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Using MC events in a statistical test 
Prototype analysis – count n events where signal may be present: 

 n ~ Poisson(µs + b) 
s = expected events from nominal signal model (regard as known)  
b = expected background (nuisance parameter) 
µ = strength parameter (parameter of interest) 
Ideal – constrain background b with a data control measurement m, 
scale factor τ (assume known) relates control and search regions: 

 m ~ Poisson(τb) 

Reality – not always possible to construct data control sample, 
sometimes take prediction for b from MC. 
From a statistical perspective, can still regard number of MC 
events found as m ~ Poisson(τb) (really should use binomial,  
but here Poisson good approx.)  Scale factor is τ = LMC/Ldata. 
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MC events with weights 
But, some MC events come with an associated weight, either from 
generator directly or because of reweighting for efficiency, pile-up. 

 Outcome of experiment is:  n, m, w1,..., wm 

How to use this info to construct statistical test of µ? 

“Usual” (?) method is to construct an estimator for b: 

and include this with a least-squares constraint, e.g., the χ2 gets 
an additional term like 
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Case where m is small (or zero) 
Using least-squares like this assumes     ~ Gaussian, which is OK  
for sufficiently large m because of the Central Limit Theorem. 

But    may not be Gaussian distributed if e.g. 
 m is very small (or zero),  
 the distribution of weights has a long tail. 

Suppose e.g.: 
 m  = 2, w1 = 0.1, w2 = 0.0001,    
      = small 
 n = 1 (!) 

Correct procedure is to treat m ~ Poisson (or binomial).  And if  
the events have weights, these constitute part of the measurement,  
and so we need to make an assumption about their distribution. 

b̂

b̂

b̂
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Constructing a statistical test of µ 
As an example, suppose we want to test the background-only 
hypothesis (µ=0) using the profile likelihood ratio statistic 
(see e.g. EPJC 71 (2011) 1554, arXiv:1007.1727), 

where 

From the observed value of q0,  
the p-value of the hypothesis is: 

So we need to know the distribution of the data (n, m, w1,..., wm), 
i.e., the likelihood, in two places: 

 1)  to define the likelihood ratio for the test statistic 
 2)  for f(q0|0) to get the p-value   
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Normal distribution of weights 
Suppose w ~ Gauss (ω, σw).  The full likelihood function is 

The log-likelihood can be written: 

Only depends on weights through: 
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Log-normal distribution for weights 
Depending on the nature/origin of the weights, we may know: 

 w(x) ≥ 0, 
 distribution of w could have a long tail. 

So w ~ log-normal could be a more realistic model. 

I.e, let l = ln w, then l ~ Gaussian(λ, σl), and the log-likelihood is 

where λ = E[l] and ω = E[w] = exp(λ + σl
2/2). 

Need to record n, m,  Σi ln wi and Σi ln2 wi. 
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Normal distribution for  b̂
For m > 0 we can define the estimator for b 

If we assume    ~ Gaussian, then the log-likelihood is  b̂

Important simplification:  L only depends on parameter of  
interest µ and single nuisance parameter b. 

Ordinarily would only use this Ansatz when Prob(m=0) negligible. 
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Toy weights for test of procedure 
Suppose we wanted to generate events according to 

Suppose we couldn’t do this, and only could generate x following  

and for each event we also obtain a weight 

In this case the weights follow: 



G. Cowan  ATLAS/CMS Statistics Meeting / Statistical tests with weighted MC events 10 

Two sample MC data sets 

case 1:  
a = 5, ξ = 25 
m = 6 
Distribution of w narrow 

case 2:  
a = 5, ξ = 1 
m = 6 
Distribution of w broad 

Suppose n = 17, τ = 1, and  
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Testing µ = 0 using q0 with n = 17 

case 1:  
a = 5, ξ = 25 
m = 6 
Distribution of  
w is narrow 

If distribution of weights is narrow, then all methods result in 
a similar picture:  discovery significance Z ~ 2.3. 
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Testing µ = 0 using q0 with n = 17 (cont.) 

case 2:  
a = 5, ξ = 1 
m = 6 
Distribution of  
w is broad 

If there is a broad distribution of weights, then: 

1)  If true w ~ 1/w, then assuming w ~ normal gives too tight of 
     constraint on b and thus overestimates the discovery significance. 

2)  If test statistic is sensitive to tail of w distribution (i.e., based 
     on log-normal likelihood), then discovery significance reduced. 

Best option above would be to assume w ~ log-normal, both for 
definition of q0 and f(q0|0), hence Z = 0.863. 
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Distributions of q0 
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Summary 
Treating MC data as “real” data, i.e., n ~ Poisson, incorporates  
the statistical error due to limited size of sample. 

Then no problem if zero MC events observed, no issue of how 
to deal with 0 ± 0 for background estimate. 

If the MC events have weights, then some assumption must be 
made about this distribution.   

 If large sample, Gaussian should be OK,  

 if sample small consider log-normal. 

See note for more info and also treatment of weights = ±1  
(e.g., MC@NLO). 

www.pp.rhul.ac.uk/~cowan/stat/notes/weights.pdf 


