayesian limit is
everywhere greater than
classical (‘conservative’).

Never goes negative.

Doesn’t depend on b if n = 0.
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Likelihood ratio limits (Feldman-Cousins)
Define likelihood ratio for hypothesized parameter value s:

Here       is the ML estimator, note 

       Critical region defined by low values of likelihood ratio.

Resulting intervals can be one- or two-sided (depending on n).

       (Re)discovered for HEP by Feldman and Cousins, 
       Phys. Rev. D 57 (1998) 3873.
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More on intervals from LR test (Feldman-Cousins)

Caveat with coverage: suppose we find  n >> b.
Usually one then quotes a measurement:

If, however, n isn’t large enough to claim discovery, one
sets a limit on s.

FC pointed out that if this decision is made based on n, then
the actual coverage probability of the interval can be less than
the stated confidence level (‘flip-flopping’).

FC intervals remove this, providing a smooth transition from
1- to 2-sided intervals, depending on  n.

But, suppose FC gives e.g. 0.1 < s < 5 at 90% CL, 
p-value of s=0 still substantial.  Part of upper-limit ‘wasted’?
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Properties of upper limits

Upper limit sup vs. n Mean upper limit vs. s

Example:  take b = 5.0, 1   = 0.95
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Upper limit versus b

If n = 0 observed, should upper limit depend on b?
Classical:  yes
Bayesian:  no
FC:  yes

Feldman & Cousins, PRD 57 (1998) 3873
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Coverage probability of intervals
Because of discreteness of Poisson data, probability for interval
to include true value in general > confidence level (‘over-coverage’)
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Wrapping up lecture 4
In large sample limit and away from physical boundaries, 
 standard deviation is all you need for 68% CL.

Frequentist confidence intervals

Complicated!  Random interval that contains true
parameter with fixed probability.

Can be obtained by inversion of a test; freedom left
as to choice of test.

Log-likelihood can be used to determine approximate
confidence intervals (or regions)

Bayesian intervals

Conceptually easy — just integrate posterior pdf.

Requires choice of prior.
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Lecture 4 — extra slides
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Interval from Gaussian distributed estimator
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Interval for Gaussian estimator (2)
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Quantiles of the standard Gaussian
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Quantiles of the standard Gaussian (2)


