Computing and Statistical Data Analysis
Problem sheet #8

Exercise 1: Consider N independent observations n1,...,ny of a Poisson random variable
with the mean values E[n;| = ¢;v where ¢; are known constants and v is the unknown parameter
that we want to estimate.

(a) Write down the likelihood function for the parameter v. (Since the Poisson distribution
is not a pdf but rather a probability, here the likelihood is found directly from the joint
probability for the data.) Find the maximum-likelihood estimator for v.

(b) Show that the estimator is unbiased and find its variance in closed form (use the known
mean and variance of a Poisson variable).

(c) Show that the variance of ¥ is equal to the minimum variance bound (the right-hand side
of the information inequality).

Exercise 2: This exercise provides an introduction to the class TMinuit, used in ROOT for
function minimization. In this example we will use TMinuit to carry out a Maximum Likelihood
fit where we minimize the quantity —2In L. For more information on TMminuit see

root.cern.ch/root/html/TMinuit.html

First we will generate some data using a simple Monte Carlo program. Download, build and
test the program makeData from the course website. makeData generates values according to
an exponential distribution and writes the values to a file. It also produces a histogram of the
values.

In a separate directory, download and build the program expFit from the course website.
This program reads in the file of individual values provided by makeData and does a maximum
likelihood fit of the parameter of the exponential pdf. Run both programs and make sure you
understand what they are doing.

Now modify makeData so that it generates values according to the pdf

o €1,60) = abe /6 1 (1 — ) e/, | (1)
&1 &2

with a = 0.2, & = 1.0 and & = 5. To do this, first generate a random number r uniform in

[0,1]. If r < a, then generate x according to an exponential with mean &;, otherwise use &a.
Run the program and save 200 individual values to a text file.

Now modify the program expFit so that it reads in the values and carries out an ML fit
of the parameters a, &1 and &. You will have to supply start values and “step sizes” for the
parameters. Choose start values not too far (say, within a factor of two) to the true values used
in makeData. For the step sizes you can take, e.g., 0.1.

Try running the program with the minimum and maximum values (in the arrays minVal
and maxVal) set equal to zero; this is equivalent to having no bounds on the parameters. If the
program runs into a region of parameter space that it shouldn’t, e.g., {1 < 0, then you can place



(?;tppropriate bounds on the parameter values. In the end it is best to see if you can rerun the fit
with improved guesses for start values but without any bounds on the parameters.

Modify the program so it makes a reasonable plot of the fit (extend the limit of the horizontal
axis as appropriate). Find the ML estimators and their covariance matrix using the routines
mnpout and mnemat. Determine as well the matrix of correlation coefficients.

Optional: As an extension to this problem, convert the fitting program to read in the
histogram of generated values, rather than each individual value. Then construct the likelihood
function using

N
1DL(O[7£17€2) :Znilnyi(a7§l7€2) ) (2)
i=1
where n; is the number of entries in bin 4, with ¢ = 1,..., N, and v; is the predicted of entries.

This is found from

vi(en1,6) = i / T o €1, €2) da

min,s

~ ntotf(xi; «, 517 52)Ax ) (3)

where niot = Zij\il N, i = (Zmin,i+Tmax,i)/2 is the middle of the ith bin and Az = Tmax i —Tmin,i
is the bin width. The approximation in the second line of (3) valid as long as the pdf is roughly
linear across the bin.

To read in the histogram and access the bin contents you can use code of the form:

TFile* histFile = new TFile (fileName.c_str(), "READ");
TH1D* h = (TH1D*)histFile->Get(histName.c_str());
int nBins = h->GetNbinsX();
vector<double> y(nBins);
for (int i=0; i<nBins; i++){
y[i] = h->GetBinContent (i+1);
}

Note that the contents of the histogram are accessed using elements 1 to nBins, whereas the
vector y goes from 0 to nBins-1.



