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Outline of lectures

Day #1:  Introduction

Review of probability and Monte Carlo

Review of statistics:  parameter estimation

Day #2:  Multivariate methods (I)

Event selection as a statistical test

Cut-based, linear discriminant, neural networks      

Day #3:  Multivariate methods (II)

More multivariate classifiers:  BDT, SVM ,...

Day #4:  Significance tests for discovery and limits

Including systematics using profile likelihood

Day #5:  Bayesian methods

Bayesian parameter estimation and model selection
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Day #2:  outline

Multivariate methods for HEP

Event selection as a statistical test

Neyman-Pearson lemma and likelihood ratio test

Some multivariate classifiers

Cut-based event selection

Linear classifiers

Neural networks

Probability density estimation methods
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The Large Hadron Collider

Counter-rotating proton beams
in 27 km circumference ring

pp centre-of-mass energy 14 TeV

Detectors at 4 pp collision points:
ATLAS
CMS
LHCb     (b physics)
ALICE   (heavy ion physics)

general purpose
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The ATLAS detector

2100 physicists
37 countries 
167 universities/labs

25 m diameter
46 m length
7000 tonnes
~108 electronic channels
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LHC event production rates

most events (boring)

interesting

very interesting 

(~1 out of every 1011)

mildly interesting
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LHC data
At LHC, ~109 pp collision events per second, mostly uninteresting

do quick sifting, record ~200 events/sec
single event ~ 1 Mbyte
1 “year”  107 s, 1016 pp collisions / year
2  109 events recorded / year (~2 Pbyte / year)

For new/rare processes, rates at LHC can be vanishingly small
e.g. Higgs bosons detectable per year could be ~103

→ 'needle in a haystack'

For Standard Model and (many) non-SM processes we can generate
simulated data with Monte Carlo programs (including simulation
of the detector).
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A simulated SUSY event in ATLAS

high p
T

muons

high p
T

jets 
of hadrons

missing transverse energy

p p
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Background events

This event from Standard 
Model ttbar production also
has high  p

T
jets and muons,

and some missing transverse
energy.

→ can easily mimic a SUSY event.
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A simulated event

PYTHIA Monte Carlo
pp → gluino-gluino

.

.

.
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Event selection as a statistical test
For each event we measure a set of numbers:  nx,,x=x 1



x
1

= jet p
T

x
2

= missing energy
x

3
= particle i.d. measure, ... 

x follows some n-dimensional joint probability density, which 

depends on the type of event produced, i.e., was it ,ttpp  ,g~g~pp

x i

x j

E.g. hypotheses H
0
, H

1
, ... 

Often simply “signal”,
“background”

 1H|xp


 0H|xp

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Finding an optimal decision boundary

In particle physics usually start
by making simple “cuts”:

x
i
< c

i

x
j

< c
j

Maybe later try some other type of decision boundary:

H
0 H

0

H
0

H
1

H
1

H
1
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Two distinct event selection problems

In some cases, the event types in question are both known to exist.

Example:  separation of different particle types (electron vs muon)

Use the selected sample for further study.

In other cases, the null hypothesis H0 means "Standard Model" events,

and the alternative H1 means "events of a type whose existence is

not yet established" (to do so is the goal of the analysis).

Many subtle issues here, mainly related to the heavy burden

of proof required to establish presence of a new phenomenon.

Typically require p-value of background-only hypothesis 

below ~ 10-7 (a 5 sigma effect) to claim discovery of 

"New Physics".
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Using classifier output for discovery

y

f(y)

y

N(y)

Normalized to unity Normalized to expected 
number of events

excess?

signal

background background

search
region

Discovery = number of events found in search region incompatible
with background-only hypothesis.

p-value of background-only hypothesis can depend crucially 
distribution f(y|b) in the "search region".

y
cut
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Example of a "cut-based" study
In the 1990s, the CDF experiment at Fermilab (Chicago) measured

the number of hadron jets produced in proton-antiproton collisions

as a function of their momentum perpendicular to the beam direction:

Prediction low relative to data for

very high transverse momentum.

"jet" of

particles
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High pT jets = quark substructure?
Although the data agree remarkably well with the Standard Model

(QCD) prediction overall, the excess at high pT appears significant:

The fact that the variable is "understandable" leads directly to a plausible 

explanation for the discrepancy, namely, that quarks could possess an 

internal substructure.

Would not have been the case if the variable plotted was a complicated 

combination of many inputs.
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High pT jets from parton model uncertainty

Furthermore the physical understanding of the variable led one

to a more plausible explanation, namely, an uncertain modeling of

the quark (and gluon) momentum distributions inside the proton.

When model adjusted, discrepancy largely disappears:

Can be regarded as a "success" of the cut-based approach.  Physical

understanding of output variable led to solution of apparent discrepancy.
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Neural network example from LEP II

Signal:  e+e- → W+W- (often 4 well separated hadron jets)

Background:  e+e- → qqgg  (4 less well separated hadron jets)

← input variables based on jet

structure, event shape, ...

none by itself gives much separation.

Neural network output:

(Garrido, Juste and Martinez, ALEPH 96-144)



G. Cowan Statistical Methods in Particle Physics page 38

Some issues with neural networks
In the example with WW events, goal was to select these events

so as to study properties of the W boson.

Needed to avoid using input variables correlated to the

properties we eventually wanted to study (not trivial).

In principle a single hidden layer with an sufficiently large number of

nodes can approximate arbitrarily well the optimal test variable (likelihood

ratio).

Usually start with relatively small number of nodes and increase

until misclassification rate on validation data sample ceases

to decrease.

Often MC training data is cheap -- problems with getting stuck in 

local minima, overtraining, etc., less important than concerns of systematic 

differences between the training data and Nature, and concerns about

the ease of interpretation of the output.
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Overtraining 

training sample independent test sample

If decision boundary is too flexible it will conform too closely

to the training points  → overtraining.

Monitor by applying classifier to independent test sample.
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validation sample

training sample

Monitoring overtraining

We can monitor the misclassification rate (or value of the error 

function) as a function of  some parameter related to the level of 

flexibility of the decision boundary, such as  the number of nodes in 

the hidden layer.

For the data sample used to train 

the network, the error rate 

continues to decrease, but for an 

independent validation sample, it 

will level off and even increase.

error rate

number of nodes
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Summary

Information from many variables can be used to distinguish

between event types.

Try to exploit as much information as possible.

Try to keep method as simple as possible.

Often start with:  cuts, linear classifiers

And then try less simple methods:  neural networks

Tomorrow we will see some more multivariate classifiers:

Probability density estimation methods

Boosted Decision Trees

Support Vector Machines


