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Introduction
Review of probability and Monte Carlo
Review of statistics: parameter estimation

Multivariate methods (1)
Event selection as a statistical test
Cut-based, linear discriminant, neural networks
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Significance tests for discovery and limits
Including systematics using profile likelihood

Bayesian methods
Bayesian parameter estimation and model selection

Statistical Methods in Particle Physics



Day #2. outline

Multivariate methods for HEP
Event selection as a statistical test
Neyman-Pearson lemma and likelihood ratio test

Some multivariate classifiers
Cut-based event selection
Linear classifiers
Neural networks
Probability density estimation methods
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Resources on multivariate methods
Books:

C.M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006

T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical
Learning, Springer, 2001

R. Duda, P. Hart, D. Stork, Pattern Classification, 2 ed., Wiley, 2001

A. Webb, Statistical Pattern Recognition, 2™ ed., Wiley, 2002

Materials from some recent meetings:

PHYSTAT conference series (2002, 2003, 2005, 2007....) see
www.phystat.org

Caltech workshop on multivariate analysis, 11 February, 2008
indico.cern.ch/conferenceDisplay.py?confld=27385

SLAC Lectures on Machine Learning by Ilya Narsky (2006)

www-group.slac.stanford.edu/sluo/Lectures/Stat2006 Lectures.html
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Software for multivariate analysis

TMVA, Hocker, Stelzer, Tegenfeldt, Voss, Voss, physics/0703039

From tmva.sourceforge.net, also distributed with ROOT
Variety of classifiers
Good manual

StatPatternRecognition, I. Narsky, physics/0507143

Further info from www.hep.caltech.edu/~narsky/spr.html
Also wide variety of methods, many complementary to TMVA
Currently appears project no longer to be supported
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The Large Hadron Collider

Counter-rotating proton beams
In 27 km circumference ring

pp centre-of-mass energy 14 TeV

Detectors at 4 pp collision points:
ATLAS |
CMS —— general purpose
LHCb (b physics)
ALICE (heavy ion physics)

G. Cowan Statistical Methods in Particle Physics page 6



The ATLAS detector

Muon Detectors Tile Calorimeter Liquid Argon Calorimeter

2100 physicists
37 countries
167 universities/labs

Toroid Magnets  Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

25 m diameter

46 m length

/000 tonnes

~108 electronic channels
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LHC event production rates
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LHC data

At LHC, ~10° pp collision events per second, mostly uninteresting

do quick sifting, record ~200 events/sec

single event ~ 1 Mbyte

1 “year” ~ 107 s, 10%% pp collisions / year

2 x 10° events recorded / year (~2 Pbyte / year)

For new/rare processes, rates at LHC can be vanishingly small
e.g. Higgs bosons detectable per year could be ~10°
— 'needle in a haystack'’

For Standard Model and (many) non-SM processes we can generate
simulated data with Monte Carlo programs (including simulation
of the detector).
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A simulated SUSY event in ATLAS

high p jets
of hadrons

missing transverse energy
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Background events

ATLAS Atlantis Bvent: myFilesZ_8.4.0_3026_7%%%02

This event from Standard
Model tthar production also
has high p; jets and muons,
and some missing transverse
energy.

— can easily mimic a SUSY event.
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A simulated event

Event listing {summary) PYTH IA M Onte Carlo
particlesjet KS KF  orig p_x Py p_z pp —> g I u i nO'g I u i no

Ip+] 21 2212 0,000 0,000 7000, Q00 7000, 000 0,938
21 2212 0,000 0, Q0= 7000 Q00 7000, 000 0,938

21 21
21 -2
21 21
21 21
21 1000021
21 1000021
21-1000024
21 -3
21 4
I"chi_201 21 1000023
bl 21 5
Ibbar | 21 -5
I"chi_101 21 1000022
Izl 21 3
lcbar | 21 -4

0,862 0,323 1739,862 1739,062
-0,621 0,163 777,415 777,415 |
-2,427 0,488 1487,807 1487863 | 2oz pi+ 0,399 -308,295 308,297
62,310 B3, 357 ~4B3.274 4717390 2an o 0.087-1695.,458 1635, 458
314,363 544,843 438,837 9731920 2o A —0,029 -314,097 314,079
—373,700 —475,000 525,685 380 4F7 0 40 fpin 0,172 -102.709 103,709
120,068 112,247 129,860 2631410 401 (pig) “0.068 -94.976  94.27E
209,400 187,483 83,100 E20.BE4 Y 40 (pi0) -0,052 -144,672 144,674
79,403 242,403 283,026 3BLOLE | 4oz Lound 2'472  Z30E 4471
-326.241 80,971 113.712 3859310 404 e 0142 Z.0B1 4016
-G1,841 -294,077 383,853 431,098 4o i- 0.738  4.016  4.005
-0,597 99,577 21,233 101,944 8 4an pi+ 0,292 0,40 0,585
103,352 81,316 83,457 175,0000 407 o -1.412 -1.799 4_9E8
G451 38,374 B2,302 ERL000 gpn oo -0.994  -0.176  1.500
|cher 20,833 7250 5938 22,8990 4nq (i) 0,459 -0,590 1,221
chi10l 21 1000022 -136,266 72,961 53,246 18L.IL4| 414 (0i0) 4105  -1.181  o.GEE
Frw_mu | 21 14 -7B.2E3 24797 2L BALIL00 499 ikbaro) _0+24? _0+4?2 1+515
lnu_mubar! 21 -14 -107.801 16,501 38,226 11S.620) g5 oo 0,400  -0.243  2.205
" - -
— 1 2,636 1,357 01%5 2,957 | 410 ?piﬂ} ok olim 1
(chi_l-)  11-1000024 129,643 112,440 129,820 262,998 i i 5o 0111  0.894  2.109
(chi_200 11 1000023 -322,330 80,817 113,191 382,444 F g 0407 0.9E2  0.Bd2
“chi_10 1 1000022 97.944  TT.B19 B0.817 163,004 § g7 i 02 0901 0.480
“chi_10 1 1000622 -136,266 -72,961 53,246 180,914 | 45 fparo 1B41  2.078  ZAU
FILI_fL 1 14 78,263 -24.757 20,719 B4S10| 499 (pig) 1046 L1311 1,308
r_nbar 1 -14 -1o7,.801 16,901 38,225 L15.B200 4o pi+ 1.407 1.356 1.971
(Delta++) 11 2224 0,222 0,012-2734,287 2730287 | 459 (pio) 2335 D.767  3.820

422 n0 b,224 b, 702 8,032
423 pi- 2,606 2,808 4,259
424 gamma 0,247 0,421 0,489
420 gamma 0,034 0,003 0,043
426 pi+ 5,229 B.403 2,703
427 (pin] B, 747 75497 10,561
428 pi- 1,233 1,345 2,372
429 (pi0) 1,141 0,922 1,E08
430 gamma 1,189 1,208 1,724
431 gamma 0,070 0,060 0,221

]
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Event selection as a statistical test

For each event we measure a set of numbers: x=(x,,...,x,)

N

X, = Jetpy
X, = missing energy
X, = particle i.d. measure, ...

X follows some n-dimensional joint probability density, which
depends on the type of event produced, i.e., was it pp — tt, pp —gg,...

‘.4 p(X| H,) N
] ) " "1“:‘: 2: 4 A/
Lo g E.g. hypotheses H,, H,, ...
BT PN Often simply “signal”,
whEsarn “background”
1
roe #
L X.
p(%|H,) '
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Finding an optimal decision boundary

In particle physics usually start
by making simple “cuts”: ¢

X < C.
. < C.
XJ CJ
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Test statistics

The decision boundary is a surface in the n-dimensional space of

input variables. e.g.. y(X)=const.
We can treat the y(x) as a scalar test statistic or discriminating
function, and try to define this function so that its distribution has the

maximum possible separation between the event types:

2 T T T
The decision boundary You
. - . . t H ',. t
is now effectively a single i i B
cut on y(x), dividing ﬁﬁ
. 1 r |I | n
X-Space 1nto two (VIH J [
reolons: fy‘ U'D::\x | 5‘1 / s f(ﬂHl)
- . |
|
RD (accept HD) | \x:?/
? 0 1 2 3 4 5
RS

Rl (reject Hﬂ)
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Classification viewed as a statistical test

Probability to reject H il 1t 1s true (type I error): HZI f{_1’|Hﬂ}dy
q]

o = sienificance level., size of test, talse discovery rate

Probability to accept £ 1l H 1s true (type L error): S :I Fv|H,)dy
R,
3 _ T "o 71 g LT
I — 5 = power of test with respect to A,

Equivalently 1f e.g. HG = background. H; = signal, use efficiencies:

e.=| f(y|H,)dy=1—p=power eo=) [ (V[ Ho)dv=1—c
R, Hu

G. Cowan Statistical Methods in Particle Physics page 16



Purity / misclassification rate

Consider the probability that an event assigned to a certain category
1s classihied correctly (1.e.. the purity).
Use Bayes' theorem:
Here R 1s signal region prior probability
I -
P(x € Ry|s)P(s)

Plslx e R) = * |
(sx € £y Pix € R|s)P(s) + P(x € Ry|b)P(b)

/4

posterior probability

N.B. purity depends on the prior probabilities for an event to be
signal or background (~s. b cross sections).
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Constructing a test statistic

The Neyman-Pearson lemma states: to obtain the highest background
rejection for a given signal efficiency (highest power for a given

significance level), choose the acceptance region for signal such that

p(X[s) |
p(X|b)

where ¢ is a constant that determines the signal efficiency.

C

Equivalently, the optimal discriminating function i1s given by the
likelihood ratio:

.. p(X]s)
X|=————
yx p(X[b)

N.B. any monotonic function of this is just as good.
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Neyman-Pearson doesn't always help

The problem is that we usually don't have explicit formulae for the pdfs

plxls), p(xlb), so for a given x we can't evaluate the likelihood ratio.

Instead we have Monte Carlo models for signal and background
processes, so we can produce simulated data:

“training data”
generate Y~np(Yls) —* fl "y f,,q, / events of known type

generate iwp{:ﬂb} — ;{‘1

Naive try: enter each (s,b) event into an n-dimensional histogram,
use e.g. M bins for each of the n dimensions, total of M" cells.

n 1s potentially large — prohibitively large number of cells to populate,
can't generate enough training data.
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Two distinct event selection problems

In some cases, the event types in question are both known to exist.

Example: separation of different particle types (electron vs muon)
Use the selected sample for further study.

In other cases, the null hypothesis H, means "Standard Model" events,
and the alternative H; means "events of a type whose existence is
not yet established" (to do so is the goal of the analysis).

Many subtle issues here, mainly related to the heavy burden
of proof required to establish presence of a new phenomenon.

Typically require p-value of background-only hypothesis
below ~ 107 (a 5 sigma effect) to claim discovery of
"New Physics".
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Using classifier output for discovery

f(y) |

background

signal

A

N(y)
background

Normalized to unity

search
— region

excess?

/

yCUt y

Normalized to expected
number of events

Discovery = number of events found in search region incompatible
with background-only hypothesis.

p-value of background-only hypothesis can depend crucially

distribution f(y|b) in the "search region".

G. Cowan
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Example of a "cut-based" study

In the 1990s, the CDF experiment at Fermilab (Chicago) measured
the number of hadron jets produced in proton-antiproton collisions
as a function of their momentum perpendicular to the beam direction:

—_ 10 [ 1y nn
2 104 L jet" of
= ' particles = o
£ N T Pr
—10% | g g
= i CDF
%— . b —— NLOQCD p ?
O
=10
ﬂ
10" | Prediction low relative to data for
very high transverse momentum.
-6

0 50 100 150 200 250 300 350 400 450
Jet Transverse Energy  (GeV)
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High p+ Jets = quark substructure?

Although the data agree remarkably well with the Standard Model
(QCD) prediction overall, the excess at high p appears significant:

= e
Tt CTEQ4M

/

| éStatiséticaI Errors éonly
_50_||||||||||| | | |

| 11 1 | 11 1 | 11 1 1 |
50 100 150 200 250 300

11 [ 1 1 1
350

N N S |
400

data — theory

theory

The fact that the variable is "understandable" leads directly to a plausible
explanation for the discrepancy, namely, that quarks could possess an

internal substructure.

Would not have been the case if the variable plotted was a complicated

combination of many inputs.
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High p- jets from parton model uncertainty

Furthermore the physical understanding of the variable led one
to a more plausible explanation, namely, an uncertain modeling of
the quark (and gluon) momentum distributions inside the proton.

When model adjusted, discrepancy largely disappears:

100 | s s
: CTEQ4HJ
A L e A
i i : i PO
S PO AN Y VP LIt K B A
0 jq—.mo—.-oﬂ-'—o—.—q—.——* — —
-Sﬂ _I i | T | i 11 1 1 i 11 1 1 i 11 1 | i 11 1 | i N | i N | i | |
50 100 150 200 250 300 350 400

Can be regarded as a "success" of the cut-based approach. Physical
understanding of output variable led to solution of apparent discrepancy.
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[.inear test statistic
Ansatz:  y(F)=) 11-'53::!:1:?3'*
i=1

Choose the parameters w,. ... w, so that the pdfs f(y/s}, f{y|b)

have maximum “separation”. We want:

Fo)
V '
. ) } Ty
large distance between |
mean values, small widths |

V2
(Ts_Tb,:l

N
s b

- Fisher: maximize J (W)=
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Coefticients for maximum separation

mean. covariance ol x

-
d--'-'-

We have [: pﬁ_]j:f x, p(X|H,)dx =+
i
(V)y=J (x—pp)(x—py), p(F|H,) dF
where k=0,1 (hypothesis)

and i,j=1....n (component of x)

For the mean and variance of y(X) we find

.= | v(3) p(R|H) d3=w"[i;

Si=] (v(Z) =7 p(RIH)dF=w"V, i
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Determining the coetticients w

The numerator of J(w) 1s

(To—T,)° Z wyw; (o= )i (M= Hy),

i, j=1

“between’ classes

e

i -
T vy

i, j=1
and the denomnator 1s Cwithin® classes
#’HH;
v : v2_
2ot2i= Zu W ¢V+V]—11 Wb
i, j=1

" Biv _ separation between classes

=2 maximize J[u]: : —
Ty, separation within classes
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Fisher discriminant function

setting =0  gives Fisher's linear discriminant function:

—
—

y(F)=w'y  Withivec W ([~

Gives linear decision boundary.

Projection of points in direction of decision

boundary gives maximum separation. H s
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[ .inear decision boundaries

A linear decision boundary is only
optimal when both classes follow
multivariate Gaussians with equal
covariances and different means.

For some other cases a linear
boundary is almost useless.
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Nonlinear transformation of inputs

We can try to find a transformation, Xl e Xn—:r (pl(i ); e (pm(_)z)
so that the transformed “feature space™ variables can be separated
better by a linear boundary:
1, Here, guess fixed
P4 =fan | le X1) __— basis functions

s (no free parameters)
Py=\ X T X,

--"T
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Neural networks

Neural networks originate from attempts to model neural processes
(McCulloch and Pitts, 1943: Rosenblatt, 1962).

Widely used in many helds, and for many vears the only “advanced”
multivariate method popular in HEP.

We can view a neural network as a specific way of parametrizing
the basis functions used to define the feature space transformation.

The training data are then used to adjust the parameters so that the
resulting discriminant function has the best performance.
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The single layer perceptron

| | [

Wyt z W, X, '

| i=1 |

Define the discriminant using y(¥)=Ah

where /1 1s a nonhinear. monotonmc activation function: we can use

e.o. the logistic siemoid h(x)=(14+¢e *) .

X
If the activation function 1s monotonic.
the resulting y(x) 1s equivalent to the
original hnear discriminant. This 1s an O »(x)
example of a “generahzed linear model™
called the single layer perceptron. T

XH'

? output node

input layer

G. Cowan Statistical Methods in Particle Physics page 32



The multilayer perceptron

Now use this idea to define not only the output y(x). but also the set of
transformed inputs ¢p,{(X),..., ¢, (x) that form a “hidden layer’:

Superscript for weights indicates X
layer number

P, (x)=h H-“I;.zl;u'l + 21 “"I.'r;'l x, ’
| J= |
.' ) \ Xn
. = (2) 12) (-
b [_x]:h(n.-m+2 Wy lx) . ! hidden  output
: =1 | inputs

layer ¢

This is the multilayer perceptron. our basic neural network model:
straightforward to generahize to multiple hidden layers.
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Network training
The type of each training event 1s known, 1.¢., for event a we have:
X, =(xy,...,x,) the input variables, and

t,.=0,1 a numerical label for event type (“target value™)

Let w denote the set of all of the weights of the network. We can
determine their optimal values by minimizing a sum-of-squares
“error function”™

E(w)= ZU’[T{”WJ—H—ZE (w)

\

Contribution to error function
from each event
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Numerical minimization of E(w)

Consider grachent descent method: from an initial guess in weight
space w' take a small step in the direction of maximum decrease.
L.e. for the step T to T+,

w ™ =yl E (™)

\

learning rate (n>()
It we do this with the full error function E(w). gradient descent does
surprisingly poorly: better to use “conjugate gradients™.
But gradient descent turns out to be useful with an online (sequential)

method. 1.e.. where we update w tor each training event a, (cycle through

all training events): 1 (x) | |
w{T }:wT —n VEdl: W{T}}
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Error backpropagation

Error backpropagation (“*backprop™) 1s an algorithm for finding the
derivatives required for gradient descent minimization.

The network output can be written v(x) = h(u(x)) where
= 2) = =y 1/ (1
u[_x]zz wi, @, (%), (PJ(I_}—;H:;;] Wi X |
i=0 VK= !

where we defined ¢, = x =1 and wrote the sums over the nodes

in the preceding layers starting from O to include the offsets.

cE
Soe.g. forevent a we have - .-3’-. =(y_—t_)h'(u [E”‘iﬂj- (X
oWy
dervative of
Chain rule gives all the needed derivatives. activation function
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Signal: ete- — WHW-
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Neural network example from LEP 11

(often 4 well separated hadron jets)

Background: ete- — qqgg (4 less well separated hadron jets)
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structure, event shape, ...
none by itself gives much separation.

Neural network output:
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G. Cowan
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Some I1ssues with neural networks

In the example with WW events, goal was to select these events
S0 as to study properties of the W boson.

Needed to avoid using input variables correlated to the
properties we eventually wanted to study (not trivial).

In principle a single hidden layer with an sufficiently large number of
nodes can approximate arbitrarily well the optimal test variable (likelihood

ratio).
Usually start with relatively small number of nodes and increase

until misclassification rate on validation data sample ceases
to decrease.

Often MC training data is cheap -- problems with getting stuck in

local minima, overtraining, etc., less important than concerns of systematic
differences between the training data and Nature, and concerns about

the ease of interpretation of the output.
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If decision boundary is too flexible it will conform too closely

Overtraining

to the training points — overtraining.

Monitor by applying classifier to independent test sample.

training sample

Independent test sample

2_ R . N 2_

- t ‘ : F 3 I

O .o 0

2 2
| 1 1 | | 1 1 | |

2 0 2 4 2
X
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Monitoring overtraining

We can monitor the misclassification rate (or value of the error
function) as a function of some parameter related to the level of
flexibility of the decision boundary, such as the number of nodes in

the hidden layer.

For the data sample used to train
the network, the error rate
continues to decrease, but for an
Independent validation sample, it
will level off and even increase.

error rate

~ <— validation sample

<~ training sample

number of nodes
G. Cowan Statistical Methods in Particle Physics page 40



Validation and testing

The validation sample can be used to make various choices about the
network architecture, e.g.., adjust the number of hidden nodes so
as to obtain good “generahization performance™ (ability to correctly

classify unseen data).

It the vahidation stage 1s iterated may times, the estimated error rate
based on the vahidation sample has a bias. so strictly speaking one
should finally estimate the error rate with an independent test sample.

Rule of thumb if data not  (rain : validate - test
too expensive (Narsky): 50 : 25 25

But this depends on the type of classifier. Often the bias in the error
rate from the vahidation sample 1s small and one can omit the test step.
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Regularized neural networks

Often one uses the test sample to optimize the number of hidden nodes.

Alternatively one may use a relatively large number of hidden nodes
but include 1n the error function a regulanzation term that penalizes
overfitting. e.g.. o
_regulanzation parameter

-
-

~ A
E[w)zE(w]—EwTw

Increasing A gives a smoother boundary (higher bias, lower variance)

Known as “weight decay™, since the weights are driven to zero unless

supported by the data (an example of “parameter shrinkage™).
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Probability density estimation methods

I we could estimate the pdfs p(xIH ). p(xIH ) for the classes of events
we want to separate, then we could form the optimal discriminating
function from their ratio:

plX Hy)
- pl3H,)

=

yix)

So the problem reduces to estimating the joint pdfs pix). We may
choose different methods for numerator and denominator.

Methods Tor estimating pdls can be
parametric. i.e.. we have a function p(x,0,,...,0,,)

non-parametric, i.e.. model independent (e.g. histogram. ...):
also contain parameters but they are “local™: not rnngidly tied
(o any model.

G. Cowan Statistical Methods in Particle Physics
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Correlation vs. independence

In a general a multivarate distribution p(x) does not tactorize into a
product of the marginal distributions for the individual variables:

i . holds only 1f the

R— - § 4 4_,_,_,—'-'"' .
plx)= l_! Pl x;) components of x
i=

are independent

Most importantly. the components of x will generally have nonzero

covariances (1.e. they are correlated):

V.=cov|x,x |=E|xx |-E|x|E|x,|#0

G. Cowan Statistical Methods in Particle Physics
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Decorrelation of input variables
But we can define a set of uncorrelated input varnables by a
linear transformation, i.e., find the matrix A such that for Y=4X
the covarances cov|y, v ] =0
i |

852 (=] I T T | :I & I T T I
4 - 4 | |
Zr I A o - < r N . i
0 Foe ek 0 2L L Dol
T SRRk
A5 1 % L g
T g !
2 : z 2 I a
= o @ 4 r )
B I
G 9 2 0 2 4 G -6 4 -2 ] 2 q G
L 1 .""|_

For the tollowing suppose that the variables are “decorrelated™ 1n
this way for each of p(xIH ) and p(x|H ) separately (since in general
their correlations are different).
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Decorrelation 1s not enough

But even with zero correlation, a multivariate pdt p(x) will in general
have nonhnearities and thus the decorrelated vanables are still not

independent.
pdf with zero covariance but
X
2 I I ] | u
components still not
- L independent, since clearly
n . s ~
i R | - _plx,x,)
gt plx,x, )= —# p,lx,)
i e 2 ] Pilxy)
R e Sl
bk and therefore

Y1 p[IL-Tg]iPH:ﬂ:]PE{ X;)

G. Cowan Statistical Methods in Particle Physics 46



Naive Bayes

But if the nonlinearities are not too great. it 1s reasonable to first
decorrelate the inputs and take as our estimator for each pdf

p(F) pr[*f

So this at least reduces the problem to one of finding estimates of
one-dimensional pdfs.

The resulting estimated likelihood ratio gives the Naive Bayes classifier

(in HEP sometimes called the “hikelihood method™).
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Test example with TMVA

G. Cowan

[ TWVA Input Varabie: y | [ TMVA Input variable:z |
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Test example, x vs. y with cuts on z
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Test example results

5[ ]
i &
1:ﬂ[l:— | .
Fisher : h Multilayer
discriminant | " perceptron
sun:-:— 1
.; 4
1 |
§ §
o o
Naive Bayes, Naive Baves with
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no decorrelation decorrelation
" =3
1
£I5 1.5 45 1.5
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G. Cowan

Test example ROC curves

Background rejection versus Signal efficiency
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Efficiencies versus cut value

Select signal by cutting on output: y>y

Fisher discriminant

G. Cowan
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Beyond Naive Bayes

Recall that in the naive Bayes approach we approximated the
n-dimensional joint pdt as the product of the marginal densities:

p(3)=]1] pi(x)
i=1

S0 the problem 1s reduced to estimating the one-dimensional marginal
pdfs p (x ), usually straightforward.

But this does not capture the higher order nonhinearities of p(x).
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[.ancaster models

Lancaster models approximate an n-dimensional joint pdl p(x) = PLX X )
in terms of the marginal distributions for up to a certain number s of

the n components.

For s =1 this was Naive Baves:. Fore.g. s = 2 we approximate p(x) in

terms of one- and two-dimensional marginal densities p(x) and p (x .x) as
L L |

. Pl X, x ;) | o
(X)=| > "] -1 ;)
d E',‘;-'f pf[x:'.:lpjl::'fj.:l |'.'3.'| tl:! d

This will not capture the full nonlinear structure of p(x) but goes
further in that direction than assuming independence. (cf. Webb Ch. 3)
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Summary

Information from many variables can be used to distinguish
between event types.

Try to exploit as much information as possible.

Try to keep method as simple as possible.

Often start with: cuts, linear classifiers

And then try less simple methods: neural networks

Tomorrow we will see some more multivariate classifiers:
Probability density estimation methods
Boosted Decision Trees
Support Vector Machines
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