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Outline of lectures

Day #1:  Introduction

Review of probability and Monte Carlo

Review of statistics:  parameter estimation

Day #2:  Multivariate methods (I)

Event selection as a statistical test

Cut-based, linear discriminant, neural networks      

Day #3:  Multivariate methods (II)

More multivariate classifiers:  BDT, SVM ,...

Day #4:  Significance tests for discovery and limits

Including systematics using profile likelihood

Day #5:  Bayesian methods

Bayesian parameter estimation and model selection
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Day #1:  outline

Probability and its role in data analysis

Definition, interpretation of probability

Bayes‟ theorem

Random variables and their properties

A catalogue of distributions

The Monte Carlo method

Parameter estimation

Method of maximum likelihood

Method of least squares
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Some statistics books, papers, etc. 

G. Cowan, Statistical Data Analysis, Clarendon, Oxford, 1998

see also www.pp.rhul.ac.uk/~cowan/sda

R.J. Barlow, Statistics: A Guide to the Use of Statistical Methods

in the Physical Sciences, Wiley, 1989

see also hepwww.ph.man.ac.uk/~roger/book.html

L. Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986

F. James., Statistical and Computational Methods in Experimental 

Physics, 2nd ed., World Scientific, 2006

S. Brandt, Statistical and Computational Methods in Data 

Analysis, Springer, New York, 1998 (with program library on CD)

C. Amsler et al. (Particle Data Group), Review of Particle Physics, 

Physics Letters B667 (2008) 1; see also pdg.lbl.gov sections on 

probability statistics, Monte Carlo
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Data analysis in particle physics 

Observe events of a certain type

Measure characteristics of each event (particle momenta,

number of muons, energy of jets,...)

Theories (e.g. SM) predict distributions of these properties

up to free parameters, e.g., a, GF, MZ, as, mH, ...

Some tasks of data analysis:

Estimate (measure) the parameters;

Quantify the uncertainty of the parameter estimates;

Test the extent to which the predictions of a theory are 

in agreement with the data (→ presence of New Physics?)

G. Cowan Statistical Methods in Particle Physics
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A definition of probability 

Consider a set S with subsets A, B, ...

Kolmogorov

axioms (1933)

Also define conditional probability:
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Interpretation of probability

I. Relative frequency

A, B, ... are outcomes of a repeatable experiment 

cf. quantum mechanics, particle scattering, radioactive decay...

II. Subjective probability

A, B, ... are hypotheses (statements that are true or false) 

•   Both interpretations consistent with Kolmogorov axioms.

• In particle physics  frequency interpretation often most useful,

but subjective probability can provide more natural treatment of 

non-repeatable phenomena:  

systematic uncertainties, probability that Higgs boson exists,...
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Bayes‟ theorem

From the definition of conditional probability we have

and

but , so

Bayes‟ theorem

First published (posthumously) by the

Reverend Thomas Bayes (1702−1761)

An essay towards solving a problem in the

doctrine of chances, Philos. Trans. R. Soc. 53

(1763) 370; reprinted in Biometrika, 45 (1958) 293.
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The law of total probability

Consider a subset B of 

the sample space S,

B ∩ Ai

Ai

B

S

divided into disjoint subsets Ai

such that [i Ai = S,

→

→

→ law of total probability

Bayes‟ theorem becomes

G. Cowan Statistical Methods in Particle Physics
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Random variables and probability density functions

A random variable is a numerical characteristic assigned to an 

element of the sample space; can be discrete or continuous.

Suppose outcome of experiment is continuous value x

→ f(x) = probability density function (pdf)

Or for discrete outcome xi with e.g. i = 1, 2, ... we have

x must be somewhere

probability mass function

x must take on one of its possible values

G. Cowan
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Cumulative distribution function

Probability to have outcome less than or equal to x is

cumulative distribution function

Alternatively define pdf with

G. Cowan
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Other types of probability densities

Outcome of experiment characterized by several values, 

e.g. an n-component vector, (x1, ... xn) 

Sometimes we want only pdf of some (or one) of the components

→ marginal pdf

→ joint pdf

Sometimes we want to consider some components as constant

→ conditional pdf

x1, x2 independent if 

G. Cowan
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Expectation values

Consider continuous r.v. x with pdf  f (x).  

Define expectation (mean) value as

Notation (often):                         ~ “centre of gravity” of pdf. 

For a function y(x) with pdf g(y), 

(equivalent)

Variance:

Notation:

Standard deviation:

s ~ width of pdf, same units as x.

G. Cowan
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Covariance and correlation

Define covariance cov[x,y] (also use matrix notation Vxy) as  

Correlation coefficient (dimensionless) defined as

If x, y, independent, i.e., ,   then

→ x and  y, „uncorrelated‟

N.B. converse not always true.

G. Cowan
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Correlation (cont.) 

G. Cowan
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Some distributions

Distribution/pdf Example use in HEP

Binomial Branching ratio

Multinomial Histogram with fixed N

Poisson Number of events found

Uniform Monte Carlo method

Exponential Decay time

Gaussian Measurement error

Chi-square Goodness-of-fit

Cauchy Mass of resonance

Landau Ionization energy loss

G. Cowan
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Binomial distribution

Consider N independent experiments (Bernoulli trials):

outcome of each is „success‟ or „failure‟,

probability of success on any given trial is p.

Define discrete r.v. n = number of successes (0 ≤ n ≤  N).

Probability of a specific outcome (in order), e.g. „ssfsf‟ is

But order not important; there are

ways (permutations) to get n successes in N trials, total 

probability for n is sum of probabilities for each permutation.

G. Cowan
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Binomial distribution  (2)

The binomial distribution is therefore

random

variable

parameters

For the expectation value and variance we find:

G. Cowan
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Binomial distribution  (3)

Binomial distribution for several values of the parameters:

Example:  observe N decays of W±,  the number n of which are 

W→mn is a binomial r.v., p = branching ratio.

G. Cowan
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Multinomial distribution

Like binomial but now m outcomes instead of two, probabilities are

For N trials we want the probability to obtain:

n1 of outcome 1,

n2 of outcome 2,



nm of outcome m.

This is the multinomial distribution for

G. Cowan



Statistical Methods in Particle Physics 21

Multinomial distribution (2)

Now consider outcome i as „success‟, all others as „failure‟.

→ all ni individually binomial with parameters N, pi

for all i

One can also find the covariance to be

Example:  represents a histogram

with m bins, N total entries, all entries independent.

G. Cowan
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Poisson distribution

Consider binomial n in the limit

→ n follows the Poisson distribution:

Example:  number of scattering events

n with cross section s found for a fixed

integrated luminosity, with

G. Cowan
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Uniform distribution

Consider a continuous r.v. x with -∞ < x < ∞ .  Uniform pdf is:

N.B.  For any r.v. x with cumulative distribution F(x),

y = F(x) is uniform in [0,1].

Example:  for p0 → gg, Eg is uniform in [Emin, Emax], with

2

G. Cowan
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Exponential distribution

The exponential pdf for the continuous r.v. x is defined by:

Example:  proper decay time t of an unstable particle

(t = mean lifetime)

Lack of memory (unique to exponential):

G. Cowan
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Gaussian distribution

The Gaussian (normal) pdf for a continuous r.v. x is defined by:

Special case: m = 0, s2 = 1   („standard Gaussian‟):

(N.B. often m, s2 denote

mean, variance of any

r.v., not only Gaussian.)

If y ~ Gaussian with m, s2, then  x = (y - m) /s follows  (x).

G. Cowan
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Gaussian pdf and the Central Limit Theorem

The Gaussian pdf is so useful because almost any random

variable that is a sum of a large number of small contributions

follows it.  This follows from the Central Limit Theorem:

For n independent r.v.s xi with finite variances si
2, otherwise

arbitrary pdfs, consider the sum

Measurement errors are often the sum of many contributions, so 

frequently measured values can be treated as Gaussian r.v.s.

In the limit n → ∞, y is a Gaussian r.v. with

G. Cowan
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Central Limit Theorem (2)

The CLT can be proved using characteristic functions (Fourier

transforms), see, e.g., SDA Chapter 10.

Good example:  velocity component vx of air molecules.

OK example:  total deflection due to multiple Coulomb scattering.

(Rare large angle deflections give non-Gaussian tail.)

Bad example:  energy loss of charged particle traversing thin

gas layer.  (Rare collisions make up large fraction of energy loss,

cf. Landau pdf.)

For finite n, the theorem is approximately valid to the

extent that the fluctuation of  the sum is not dominated by

one (or few) terms. 

Beware of measurement errors with non-Gaussian tails.

G. Cowan
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Multivariate Gaussian distribution

Multivariate Gaussian pdf for the vector 

are column vectors, are transpose (row) vectors, 

For n = 2 this is

where r = cov[x1, x2]/(s1s2) is the correlation coefficient.

G. Cowan
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Chi-square (c2) distribution

The chi-square pdf for the continuous r.v. z (z ≥ 0) is defined by

n = 1, 2, ... =  number of „degrees of

freedom‟ (dof)

For independent Gaussian xi, i = 1, ..., n, means mi, variances si
2,

follows c2 pdf with n dof.

Example:  goodness-of-fit test variable especially in conjunction

with method of least squares.
G. Cowan
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Cauchy (Breit-Wigner) distribution

The Breit-Wigner pdf for the continuous r.v. x is defined by

(G = 2, x0 = 0 is the Cauchy pdf.)

E[x] not well defined,   V[x] →∞.

x0 = mode (most probable value)

G = full width at half maximum

Example:  mass of resonance particle, e.g. r, K*, f0, ...

G = decay rate (inverse of mean lifetime)

G. Cowan
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Landau distribution

For a charged particle with b = v /c traversing a layer of matter

of thickness d, the energy loss D follows the Landau pdf:

L. Landau, J. Phys. USSR 8 (1944) 201; see also

W. Allison and J. Cobb, Ann. Rev. Nucl. Part. Sci. 30 (1980) 253.

+ - + -

- + - +
b

d

D

G. Cowan
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Landau distribution  (2)

Long „Landau tail‟

→ all moments ∞

Mode (most probable 

value) sensitive to b ,

→ particle i.d.

G. Cowan
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Beta distribution

Often used to represent pdf 

of continuous r.v. nonzero only

between finite limits. 
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Gamma distribution

Often used to represent pdf 

of continuous r.v. nonzero only

in [0,∞].

Also e.g. sum of n exponential

r.v.s or time until nth event

in Poisson process ~ Gamma
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Student's t distribution

n = number of degrees of freedom

(not necessarily integer)

n = 1 gives Cauchy,

n → ∞ gives Gaussian.
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Student's t distribution (2)

If x ~ Gaussian with m = 0, s2 = 1, and 

z ~ c2 with n degrees of freedom, then

t = x / (z/n)1/2 follows Student's t with n = n.

This arises in problems where one forms the ratio of a sample 

mean to the sample standard deviation of Gaussian r.v.s.

The Student's t provides a bell-shaped pdf with adjustable

tails, ranging from those of a Gaussian, which fall off very

quickly, (n → ∞, but in fact already very Gauss-like for 

n =  two dozen),  to the very long-tailed Cauchy (n = 1). 

Developed in 1908 by William Gosset, who worked under

the pseudonym "Student" for the Guinness Brewery.



Statistical Methods in Particle Physics 37

What it is:  a numerical technique for calculating probabilities

and related quantities using sequences of random numbers.

The usual steps:

(1) Generate sequence r1, r2, ..., rm uniform in [0, 1].

(2) Use this to produce another sequence x1, x2, ..., xn

distributed according to some pdf  f (x)  in which

we‟re interested (x can be a vector).

(3) Use the x values to estimate some property of  f (x), e.g.,

fraction of x values with a < x < b gives

→ MC calculation = integration (at least formally)

MC generated values = „simulated data‟

→ use for testing statistical procedures

The Monte Carlo method

G. Cowan
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Random number generators

Goal:  generate uniformly distributed values in [0, 1].

Toss coin for e.g. 32 bit number... (too tiring).

→ „random number generator‟ 

= computer algorithm to generate r1, r2, ..., rn.

Example:  multiplicative linear congruential generator (MLCG)

ni+1 = (a ni) mod m ,    where

ni = integer

a = multiplier

m = modulus

n0 = seed (initial value)

N.B.  mod = modulus (remainder), e.g. 27 mod 5 = 2.

This rule produces a sequence of numbers n0, n1, ...

G. Cowan
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Random number generators  (2)

The sequence is (unfortunately) periodic!

Example (see Brandt Ch 4):  a = 3, m = 7, n0 = 1

← sequence repeats

Choose a, m to obtain long period (maximum = m - 1); m usually 

close to the largest integer that can represented in the computer.

Only use a subset of a single period of the sequence.

G. Cowan
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Random number generators  (3)
are in [0, 1] but are they „random‟?

Choose a, m so that the ri pass various tests of randomness:

uniform distribution in [0, 1],

all values independent (no correlations between pairs),

e.g. L‟Ecuyer, Commun. ACM 31 (1988) 742 suggests

a = 40692

m = 2147483399

Far better algorithms available, e.g. TRandom3, period

See F. James, Comp. Phys. Comm. 60 (1990) 111; Brandt Ch. 4

G. Cowan
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The transformation method

Given r1, r2,..., rn uniform in [0, 1], find x1, x2,..., xn

that follow  f (x) by finding a suitable transformation  x (r).

Require:

i.e.

That is,       set and solve for  x (r).

G. Cowan
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Example of the transformation method

Exponential pdf:

Set and solve for  x (r).

→ works too.)

G. Cowan
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The acceptance-rejection method

Enclose the pdf in a box:

(1) Generate a random number x, uniform in [xmin, xmax], i.e.

r1 is uniform in [0,1].

(2) Generate a 2nd independent random number u uniformly

distributed between 0 and  fmax, i.e.

(3) If u <  f (x), then accept x.  If not, reject x and repeat.

G. Cowan
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Example with acceptance-rejection method

If dot below curve, use 

x value in histogram.

G. Cowan
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Parameter estimation

The parameters of a pdf are constants that characterize

its shape, e.g.

r.v.

Suppose we have a sample of observed values:

parameter

We want to find some function of the data to estimate the 

parameter(s):

← estimator written with a hat

Sometimes we say „estimator‟ for the function of x1, ..., xn;

„estimate‟ for the value of the estimator with a particular data set.

G. Cowan
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Properties of estimators

If we were to repeat the entire measurement, the estimates

from each would follow a pdf:

biasedlarge

variance

best

We want small (or zero) bias (systematic error):

→ average of repeated measurements should tend to true value.

And we want a small variance (statistical error):

→ small bias & variance are in general conflicting criteria

G. Cowan
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An estimator for the mean (expectation value)

Parameter:

Estimator:

We find:

(„sample mean‟)

G. Cowan
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An estimator for the variance

Parameter:

Estimator:

(factor of n-1 makes this so)

(„sample

variance‟)

We find:

where

G. Cowan
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The likelihood function
Suppose the outcome of an experiment is:  x1, ..., xn,  which

is modeled as a sample from a joint pdf with parameter(s) q:

Now evaluate this with the data sample obtained and regard it as 

a function of the parameter(s).  This is the likelihood function:

(xi constant)

If the xi are independent observations of x ~ f(x;q), then,

G. Cowan
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Maximum likelihood estimators

If the hypothesized q is close to the true value, then we expect 

a high probability to get data like that which we actually found.

So we define the maximum likelihood (ML) estimator(s) to be 

the parameter value(s) for which the likelihood is maximum.

ML estimators not guaranteed to have any „optimal‟

properties, (but in practice they‟re very good).

G. Cowan
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ML example:  parameter of exponential pdf

Consider exponential pdf,

and suppose we have data,

The likelihood function is

The value of t for which L(t) is maximum also gives the 

maximum value of its logarithm (the log-likelihood function):

G. Cowan
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ML example:  parameter of exponential pdf (2)

Find its maximum by setting 

→

Monte Carlo test:  

generate 50  values

using t = 1:

We find the ML estimate:

G. Cowan
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Variance of estimators:  Monte Carlo method

Having estimated our parameter we now need to report its

„statistical error‟, i.e., how widely distributed would estimates

be if we were to repeat the entire measurement many times.

One way to do this would be to simulate the entire experiment

many times with a Monte Carlo program (use ML estimate for MC).

For exponential example, from 

sample variance of estimates

we find:

Note distribution of estimates is roughly

Gaussian − (almost) always true for 

ML in large sample limit.

G. Cowan
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Variance of estimators from information inequality

The information inequality (RCF) sets a lower bound on the 

variance of any estimator (not only ML):

Often the bias b is small, and equality either holds exactly or

is a good approximation (e.g. large data sample limit).   Then,

Estimate this using the 2nd derivative of  ln L at its maximum:

G. Cowan
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Variance of estimators: graphical method

Expand ln L (q) about its maximum:

First term is ln Lmax, second term is zero, for third term use 

information inequality (assume equality):

i.e.,

→ to get , change q away from until ln L decreases by 1/2.

G. Cowan
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Example of variance by graphical method

ML example with exponential:

Not quite parabolic ln L since finite sample size (n = 50).

G. Cowan
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The method of least squares

Suppose we measure N values, y1, ..., yN, 

assumed to be  independent Gaussian 

r.v.s with 

Assume known values of the control

variable x1, ..., xN and known variances

The likelihood function is

We want to estimate q, i.e., fit the curve to the data points.

G. Cowan
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The method of least squares (2)

The log-likelihood function is therefore

So maximizing the likelihood is equivalent to minimizing

Minimum of this quantity defines the least squares estimator 

Often minimize c2 numerically (e.g. program MINUIT).

G. Cowan
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Example of least squares fit

Fit a polynomial of order p:

G. Cowan
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Variance of LS estimators

In most cases of interest we obtain the variance in a manner

similar to ML.  E.g. for data ~ Gaussian we have

and so

or for the graphical method we 

take the values of q where

1.0

G. Cowan
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Goodness-of-fit with least squares

The value of the c2 at its minimum is a measure of the level

of agreement between the data and fitted curve:

It can therefore be employed as a goodness-of-fit statistic to

test the hypothesized functional form l(x; q).

We can show that if the hypothesis is correct, then the statistic 

t = c2
min follows the chi-square pdf,

where the number of degrees of freedom is 

nd = number of data points - number of fitted parameters

G. Cowan
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Goodness-of-fit with least squares (2)

The chi-square pdf has an expectation value equal to the number 

of degrees of freedom, so if c2
min ≈  nd the fit is „good‟.

More generally, find the p-value:

E.g. for the previous example with 1st order polynomial (line),

whereas for the 0th order polynomial (horizontal line),

This is the probability of obtaining a c2
min as high as the one

we got, or higher, if the hypothesis is correct.

G. Cowan
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Summary

We have quickly reviewed a large amount of material:

Probability

Distributions and their properties

Monte Carlo

Parameter estimation (ML, LS)

For a slower-paced treatment, see, e.g. the slides from the

University of London course:

www.pp.rhul.ac.uk/~cowan/stat_course.html

Next:  statistical tests and multivariate methods


