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Interval estimation — introduction

Often use +/- the estimated standard deviation of the estimator.

In some cases, however, this is not adequate:

estimate near a physical boundary, 

e.g., an observed event rate consistent with zero.

In addition to a ‗point estimate‘ of a parameter we should report 

an interval reflecting its statistical uncertainty.  

Desirable properties of such an interval may include:

communicate objectively the result of the experiment;

have a given probability of containing the true parameter;

provide information needed to draw conclusions about

the parameter possibly incorporating stated prior beliefs.

We will look at both Frequentist and Bayesian intervals.
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Frequentist confidence intervals

Consider an estimator for a parameter q and an estimate

We also need for all possible q its sampling distribution

Specify upper and lower tail probabilities, e.g., a = 0.05, b = 0.05,

then find functions ua(q) and vb(q) such that:
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Confidence interval from the confidence belt

Find points where observed 

estimate intersects the 

confidence belt.  

The region between ua(q) and vb(q) is called the confidence belt.

This gives the confidence interval [a, b]

Confidence level = 1 - a - b = probability for the interval to

cover true value of the parameter (holds for any possible true q).
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Confidence intervals by inverting a test

Confidence intervals for a parameter q can be found by 

defining a test of the hypothesized value q (do this for all q): 

Specify values of the data that are ‗disfavoured‘ by q

(critical region) such that P(data in critical region) ≤ g

for a prespecified g, e.g., 0.05 or 0.1.

If data observed in the critical region, reject the value q .

Now invert the test to define a confidence interval as:

set of q values that would not be rejected in a test of

size g (confidence level is 1 - g ).

The interval will cover the true value of q with probability ≥ 1 - g.

Equivalent to confidence belt construction; confidence belt is 

acceptance region of a test.

G. Cowan 
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Relation between confidence interval and p-value

Equivalently we can consider a significance test for each

hypothesized value of q, resulting in a p-value, pq..  

If pq < g, then we reject q. 

The confidence interval at CL = 1 – g consists of those values of 

q that are not rejected.

E.g. an upper limit on q is the greatest value for which pq ≥ g. 

In practice find by setting pq = g and solve for q.

G. Cowan 
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Confidence intervals in practice

The recipe to find the interval [a, b] boils down to solving

→ a is hypothetical value of q such that 

→ b is hypothetical value of q such that
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Meaning of a confidence interval
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Central vs. one-sided confidence intervals
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Intervals from the likelihood function 

In the large sample limit it can be shown for ML estimators:

defines a hyper-ellipsoidal confidence region,

If then

(n-dimensional Gaussian, covariance V)
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Distance between estimated and true q
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Approximate confidence regions from L(q ) 

So the recipe to find the confidence region with CL = 1-g is:

For finite samples, these are approximate confidence regions.

Coverage probability not guaranteed to be equal to 1-g ;

no simple theorem to say by how far off it will be (use MC).

Remember here the interval is random, not the parameter.
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Example of interval from ln L(q ) 

For n=1 parameter, CL = 0.683, Qg = 1.
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Setting limits:  Poisson data with background

Count n events, e.g., in fixed time or integrated luminosity.

s = expected number of signal events

b = expected number of background events

n ~ Poisson(s+b):

Suppose the number of events found is roughly equal to the

expected number of background events, e.g., b = 4.6 and we 

observe nobs = 5 events.

The evidence for the presence of signal events is not

statistically significant,

→ set upper limit on the parameter s, taking

into consideration any uncertainty in b.
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Upper limit for Poisson parameter

Find the hypothetical value of s such that there is a given small

probability, say, g = 0.05, to find as few events as we did or less:

Solve numerically for s = sup, this gives an upper limit on s at a

confidence level of 1-g.

Example:  suppose b = 0 and we find nobs = 0.  For 1-g = 0.95,

→
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Calculating Poisson parameter limits

To solve for slo, sup, can exploit relation to c2 distribution:

Quantile of c2 distribution

For low fluctuation of n this 

can give negative result for sup; 

i.e. confidence interval is empty.
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Limits near a physical boundary

Suppose e.g. b = 2.5 and we observe n = 0.  

If we choose CL = 0.9, we find from the formula for sup

Physicist:  

We already knew s ≥ 0 before we started; can‘t use negative 

upper limit to report result of expensive experiment!

Statistician:

The interval is designed to cover the true value only 90%

of the time — this was clearly not one of those times.

Not uncommon dilemma when limit of parameter is close to a 

physical boundary, cf. mn estimated using E2 - p2 . 
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Expected limit for s = 0

Physicist:  I should have used CL = 0.95 — then sup = 0.496

Even better:  for CL = 0.917923 we get sup = 10-4 !

Reality check:  with b = 2.5, typical Poisson fluctuation in n is

at least √2.5 = 1.6.  How can the limit be so low?

Look at the mean (or median) limit 

for the no-signal hypothesis (s = 0)

(sensitivity).

Distribution of 95% CL limits

with b = 2.5, s = 0.

Mean upper limit = 4.44
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Profile likelihood ratio for upper limits

For purposes of setting an upper limit on m use
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Note for purposes of setting an upper limit, one does not regard

an upwards fluctuation of the data as representing incompatibility

with the hypothesized m.

But in contrast to the CSC Higgs combination, here we are letting

the estimator for m go negative (à la Fayard, Andari et al.).
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Alternative test statistic for upper limits

Assume physical signal model has m > 0, therefore if estimator

for m comes out negative, the closest physical model has m = 0.

Therefore could also measure level of discrepancy between data 

and hypothesized m with

G. Cowan S0S 2010 / Statistical Tests and Limits -- lecture 2

This is in fact the test statistic used in the Higgs CSC combination.

Performance not identical to but very close to qm (of previous slide).

qm is in certain ways simpler (hence preferred).
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Relation between test statistics and       
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Similarly, qm and qm also have monotonic relation with m. 
~ ˆ

And therefore quantiles

of qm, qm can be obtained

directly from those 

of m (which is Gaussian).ˆ

̃
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Distribution of qm

Similar results for qm
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Distribution of qm
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Similar results for qm̃

̃
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An example
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O. Vitells,

E. Gross
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The Bayesian approach

In Bayesian statistics need to start with ‗prior pdf‘ p(q), this 

reflects degree of belief about q before doing the experiment.

Bayes‘ theorem tells how our beliefs should be updated in

light of the data x:

Integrate posterior pdf p(q | x) to give interval with any desired

probability content.  

For e.g. Poisson parameter 95% CL upper limit from
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Bayesian prior for Poisson parameter

Include knowledge that s ≥0 by setting prior p(s) = 0 for s<0.

Often try to reflect ‗prior ignorance‘ with e.g. 

Not normalized but this is OK as long as L(s) dies off for large s.

Not invariant under change of parameter — if we had used instead

a flat prior for, say, the mass of the Higgs boson, this would 

imply a non-flat prior for the expected number of Higgs events.

Doesn‘t really reflect a reasonable degree of belief, but often used

as a point of reference;

or viewed as a recipe for producing an interval whose frequentist

properties can be studied (coverage will depend on true s). 
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Bayesian interval with flat prior for s

Solve numerically to find limit sup.

For special case b = 0, Bayesian upper limit with flat prior

numerically same as classical case (‗coincidence‘). 

Otherwise Bayesian limit is

everywhere greater than

classical (‗conservative‘).

Never goes negative.

Doesn‘t depend on b if n = 0.
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Priors from formal rules 
Because of difficulties in encoding a vague degree of belief

in a prior, one often attempts to derive the prior from formal rules,

e.g., to satisfy certain invariance principles or to provide maximum

information gain for a certain set of measurements.

Often called ―objective priors‖ 

Form basis of Objective Bayesian Statistics

The priors do not reflect a degree of belief (but might represent

possible extreme cases).   In a Subjective Bayesian analysis, using 

objective priors is an important part of the sensitivity analysis.

In Objective Bayesian analysis, can use the intervals in a

frequentist way, i.e., regard Bayes‘ theorem as a recipe to produce

an interval with certain coverage properties.  For a review see:
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Jeffreys‘ prior

According to Jeffreys’ rule, take prior according to

where

is the Fisher information matrix.

One can show that this leads to inference that is invariant under

a transformation of parameters.

For a Gaussian mean, the Jeffreys prior is constant; for a Poisson 

mean m it is proportional to 1/√m. 
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Likelihood ratio limits (Feldman-Cousins)

Define likelihood ratio for hypothesized parameter value s:

Here       is the ML estimator, note 

Critical region defined by low values of likelihood ratio.

Resulting intervals can be one- or two-sided (depending on n).

(Re)discovered for HEP by Feldman and Cousins, 

Phys. Rev. D 57 (1998) 3873.
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More on intervals from LR test (Feldman-Cousins)

Caveat with coverage: suppose we find  n >> b.

Usually one then quotes a measurement:

If, however, n isn‘t large enough to claim discovery, one

sets a limit on s.

FC pointed out that if this decision is made based on n, then

the actual coverage probability of the interval can be less than

the stated confidence level (‗flip-flopping‘).

FC intervals remove this, providing a smooth transition from

1- to 2-sided intervals, depending on  n.

But, suppose FC gives e.g. 0.1 < s < 5 at 90% CL, 

p-value of s=0 still substantial.  Part of upper-limit ‗wasted‘?
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Properties of upper limits

Upper limit sup vs. n Mean upper limit vs. s

Example:  take b = 5.0, 1 - g = 0.95



G. Cowan S0S 2010 / Statistical Tests and Limits -- lecture 2 34

Upper limit versus b

If n = 0 observed, should upper limit depend on b?

Classical:  yes

Bayesian:  no

FC:  yes

Feldman & Cousins, PRD 57 (1998) 3873
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Coverage probability of intervals

Because of discreteness of Poisson data, probability for interval

to include true value in general > confidence level (‗over-coverage‘)
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Wrapping up lecture 2

In large sample limit and away from physical boundaries, 

+/- 1 standard deviation is all you need for 68% CL.

Frequentist confidence intervals

Complicated!  Random interval that contains true

parameter with fixed probability.

Can be obtained by inversion of a test; freedom left

as to choice of test.

Log-likelihood can be used to determine approximate

confidence intervals (or regions)

Bayesian intervals

Conceptually easy — just integrate posterior pdf.

Requires choice of prior.



G. Cowan S0S 2010 / Statistical Tests and Limits -- lecture 2 37

Extra slides


