Statistical tests with weighted Monte Carlo events

www.pp.rhul.ac.uk/~cowan/stat/notes/weights.pdf

ATLAS/CMS Statistics Meeting EVO, 26 September, 2011

Glen Cowan Physics Department Royal Holloway, University of London www.pp.rhul.ac.uk/~cowan g.cowan@rhul.ac.uk

G. Cowan

1

Using MC events in a statistical test

Prototype analysis – count *n* events where signal may be present:

 $n \sim \text{Poisson}(\mu s + b)$

s = expected events from nominal signal model (regard as known) b = expected background (nuisance parameter) $\mu =$ strength parameter (parameter of interest)

Ideal – constrain background *b* with a data control measurement *m*, scale factor τ (assume known) relates control and search regions:

 $m \sim \text{Poisson}(\tau b)$

Reality – not always possible to construct data control sample, sometimes take prediction for b from MC.

From a statistical perspective, can still regard number of MC events found as $m \sim \text{Poisson}(\tau b)$ (really should use binomial, but here Poisson good approx.) Scale factor is $\tau = L_{\text{MC}}/L_{\text{data}}$.

MC events with weights

But, some MC events come with an associated weight, either from generator directly or because of reweighting for efficiency, pile-up.

Outcome of experiment is: $n, m, w_1, ..., w_m$ How to use this info to construct statistical test of μ ? "Usual" (?) method is to construct an estimator for *b*:

$$\hat{b} = \frac{1}{\tau} \sum_{i=1}^{m} w_i$$
 $\hat{\sigma}_{\hat{b}}^2 = \frac{1}{\tau^2} \sum_{i=1}^{m} w_i^2$

and include this with a least-squares constraint, e.g., the χ^2 gets an additional term like

$$\frac{(b-\hat{b})^2}{\hat{\sigma}_{\hat{b}}^2}$$

G. Cowan

Case where *m* is small (or zero)

Using least-squares like this assumes $\hat{b} \sim$ Gaussian, which is OK for sufficiently large *m* because of the Central Limit Theorem. But \hat{b} may not be Gaussian distributed if e.g. *m* is very small (or zero), the distribution of weights has a long tail.

Suppose e.g.:

$$m = 2, w_1 = 0.1, w_2 = 0.0001,$$

 $\hat{b} = \text{small}$
 $n = 1 (!)$

Correct procedure is to treat $m \sim \text{Poisson}$ (or binomial). And if the events have weights, these constitute part of the measurement, and so we need to make an assumption about their distribution.

Constructing a statistical test of μ

As an example, suppose we want to test the background-only hypothesis (μ =0) using the profile likelihood ratio statistic (see e.g. EPJC 71 (2011) 1554, arXiv:1007.1727),

$$q_0 = \begin{cases} -2\ln\lambda(0) & \hat{\mu} \ge 0\\ 0 & \hat{\mu} < 0 \end{cases} \quad \text{where} \quad \lambda(\mu) = \frac{L(\mu, \hat{\theta})}{L(\hat{\mu}, \hat{\theta})} \end{cases}$$

From the observed value of q_0 , the *p*-value of the hypothesis is:

$$p = \int_{q_{0,\text{obs}}}^{\infty} f(q_0|0) \, dq_0$$

So we need to know the distribution of the data $(n, m, w_1, ..., w_m)$, i.e., the likelihood, in two places:

- 1) to define the likelihood ratio for the test statistic
- 2) for $f(q_0|0)$ to get the *p*-value

G. Cowan

Normal distribution of weights

Suppose $w \sim \text{Gauss}(\omega, \sigma_w)$. The full likelihood function is

$$L(\mu, b, \omega, \sigma_w) = \frac{(\mu s + b)^n}{n!} e^{-(\mu s + b)} \frac{(\tau b/\omega)^m}{m!} e^{-\tau b/\omega} \prod_{i=1}^m \frac{1}{\sqrt{2\pi}\sigma_w} e^{(w_i - \omega)^2/2\sigma_w^2}$$

The log-likelihood can be written:

$$\ln L(\mu, b, \omega, \sigma_w) = n \ln(\mu s + b) - (\mu s + b) + m \ln(\tau b/\omega) - \tau b/\omega$$
$$- m \ln \sigma_w - \frac{m\omega^2}{2\sigma_w^2} + \frac{\omega}{\sigma_w^2} \sum_{i=1}^m w_i - \frac{1}{2\sigma_w^2} \sum_{i=1}^m w_i^2 + C$$

Only depends on weights through:
$$S_1 = \sum_{i=1}^m w_i$$
, $S_2 = \sum_{i=1}^m w_i^2$.

G. Cowan

ATLAS/CMS Statistics Meeting / Statistical tests with weighted MC events

Log-normal distribution for weights

Depending on the nature/origin of the weights, we may know: $w(x) \ge 0$, distribution of *w* could have a long tail.

So $w \sim \log$ -normal could be a more realistic model.

I.e, let $l = \ln w$, then $l \sim \text{Gaussian}(\lambda, \sigma_l)$, and the log-likelihood is

$$\ln L(\mu, b, \lambda, \sigma_l) = n \ln(\mu s + b) - (\mu s + b) + m \ln(\tau b/\omega) - \tau b/\omega$$
$$- m \ln \sigma_l - \frac{m\lambda^2}{2\sigma_l^2} + \frac{\lambda}{\sigma_l^2} \sum_{i=1}^m l_i - \frac{1}{2\sigma_l^2} \sum_{i=1}^m l_i^2.$$

where $\lambda = E[l]$ and $\omega = E[w] = \exp(\lambda + \sigma_l^2/2)$. Need to record *n*, *m*, $\Sigma_i \ln w_i$ and $\Sigma_i \ln^2 w_i$.

Normal distribution for \hat{b}

For m > 0 we can define the estimator for b

$$\hat{b} = \frac{1}{\tau} \sum_{i=1}^{m} w_i$$
 $\hat{\sigma}_{\hat{b}}^2 = \frac{1}{\tau^2} \sum_{i=1}^{m} w_i^2$

If we assume $\hat{b} \sim$ Gaussian, then the log-likelihood is

$$\ln L(\mu, b) = n \ln(\mu s + b) - (\mu s + b) - \frac{1}{2} \frac{(b - \hat{b})^2}{\hat{\sigma}_{\hat{b}}^2}$$

Important simplification: L only depends on parameter of interest μ and single nuisance parameter b.

Ordinarily would only use this Ansatz when Prob(*m*=0) negligible.

Toy weights for test of procedure

Suppose we wanted to generate events according to

$$f(x) = \frac{e^{-x/\xi}}{\xi(1 - e^{-a/\xi})}, \quad 0 \le x \le a.$$

Suppose we couldn't do this, and only could generate *x* following

$$g(x) = \frac{1}{a} , \quad 0 \le x \le a$$

and for each event we also obtain a weight

$$w(x) = \frac{f(x)}{g(x)} = \frac{a}{\xi} \frac{e^{-x/\xi}}{1 - e^{-a/\xi}}$$

In this case the weights follow:

$$p(w) = \frac{\xi}{aw}$$

$$w_{\min} \leq w \leq w_{\max}$$

G. Cowan

ATLAS/CMS Statistics Meeting / Statistical tests with weighted MC events

Two sample MC data sets

Suppose $n = 17$, $\tau = 1$, and		
	weight w	$\ln w$
case 1:	0.9684	-0.0320
$a = 5, \xi = 25$	0.9217	-0.0816
	1.0238	0.0235
m = 6	1.0063	0.0063
Distribution of <i>w</i> narrow	0.9709	-0.0295
	1.0813	0.0782
	weight w	$\ln w$
case 2:	0.1934	-1.6429
$a = 5, \xi = 1$	0.0561	-2.8809
m = 6	0.7750	-0.2548
Distribution of <i>w</i> broad	0.5039	-0.6853
Distribution of W bload	0.2059	-1.580
	3.0404	1.1120

Testing $\mu = 0$ using q_0 with n = 17

case 1:	Likelihood used to define q_0	Distribution of w for $f(q_0 0)$	Significance Z to reject $\mu = 0$
$a = 5, \xi = 25$	$w \sim \text{normal}$	normal	2.287
	$w \sim \mathrm{normal}$	1/w	2.268
m = 6	$w \sim \log$ -normal	log-normal	2.301
Distribution of	$w \sim \log$ -normal	1/w	2.267
w is narrow	$\hat{b} \sim \mathrm{normal}$	normal	2.289
	$\hat{b} \sim \mathrm{normal}$	1/w	2.224

If distribution of weights is narrow, then all methods result in a similar picture: discovery significance $Z \sim 2.3$.

Testing $\mu = 0$ using q_0 with n = 17 (cont.)

0	Likelihood used	Distribution of	Significance Z
case 2:	to define q_0	w for $f(q_0 0)$	to reject $\mu = 0$
$a = 5, \xi = 1$	$w \sim \text{normal}$	normal	2.163
	$w \sim \operatorname{normal}$	1/w	1.308
m = 6	$w \sim \log$ -normal	log-normal	0.863
Distribution of	$w \sim \log$ -normal	1/w	0.983
w is broad	$\hat{b} \sim \mathrm{normal}$	normal	1.788
	$\hat{b} \sim \mathrm{normal}$	1/w	1.387

If there is a broad distribution of weights, then:

- 1) If true $w \sim 1/w$, then assuming $w \sim$ normal gives too tight of constraint on *b* and thus overestimates the discovery significance.
- 2) If test statistic is sensitive to tail of *w* distribution (i.e., based on log-normal likelihood), then discovery significance reduced.

Best option above would be to assume $w \sim \text{log-normal}$, both for definition of q_0 and $f(q_0|0)$, hence Z = 0.863.

G. Cowan

Distributions of q_0

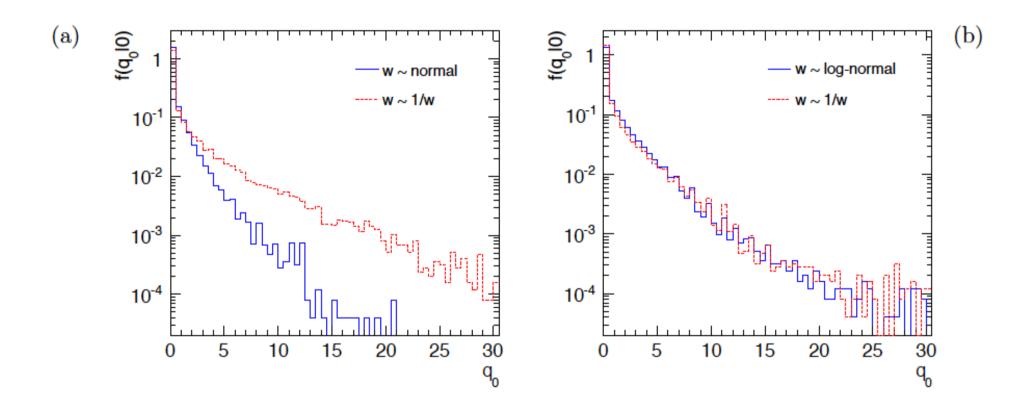


Figure 2: Distributions of the statistic q_0 based the profile likelihood using (a) a normal model for the weights and (b) on a log-normal model. In each plot the curves are shown representing two assumptions for the distribution of weights: the same as used to define q_0 (normal or log-normal) and the 1/w distribution.

Summary

Treating MC data as "real" data, i.e., $n \sim$ Poisson, incorporates the statistical error due to limited size of sample.

Then no problem if zero MC events observed, no issue of how to deal with 0 ± 0 for background estimate.

If the MC events have weights, then some assumption must be made about this distribution.

If large sample, Gaussian should be OK,

if sample small consider log-normal.

See note for more info and also treatment of weights = ± 1 (e.g., MC@NLO).

www.pp.rhul.ac.uk/~cowan/stat/notes/weights.pdf