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Hypotheses

A hypothesis H specifies the probability for the data, i.e., the 

outcome of the observation, here symbolically: x.

x could be uni-/multivariate, continuous or discrete.

E.g. write x ~ f (x|H).

Possible values of x form the sample space S (or ―data space‖).

Simple (or ―point‖) hypothesis:  f (x|H) completely specified.

Composite hypothesis:  H contains unspecified parameter(s).

The probability for x given H is also called the likelihood of

the hypothesis, written L(x|H).
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Definition of a test

Consider e.g. a simple hypothesis H0 and alternative H1.

A test of H0 is defined by specifying a critical region W of the

data space such that there is no more than some (small) probability

a, assuming H0 is correct,  to observe the data there, i.e.,

P(x  W | H0 ) ≤ a

If x is observed in the critical region, reject H0.

a is called the size or significance level of the test.

Critical region also called ―rejection‖ region; complement is

acceptance region.
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Frequentist Statistics − general philosophy 

In frequentist statistics, probabilities are associated only with

the data, i.e., outcomes of repeatable observations.

Probability = limiting frequency

Probabilities such as

P (Higgs boson exists), 

P (0.117 < as < 0.121), 

etc. are either 0 or 1, but we don‘t know which.

The tools of frequentist statistics tell us what to expect, under

the assumption of certain probabilities, about hypothetical

repeated observations.

The preferred theories (models, hypotheses, ...) are those for 

which our observations would be considered ‗usual‘.
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Bayesian Statistics − general philosophy 

In Bayesian statistics, interpretation of probability extended to

degree of belief (subjective probability).  Use this for hypotheses:

posterior probability, i.e., 

after seeing the data

prior probability, i.e.,

before seeing the data

probability of the data assuming 

hypothesis H (the likelihood)

normalization involves sum 

over all possible hypotheses

Bayesian methods can provide more natural treatment of  non-

repeatable phenomena:  

systematic uncertainties, probability that Higgs boson exists,...

No golden rule for priors (―if-then‖ character of Bayes‘ thm.)
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Rejecting a hypothesis

Note that rejecting H0 is not necessarily equivalent to the

statement that we believe it is false and H1 true.  In frequentist

statistics only associate probability with outcomes of repeatable

observations (the data).

In Bayesian statistics, probability of the hypothesis (degree

of belief) would be found using Bayes‘ theorem:

which depends on the prior probability p(H). 

What makes a frequentist test useful is that we can compute

the probability to accept/reject a hypothesis assuming that it

is true, or assuming some alternative is true.
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Type-I, Type-II errors 

Rejecting the hypothesis H0 when it is true is a Type-I error.  

The maximimum probability for this is the size of  the test:

P(x  W | H0 ) ≤ a

But we might also accept H0 when it is false, and an alternative 

H1 is true.

This is called a Type-II error, and occurs with probability

P(x  S - W | H1 ) = b

One minus this is called the power of the test with respect to

the alternative H1:

Power = 1 - b
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For each reaction we consider we will have a hypothesis for the

pdf of     , e.g., 

Statistical test in a particle physics context

Suppose the result of a measurement for an individual event 

is a collection of numbers

x1 = number of muons,

x2 = mean pt of jets,

x3 = missing energy, ...

follows some n-dimensional joint pdf, which depends on 

the type of event produced, i.e., was it 

etc.

Often call H0 the background hypothesis (e.g. SM events);

H1, H2, ... are possible signal hypotheses.
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A simulated SUSY event in ATLAS

high p
T

muons

high p
T

jets 
of hadrons

missing transverse energy

p p
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Background events

This event from Standard 
Model ttbar production also
has high  p

T
jets and muons,

and some missing transverse
energy.

→ can easily mimic a SUSY event.
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Selecting events

Suppose we have a data sample with two kinds of events,

corresponding to hypotheses H0 and H1 and we want to select 

those of type H0.

Each event is a point in space.  What ‗decision boundary‘ 

should we use to accept/reject events as belonging to event 

type H0?

accept
H1

H0

Perhaps select events

with ‗cuts‘:
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Other ways to select events

Or maybe use some other sort of decision boundary:

accept

H1

H0

accept

H1

H0

linear or nonlinear

How can we do this in an ‗optimal‘ way?
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Test statistics

Construct a ‗test statistic‘ of lower dimension (e.g. scalar)

We can work out the pdfs

Goal is to compactify data without losing ability to discriminate

between hypotheses.

Decision boundary is now a 

single ‗cut‘ on t.

This effectively divides the 

sample space into two regions, 

where we accept or reject H0

and thus defines a statistical test.
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Significance level and power

Probability to reject H0 if it is true 

(type-I error):

(significance level)

Probability to accept H0 if H1 is 

true (type-II error):

(1 - b = power)
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Signal/background efficiency

Probability to reject background hypothesis for 

background event (background efficiency):

Probability to accept a signal event

as signal (signal efficiency):
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Purity of event selection

Suppose only one background type b; overall fractions of signal

and background events are ps and pb (prior probabilities).

Suppose we select events with t < tcut.  What is the

‗purity‘ of our selected sample?

Here purity means the probability to be signal given that

the event was accepted.  Using Bayes‘ theorem we find:

So the purity depends on the prior probabilities as well as on the

signal and background efficiencies.
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Constructing a test statistic

How can we select events in an ‗optimal way‘?

Neyman-Pearson lemma states:

To get the highest es for a given eb (highest power for a given 

significance level), choose acceptance region such that

where c is a constant which determines es.

Equivalently, optimal scalar test statistic is

N.B. any monotonic function of this is leads to the same test.
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Proof of Neyman-Pearson lemma

We want to determine the critical region W that maximizes the 

power

subject to the constraint

First, include in W all points where P(x|H0) = 0, as they contribute

nothing to the size, but potentially increase the power.
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Proof of Neyman-Pearson lemma (2)

For P(x|H0) ≠ 0 we can write the power as

The ratio of 1 – b to a is therefore

which is the average of the likelihood ratio P(x|H1) / P(x|H0)  over

the critical region W, assuming H0.

(1 – b) / a is thus maximized if W contains the part of the sample

space with the largest values of the likelihood ratio.
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Purity vs. efficiency — optimal trade-off

Consider selecting n events:

expected numbers s from signal, b from background;

→ n ~ Poisson (s + b)

Suppose b is known and goal is to estimate s with minimum 

relative statistical error.

Take as estimator:

Variance of Poisson variable equals its mean, therefore

→

So we should maximize 

equivalent to maximizing product of signal efficiency  purity.
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Two distinct event selection problems

In some cases, the event types in question are both known to exist.

Example:  separation of different particle types (electron vs muon)

Use the selected sample for further study.

In other cases, the null hypothesis H0 means "Standard Model" events,

and the alternative H1 means "events of a type whose existence is

not yet established" (to do so is the goal of the analysis).

Many subtle issues here, mainly related to the heavy burden

of proof required to establish presence of a new phenomenon.

Typically require p-value of background-only hypothesis 

below ~ 10-7 (a 5 sigma effect) to claim discovery of 

"New Physics".
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Using test for discovery

y

f(y)

y

N(y)

Normalized to unity Normalized to expected 
number of events

excess?

signal

background background

search
region

Discovery = number of events found in search region incompatible
with background-only hypothesis.

p-value of background-only hypothesis can depend crucially 
distribution f(y|b) in the "search region".

y
cut
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Multivariate methods

Many new (and some old) methods for determining test:

Fisher discriminant

Neural networks

Kernel density methods

Support Vector Machines

Decision trees

Boosting

Bagging

New software for HEP, e.g.,

TMVA , Höcker, Stelzer, Tegenfeldt, Voss, Voss, physics/0703039

More on this in the lectures by Kegl, Feindt, Hirshbuehl, Coadou.

For the rest of these lectures, I will focus on other aspects of 

tests, e.g., discovery significance and exclusion limits.
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Testing significance / goodness-of-fit

Suppose hypothesis H predicts pdf 

observations

for a set of

We observe a single point in this space:

What can we say about the validity of H in light of the data?

Decide what part of the 

data space represents less 

compatibility with H than 

does the point less 

compatible

with H

more 

compatible

with H

(Not unique!)



G. Cowan S0S 2010 / Statistical Tests and Limits Lecture 1  page 26

p-values

where p (H) is the prior probability for H.

Express level of agreement between data and hypothesis by 

giving the p-value for H:

p = probability, under assumption of H, to observe data with 

equal or lesser compatibility with H relative to the data we got. 

This is not the probability that H is true!

In frequentist statistics we don‘t talk about P(H) (unless H

represents a repeatable observation). In Bayesian statistics we do; 

use Bayes‘ theorem to obtain

For now stick with the frequentist approach; 

result is p-value, regrettably easy to misinterpret as P(H).
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p-value example:  testing whether a coin is ‗fair‘

i.e. p = 0.0026 is the probability of obtaining such a bizarre

result (or more so) ‗by chance‘, under the assumption of H.

Probability to observe n heads in N coin tosses is binomial:

Hypothesis H:  the coin is fair (p = 0.5).

Suppose we toss the coin N = 20 times and get n = 17 heads.

Region of data space with equal or lesser compatibility with 

H relative to n = 17 is:  n = 17, 18, 19, 20, 0, 1, 2, 3.  Adding

up the probabilities for these values gives:
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The significance of an observed signal

Suppose we observe n events; these can consist of:

nb events from known processes (background)

ns events from a new process (signal)

If ns, nb are Poisson r.v.s with means s, b, then n = ns + nb

is also Poisson, mean = s + b:

Suppose b = 0.5, and we observe nobs = 5.  Should we claim

evidence for a new discovery?  

Give p-value for hypothesis s = 0:
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Significance from p-value

Often define significance Z as the number of standard deviations

that a Gaussian variable would fluctuate in one direction

to give the same p-value.

1 - TMath::Freq

TMath::NormQuantile

S0S 2010 / Statistical Tests and Limits
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The significance of a peak

Suppose we measure a value 

x for each event and find:

Each bin (observed) is a

Poisson r.v., means are

given by dashed lines.

In the two bins with the peak, 11 entries found with b = 3.2.

The p-value for the s = 0 hypothesis is:
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The significance of a peak (2)

But... did we know where to look for the peak?

→ give P(n ≥ 11) in any 2 adjacent bins

Is the observed width consistent with the expected x resolution?

→ take x window several times the expected resolution

How many bins  distributions have we looked at?

→ look at a thousand of them, you‘ll find a 10-3 effect

Did we adjust the cuts to ‗enhance‘ the peak?

→ freeze cuts, repeat analysis with new data

How about the bins to the sides of the peak... (too low!)

Should we publish????
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When to publish

HEP folklore is to claim discovery when p = 2.9  10-7,

corresponding to a significance Z = 5.

This is very subjective and really should depend on the 

prior probability of the phenomenon in question, e.g.,

phenomenon        reasonable p-value for discovery

D0D0 mixing ~0.05

Higgs ~ 10-7 (?)

Life on Mars ~10-10

Astrology ~10-20

One should also consider the degree to which the data are

compatible with the new phenomenon, not only the level of

disagreement with the null hypothesis; p-value is only first step!

S0S 2010 / Statistical Tests and Limits



page 33

Prototype search analysis 

Search for signal in a region of phase space; result is histogram

of some variable x giving numbers:

Assume the ni are Poisson distributed with expectation values

G. Cowan S0S 2010 / Statistical Tests and Limits

signal

where

background

strength parameter

Expected Performance of the ATLAS Experiment:  Detector, 

Trigger and Physics, arXiv:0901.0512, CERN-OPEN-2008-20.
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Prototype analysis (II)

Often also have a subsidiary measurement that constrains some

of the background and/or shape parameters:

Assume the mi are Poisson distributed with expectation values

G. Cowan S0S 2010 / Statistical Tests and Limits

nuisance parameters (qs, qb,btot)

Likelihood function is
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The profile likelihood ratio

Base significance test on the profile likelihood ratio:

G. Cowan S0S 2010 / Statistical Tests and Limits

maximizes L for

specified m

maximize L

The likelihood ratio gives optimum test between two point 

hypotheses (Neyman-Pearson lemma).

Should be near-optimal in present analysis with

variable m and nuisance parameters q.
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Test statistic for discovery

Try to reject background-only (m = 0) hypothesis using

G. Cowan S0S 2010 / Statistical Tests and Limits

Large q0 means increasing incompatibility between the data

and hypothesis, therefore p-value for an observed q0,obs is

will get formula for this later

i.e. only regard upward fluctuation of data as evidence against

the background-only hypothesis.
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p-value for discovery
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Large q0 means increasing incompatibility between the data

and hypothesis, therefore p-value for an observed q0,obs is

will get formula for this later

From p-value get 

equivalent significance,
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Expected (or median) significance / sensitivity

When planning the experiment, we want to quantify how sensitive

we are to a potential discovery, e.g., by given median significance

assuming some nonzero strength parameter m ′.

G. Cowan S0S 2010 / Statistical Tests and Limits

So for p-value, need f(q0|0), for sensitivity, will need f(q0|m ′), 
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Wald approximation for profile likelihood ratio

To find p-values, we need:

For median significance under alternative, need:

G. Cowan S0S 2010 / Statistical Tests and Limits

Use approximation due to Wald (1943)

sample size
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Noncentral chi-square for -2lnl(m)

G. Cowan S0S 2010 / Statistical Tests and Limits

If we can neglect the O(1/√N) term, -2lnl(m) follows a

noncentral chi-square distribution for one degree of freedom

with noncentrality parameter

As a special case, if m′ = m then L = 0 and -2lnl(m) follows

a chi-square distribution for one degree of freedom (Wilks).
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Distribution of q0

Assuming the Wald approximation, we can write down the full 

distribution of q0 as

G. Cowan S0S 2010 / Statistical Tests and Limits

The special case m′ = 0 is a ―half chi-square‖ distribution: 
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Cumulative distribution of q0, significance

From the pdf, the cumulative distribution of q0 is found to be 
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The special case m′ = 0 is 

The p-value of the m = 0 hypothesis is

Therefore the discovery significance Z is simply
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The Asimov data set

To estimate median value of -2lnl(m), consider special data set

where all statistical fluctuations suppressed and ni, mi are replaced

by their expectation values (the ―Asimov‖ data set):
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Asimov value of

-2lnl(m) gives non-

centrality param. L,

or equivalently, s
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Relation between test statistics and 

G. Cowan S0S 2010 / Statistical Tests and Limits
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Higgs search with profile likelihood

Combination of Higgs boson search channels (ATLAS)

Expected Performance of the ATLAS Experiment:  Detector, 

Trigger and Physics, arXiv:0901.0512, CERN-OPEN-2008-20.

Standard Model Higgs channels considered (more to be used later):

H → gg

H → WW (*) → enmn

H → ZZ(*) → 4l (l = e, m)

H → t+t- → ll, lh

Used profile likelihood method for systematic uncertainties:

background rates, signal & background shapes.
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An example: ATLAS Higgs search
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(ATLAS Collab., CERN-OPEN-2008-020)
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Cumulative distributions of q0
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To validate to 5s level, need distribution out to q0 = 25,

i.e., around 108 simulated experiments.

Will do this if we really see something like a discovery.
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Combined discovery significance

Discovery signficance 

(in colour) vs. L, mH:

Approximations used here not 

always accurate for L < 2 fb-1

but in most cases conservative.
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Discovery significance for n ~ Poisson(s + b)

Consider again the case  where we observe n events ,

model as following Poisson distribution with mean s + b

(assume b is known).

1) For an observed n, what is the significance Z0 with which

we would reject the s = 0 hypothesis?

2) What is the expected (or more precisely, median ) Z0 if 

the true value of the signal rate is s?
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Gaussian approximation for Poisson significance

For large s + b, n → x ~ Gaussian(m,s) , m = s + b, s = √(s + b).

For observed value xobs, p-value of s = 0 is Prob(x > xobs | s = 0),:

Significance for rejecting s = 0 is therefore

Expected (median) significance assuming signal rate s is
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Better approximation for Poisson significance

Likelihood function for parameter s is

or equivalently the log-likelihood is

Find the maximum by setting 

gives the estimator for s: 
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Approximate Poisson significance (continued)

The likelihood ratio statistic for testing s = 0 is

For sufficiently large s + b, (use Wilks‘ theorem), 

To find median[Z0|s+b], let n → s + b, 

This reduces to s/√b for s << b.
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Wrapping up lecture 1

General framework of a statistical test:

Divide data spaced into two regions; depending on

where data are then observed, accept or reject hypothesis. 

Properties:

significance level (rate of Type-I error)

power (one minus rate of Type-II error)

Significance tests (also for goodness-of-fit):

p-value = probability to see level of incompatibility

between data and hypothesis equal to or greater than

level found with the actual data.



G. Cowan S0S 2010 / Statistical Tests and Limits Lecture 1  page 54

Extra slides
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Pearson‘s c2 statistic

Test statistic for comparing observed data

(ni independent) to predicted mean values

For ni ~ Poisson(ni) we have V[ni] = ni, so this becomes 

(Pearson‘s c2

statistic)

c2 = sum of squares of the deviations of the ith measurement from 

the ith prediction, using si as the ‗yardstick‘ for the comparison.
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Pearson‘s c2 test

If ni are Gaussian with mean ni and std. dev. si, i.e., ni ~ N(ni , si
2), 

then Pearson‘s c2 will follow the c2 pdf (here for c2 = z):

If the ni are Poisson with ni >> 1 (in practice OK for ni > 5)

then the Poisson dist. becomes Gaussian and therefore Pearson‘s

c2 statistic here as well follows the c2 pdf.

The c2 value obtained from the data then gives the p-value:
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The ‗c2 per degree of freedom‘

Recall that for the chi-square pdf for N degrees of freedom,

This makes sense:  if the hypothesized ni are right, the rms 

deviation of ni from ni is si, so each term in the sum contributes ~ 1.

One often sees c2/N reported as a measure of goodness-of-fit.

But...  better to give c2and N separately.  Consider, e.g.,

i.e. for N large, even a c2 per dof only a bit greater than one can

imply a small p-value, i.e., poor goodness-of-fit.
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Pearson‘s c2 with multinomial data

If is fixed, then we might model ni ~ binomial 

I.e. with pi = ni / ntot. ~ multinomial.

In this case we can take Pearson‘s c2 statistic to be

If all pi ntot >> 1 then this will follow the chi-square pdf for

N - 1 degrees of freedom.
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Example of a c2 test

← This gives

for N = 20 dof.

Now need to find p-value, but... many bins have few (or no)

entries, so here we do not expect c2 to follow the chi-square pdf.
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Using MC to find distribution of c2 statistic 

The Pearson c2 statistic still reflects the level of agreement 

between data and prediction, i.e., it is still a ‗valid‘ test statistic.

To find its sampling distribution, simulate the data with a

Monte Carlo program:

Here data sample simulated 106

times.  The fraction of times we 

find c2 > 29.8 gives the  p-value:

p = 0.11

If we had used the chi-square pdf

we would find p = 0.073.


