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Likelihood ratio limits (Feldman-Cousins)

Define likelihood ratio for hypothesized parameter, e.g., for

expected number of signal events s:

Here       is the ML estimator, note 

Critical region defined by low values of likelihood ratio.

Resulting intervals can be one- or two-sided (depending on n).

(Re)discovered for HEP by Feldman and Cousins, 

Phys. Rev. D 57 (1998) 3873.
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Upper limit versus b

If n = 0 observed, should upper limit depend on b?

Classical:  yes

FC:  yes, but less so

Feldman & Cousins, PRD 57 (1998) 3873

Feldman-Cousins ―Classical‖
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More on intervals from LR test (Feldman-Cousins)

Caveat with coverage: suppose we find  n >> b.

Usually one then quotes a measurement:

If, however, n isn‘t large enough to claim discovery, one

sets a limit on s.

FC pointed out that if this decision is made based on n, then

the actual coverage probability of the interval can be less than

the stated confidence level (‗flip-flopping‘).

FC intervals remove this, providing a smooth transition from

1- to 2-sided intervals, depending on  n.

But, suppose FC gives e.g. 0.1 < s < 5 at 90% CL, 

p-value of s=0 still substantial.  Part of upper-limit ‗wasted‘?

For this reason, one-sided intervals for limits still popular.



G. Cowan SOS 2010 / Statistical Tests and Limits -- lecture 3 6

The Bayesian approach to limits

In Bayesian statistics need to start with ‗prior pdf‘ p(q), this 

reflects degree of belief about q before doing the experiment.

Bayes‘ theorem tells how our beliefs should be updated in

light of the data x:

Integrate posterior pdf p(q | x) to give interval with any desired

probability content.  

For e.g. Poisson parameter 95% CL upper limit from



G. Cowan SOS 2010 / Statistical Tests and Limits -- lecture 3 7

Bayesian prior for Poisson parameter

Include knowledge that s ≥0 by setting prior p(s) = 0 for s<0.

Often try to reflect ‗prior ignorance‘ with e.g. 

Not normalized but this is OK as long as L(s) dies off for large s.

Not invariant under change of parameter — if we had used instead

a flat prior for, say, the mass of the Higgs boson, this would 

imply a non-flat prior for the expected number of Higgs events.

Doesn‘t really reflect a reasonable degree of belief, but often used

as a point of reference;

or viewed as a recipe for producing an interval whose frequentist

properties can be studied (coverage will depend on true s). 
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Bayesian interval with flat prior for s

Solve numerically to find limit sup.

For special case b = 0, Bayesian upper limit with flat prior

numerically same as classical case (‗coincidence‘). 

Otherwise Bayesian limit is

everywhere greater than

classical (‗conservative‘).

Never goes negative.

Doesn‘t depend on b if n = 0.
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Priors from formal rules 

Because of difficulties in encoding a vague degree of belief

in a prior, one often attempts to derive the prior from formal rules,

e.g., to satisfy certain invariance principles or to provide maximum

information gain for a certain set of measurements.

Often called ―objective priors‖ 

Form basis of Objective Bayesian Statistics

The priors do not reflect a degree of belief (but might represent

possible extreme cases).   

In a Subjective Bayesian analysis, using  objective priors can be an 

important part of the sensitivity analysis.
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Priors from formal rules (cont.) 

In Objective Bayesian analysis, can use the intervals in a

frequentist way, i.e., regard Bayes‘ theorem as a recipe to produce

an interval with certain coverage properties.  For a review see:

Formal priors have not been widely used in HEP, but there is

recent interest in this direction; see e.g.

L. Demortier, S. Jain and H. Prosper, Reference priors for high

energy physics, arxiv:1002.1111 (Feb 2010)
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Jeffreys‘ prior

According to Jeffreys’ rule, take prior according to

where

is the Fisher information matrix.

One can show that this leads to inference that is invariant under

a transformation of parameters.

For a Gaussian mean, the Jeffreys‘ prior is constant; for a Poisson 

mean m it is proportional to 1/√m. 
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Jeffreys‘ prior for Poisson mean

Suppose n ~ Poisson(m).  To find the Jeffreys‘ prior for m,

So e.g. for m = s + b, this means the prior p(s) ~ 1/√(s + b), which 

depends on b.  But this is not designed as a degree of belief  about s.
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Properties of upper limits

Upper limit sup vs. n Mean upper limit vs. s

Example:  take b = 5.0, 1 -  = 0.95
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Coverage probability of intervals

Because of discreteness of Poisson data, probability for interval

to include true value in general > confidence level (‗over-coverage‘)
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The ―CLs‖ issue

When the cross section for the signal process becomes small 

(e.g., large Higgs mass), the distribution of the test variable used 

in a search becomes the same under both the b and s+b hypotheses: 

In such a case we will reject the signal hypothesis with a

probability approaching a = 1 – CL (i.e. 5%) assuming no signal.

f (q| b)    

f (q| s+b)    
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The CLs solution

The CLs solution (A. Read et al.) is to base the test not on

the usual p-value (CLs+b), but rather to divide this by CLb

(one minus the background of the b-only hypothesis, i.e.,

Define:

Reject signal 

hypothesis if: Reduces ―effective‖ p-value  when the two

distributions become close (prevents 

exclusion if sensitivity is low).

f (q| b)    

q

f (q| s+b)    
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CLs discussion

In the CLs method the p-value is reduced according to the

recipe

Statistics community does not smile upon ratio of p-values;

would prefer to regard parameter m as excluded if:

(a) p-value of m < 0.05

(b) power of test of m with respect to background-only

> some threshold (0.5?)

Needs study.  In any case should produce CLs result for purposes

of comparison with other experiments.
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Systematic errors and nuisance parameters

Model prediction (including e.g. detector effects) 

never same as "true prediction" of the theory:

x

y model:  

truth:

Model can be made to approximate better the truth by including

more free parameters.

systematic uncertainty ↔ nuisance parameters
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Nuisance parameters and  limits

In general we don‘t know the background b perfectly.

Suppose we have a measurement 

of b,   e.g.,  bmeas ~ N (b, b)

So the data are really: n events 

and the value bmeas. 

In principle the exact confidence 

interval recipe can be generalized to 

multiple parameters, minimum 

coverage guaranteed.

Difficult because of overcoverage; see 

e.g. talks by K. Cranmer at 

PHYSTAT03 and  by G. Punzi at 

PHYSTAT05.

G. Punzi, PHYSTAT05

G. Cowan SOS 2010 / Statistical Tests and Limits -- lecture 3



G. Cowan SOS 2010 / Statistical Tests and Limits -- lecture 3 page 20

Nuisance parameters in limits (2)

Connect systematic to nuisance parameters n.  Then form e.g.

Profile likelihood:  

Marginal likelihood:

and use these to construct e.g. likelihood ratios for tests.

Coverage not guaranteed for all values of the nuisance params.

Results of both approaches above often similar, but some

care is needed in writing down prior; this should truly reflect one‘s

degree of belief about the parameters.
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Nuisance parameters and profile likelihood 

Suppose model has likelihood function

Parameters of interest Nuisance parameters

Define the profile likelihood ratio as

Maximizes L for 

given value of m

Maximizes L

l(m) reflects level of agreement between data and m  (0 ≤ l(m) ≤ 1)

Equivalently use qm = -2 ln l(m)
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p-value from profile likelihood ratio 

Large qm means worse agreement between data and m

p-value = Prob(data with ≤ compatibility with m when 

compared to the data we got | m)

rapidly approaches chi-square pdf 

(Wilks‘ theorem)

chi-square cumulative

distribution, degrees of

freedom = dimension of m

Reject m if pm <  = 1 – CL

(Approx.) confidence interval for m = set of m values not rejected.

Coverage not exact for all n but very good if 
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Cousins-Highland method 

Regard b as ‗random‘, characterized by pdf p(b).

Makes sense in Bayesian approach, but in frequentist 

model b is constant (although unknown).

A measurement bmeas is random but this is not the mean

number of background events, rather, b is.

Compute anyway

This would be the probability for n if Nature were to generate

a new value of b upon repetition of the experiment with pb(b).

Now e.g. use this P(n;s) in the classical recipe for upper limit

at CL = 1 - b:

Result has hybrid Bayesian/frequentist character.
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Marginal likelihood in LR tests

Consider again signal s and background b, suppose we have

uncertainty in b characterized by a prior pdf pb(b).

Define marginal likelihood as

also called modified profile likelihood, in any case not

a real likelihood.

Now use this to construct likelihood ratio test and invert

to obtain confidence intervals.

Feldman-Cousins  & Cousins-Highland (FHC2), see e.g.

J. Conrad et al., Phys. Rev. D67 (2003) 012002 and 

Conrad/Tegenfeldt PHYSTAT05 talk.

Calculators available (Conrad, Tegenfeldt, Barlow).
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Comment on profile likelihood

Suppose originally we measure x, likelihood is L(x|q).

To cover a systematic, we enlarge model to include a nuisance

parameter n, new model is L(x|q,n).

To use profile likelihood, data must constrain the nuisance

parameters, otherwise suffer loss of accuracy in parameters of

interest.

Can e.g. use a separate measurement to constrain n, e.g., with

likelihood L(y|n).  This becomes part of the full likelihood, i.e., 
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Comment on marginal likelihood

When using a prior to reflect knowledge of n, often one treats

this as coming from the measurement y, i.e.,

original prior,

Then the marginal likelihood is

So here L in the integrand does not include the information

from the measurement y; this is included in the prior.
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Bayesian limits with uncertainty on b

Uncertainty on b goes into the prior, e.g.,

Put this into Bayes‘ theorem,

Marginalize over b, then use p(s|n) to find intervals for s

with any desired probability content.

Framework for treatment of nuisance parameters well defined;

choice of prior can still be problematic, but often less so than

finding a ―non-informative‖ prior for a parameter of interest.
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Bayesian model selection (‗discovery‘)

no Higgs

Higgs

The probability of hypothesis H0 relative to an alternative H1 is 

often given by the posterior odds:

Bayes factor B01 prior odds

The Bayes factor is regarded as measuring the weight of 

evidence of the data in support of H0 over H1.

Interchangeably use B10 = 1/B01
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Assessing Bayes factors

One can use the Bayes factor much like a p-value (or Z value).

There is an ―established‖ scale, analogous to our 5 rule:

B10 Evidence against H0

--------------------------------------------

1 to 3 Not worth more than a bare mention

3 to 20 Positive

20 to 150 Strong

> 150 Very strong

Kass and Raftery, Bayes Factors, J. Am Stat. Assoc 90 (1995) 773.

Will this be adopted in HEP?
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Rewriting the Bayes factor

Suppose we have models Hi, i = 0, 1, ...,

each with a likelihood

and a prior pdf for its internal parameters 

so that the full prior is

where                         is the overall prior probability for Hi. 

The Bayes factor comparing Hi and Hj can be written 
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Bayes factors independent of P(Hi)

For Bij we need the posterior probabilities marginalized over

all of the internal parameters of the models:

Use Bayes

theorem

So therefore the Bayes factor is

The prior probabilities pi = P(Hi) cancel.

Ratio of  marginal 

likelihoods
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Numerical determination of Bayes factors

Both numerator and denominator of Bij are of the form

‗marginal likelihood‘

Various ways to compute these, e.g., using sampling of the 

posterior pdf (which we can do with MCMC).

Harmonic Mean (and improvements)

Importance sampling

Parallel tempering (~thermodynamic integration)

Nested sampling

...

See e.g. 



G. Cowan SOS 2010 / Statistical Tests and Limits -- lecture 3 page 34

Harmonic mean estimator

E.g., consider only one model and write Bayes theorem as:

p(q) is normalized to unity so integrate both sides,

Therefore sample q from the posterior via MCMC and estimate m

with one over the average of 1/L (the harmonic mean of L).

posterior

expectation
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Improvements to harmonic mean estimator

The harmonic mean estimator is numerically very unstable;

formally infinite variance (!).  Gelfand & Dey propose variant:

Rearrange Bayes thm; multiply 

both sides by arbitrary pdf f(q):

Integrate over q :

Improved convergence if tails of f(q) fall off faster than L(x|q)p(q)

Note harmonic mean estimator is special case f(q) = p(q).

.
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Importance sampling

Need pdf f(q) which we can evaluate at arbitrary q and also

sample with MC.

The marginal likelihood can be written

Best convergence when f(q) approximates shape of L(x|q)p(q).

Use for f(q) e.g. multivariate Gaussian with mean and covariance

estimated from posterior (e.g. with MINUIT).
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p-values versus Bayes factors

Current convention:  p-value of background-only < 2.9 × 10-7 (5 )

This should really depend also on other factors:

Plausibility of signal

Confidence in modeling of background

Can also use Bayes factor

Should hopefully point to same conclusion as p-value.

If not, need to understand why!

As yet not widely used in HEP, numerical issues not easy.
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Summary
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Bayesian approach to setting limits is straightfoward; all 

information about the parameter is in the posterior probability, 

integrate this to get intervals with given probability.

Difficult to find appropriate ―non-informative‖ prior.

Often use Bayesian approach as a recipe for producing

interval, then study it in a frequentist way (e.g. coverage)

The key to treating systematic uncertainties is to include in the

model enough parameters so that it is correct (or very close).

But too many parameters degrades information on 

parameters of interest

Bayesian model selection

Bayes factor = posterior odds if prior odds = 1.

Only requires priors for internal parameters of models.

Can be very difficult to compute numerically.


