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Outline of lectures

Day #1:  Introduction

Review of probability and Monte Carlo

Review of statistics:  parameter estimation

Day #2:  Multivariate methods (I)

Event selection as a statistical test

Cut-based, linear discriminant, neural networks      

Day #3:  Multivariate methods (II)

More multivariate classifiers:  BDT, SVM ,...

Day #4:  Significance tests for discovery and limits

Including systematics using profile likelihood

Day #5:  Bayesian methods

Bayesian parameter estimation and model selection



G. Cowan Statistical Methods in Particle Physics 3

Day #4:  outline

Significance tests, p-values

Significance test for discovery

Setting limits

Including systematic uncertainties (frequentist)

Profile likelihood function

Examples of including nuisance parameters
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Testing significance / goodness-of-fit

Suppose hypothesis H predicts pdf 

observations

for a set of

We observe a single point in this space:

What can we say about the validity of H in light of the data?

Decide what part of the 

data space represents less 

compatibility with H than 

does the point less 

compatible

with H

more 

compatible

with H

(Not unique!)
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p-values

where p (H) is the prior probability for H.

Express „goodness-of-fit‟ by giving the p-value for H:

p = probability, under assumption of H, to observe data with 

equal or lesser compatibility with H relative to the data we got. 

This is not the probability that H is true!

In frequentist statistics we don‟t talk about P(H) (unless H

represents a repeatable observation). In Bayesian statistics we do; 

use Bayes‟ theorem to obtain

For now stick with the frequentist approach; 

result is p-value, regrettably easy to misinterpret as P(H).
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p-value example:  testing whether a coin is „fair‟

i.e. p = 0.0026 is the probability of obtaining such a bizarre

result (or more so) „by chance‟, under the assumption of H.

Probability to observe n heads in N coin tosses is binomial:

Hypothesis H:  the coin is fair (p = 0.5).

Suppose we toss the coin N = 20 times and get n = 17 heads.

Region of data space with equal or lesser compatibility with 

H relative to n = 17 is:  n = 17, 18, 19, 20, 0, 1, 2, 3.  Adding

up the probabilities for these values gives:
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The significance of an observed signal

Suppose we observe n events; these can consist of:

nb events from known processes (background)

ns events from a new process (signal)

If ns, nb are Poisson r.v.s with means s, b, then n = ns + nb

is also Poisson, mean = s + b:

Suppose b = 0.5, and we observe nobs = 5.  Should we claim

evidence for a new discovery?  

Give p-value for hypothesis s = 0:
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Significance from p-value

Often define significance Z as the number of standard deviations

that a Gaussian variable would fluctuate in one direction

to give the same p-value.

TMath::Prob

TMath::NormQuantile

Statistical Methods in Particle Physics
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The significance of a peak

Suppose we measure a value 

x for each event and find:

Each bin (observed) is a

Poisson r.v., means are

given by dashed lines.

In the two bins with the peak, 11 entries found with b = 3.2.

The p-value for the s = 0 hypothesis is:
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The significance of a peak (2)

But... did we know where to look for the peak?

→ give P(n ≥ 11) in any 2 adjacent bins

Is the observed width consistent with the expected x resolution?

→ take x window several times the expected resolution

How many bins  distributions have we looked at?

→ look at a thousand of them, you‟ll find a 10-3 effect

Did we adjust the cuts to „enhance‟ the peak?

→ freeze cuts, repeat analysis with new data

How about the bins to the sides of the peak... (too low!)

Should we publish????
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When to publish

HEP folklore is to claim discovery when p = 2.9  10-7,

corresponding to a significance Z = 5.

This is very subjective and really should depend on the 

prior probability of the phenomenon in question, e.g.,

phenomenon        reasonable p-value for discovery

D0D0 mixing ~0.05

Higgs ~ 10-7 (?)

Life on Mars ~10-10

Astrology ~10-20
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Setting limits:  Poisson data with background

Count n events, e.g., in fixed time or integrated luminosity.

s = expected number of signal events

b = expected number of background events

n ~ Poisson(s+b):

Suppose the number of events found is roughly equal to the

expected number of background events, e.g., b = 4.6 and we 

observe nobs = 5 events.

The evidence for the presence of signal events is not

statistically significant,

→ set upper limit on the parameter s, taking

into consideration any uncertainty in b.
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Setting limits

Frequentist intervals (limits) for a parameter s can be found by 

defining a test of the hypothesized value s (do this for all s): 

Specify values of the data n that are „disfavoured‟ by s

(critical region) such that P(n in critical region) ≤ g

for a prespecified g, e.g., 0.05 or 0.1.

If n is observed in the critical region, reject the value s.

Now invert the test to define a confidence interval as:

set of s values that would not be rejected in a test of

size g (confidence level is 1 - g ).

The interval will cover the true value of s with probability ≥ 1 - g.

G. Cowan Statistical Methods in Particle Physics
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Frequentist upper limit for Poisson parameter

First suppose that the expected background b is known.

Find the hypothetical value of s such that there is a given small

probability, say, g = 0.05, to find as few events as we did or less:

Solve numerically for s = sup, this gives an upper limit on s at a

confidence level of 1-g.

Example:  suppose b = 0 and we find nobs = 0.  For 1-g = 0.95,

→

[0, sup] is an example of a confidence interval. It is designed to

include the true value of s with probability at least 1-g for any s.
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Calculating Poisson parameter limits

Analogous procedure for lower limit slo.

To solve for slo, sup, can exploit relation to c2 distribution:

Quantile of c2 distribution

For low fluctuation of n this 

can give negative result for sup; 

i.e. confidence interval is empty.
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Limits near a physical boundary

Suppose e.g. b = 2.5 and we observe n = 0.  

If we choose CL = 0.9, we find from the formula for sup

Physicist:  

We already knew s ≥ 0 before we started; can‟t use negative 

upper limit to report result of expensive experiment!

Statistician:

The interval is designed to cover the true value only 90%

of the time — this was clearly not one of those times.

Not uncommon dilemma when limit of parameter is close to a 

physical boundary, cf. m estimated using E2 - p2 . 
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Expected limit for on s if s = 0

Physicist:  I should have used CL = 0.95 — then sup = 0.496

Even better:  for CL = 0.917923 we get sup = 10-4 !

Reality check:  with b = 2.5, typical Poisson fluctuation in n is

at least √2.5 = 1.6.  How can the limit be so low?

Look at the mean limit for the 

no-signal hypothesis (s = 0)

(sensitivity).

Distribution of 95% CL limits

with b = 2.5, s = 0.

Mean upper limit = 4.44
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Prototype LHC analysis 

Search for signal in a region of phase space; result is histogram

of some variable x giving numbers:

Assume the ni are Poisson distributed with expectation values

G. Cowan Statistical techniques for systematics

signal

where

background

strength parameter
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Prototype analysis (II)

Often also have a subsidiary measurement that constrains some

of the background and/or shape parameters:

Assume the mi are Poisson distributed with expectation values

G. Cowan Statistical techniques for systematics

nuisance parameters (qs, qb,btot)

Likelihood function is

(N.B. here m =

number of counts,

not mass!)
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Profile likelihood ratio

To test hypothesized value of , construct profile likelihood ratio:

Maximized L for given 

Maximized L

Equivalently use q = - 2 ln ():

data agree well with hypothesized  → q small

data disagree with hypothesized  → q large
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Test statistic for discovery

Try to reject background-only ( = 0) hypothesis using

G. Cowan Statistical techniques for systematics

Large q0 means increasing incompatibility between the data

and hypothesis, therefore p-value for an observed q0,obs is

i.e. only regard upward fluctuation of data as evidence against

the background-only hypothesis.
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Test statistic for upper limits

For purposes of setting an upper limit on  use

G. Cowan Statistical techniques for systematics

Note for purposes of setting an upper limit, one does not regard

an upwards fluctuation of the data as representing incompatibility

with the hypothesized .

p-value of hypothesized  is (similarly to the case of

discovery)
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p-value / significance of hypothesized 

Test hypothesized  by giving

p-value, probability to see data 

with ≤ compatibility with 

compared to data observed:

Equivalently use significance,

Z, defined as equivalent number

of sigmas for a Gaussian 

fluctuation in one direction: 
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Wald approximation for profile likelihood ratio

To find p-values, we need:

For median significance under alternative, need:

G. Cowan Statistical techniques for systematics

Use approximation due to Wald (1943)

sample size
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Distribution of q0

Assuming the Wald approximation, we can write down the full 

distribution of q0 as

G. Cowan Statistical techniques for systematics

The special case ′ = 0 is a “half chi-square” distribution: 
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Cumulative distribution of q0, significance

From the pdf, the cumulative distribution of q0 is found to be 

G. Cowan Statistical techniques for systematics

The special case ′ = 0 is 

The p-value of the  = 0 hypothesis is

Therefore the discovery significance Z is simply
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Distribution of q

Similar results for q

G. Cowan Statistical techniques for systematics

E.g. if p < 0.05,  is 

excluded at 95% CL.
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An example

G. Cowan Statistical techniques for systematics

O. Vitells,

E. Gross
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Discovery significance for n ~ Poisson(s + b)

Consider again the case  where we observe n events ,

model as following Poisson distribution with mean s + b

(assume b is known).

1) For an observed n, what is the significance Z0 with which

we would reject the s = 0 hypothesis?

2) What is the expected (or more precisely, median ) Z0 if 

the true value of the signal rate is s?
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Gaussian approximation for Poisson significance

For large s + b, n → x ~ Gaussian(,s) ,  = s + b, s = √(s + b).

For observed value xobs, p-value of s = 0 is Prob(x > xobs | s = 0),:

Significance for rejecting s = 0 is therefore

Expected (median) significance assuming signal rate s is
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Better approximation for Poisson significance

Likelihood function for parameter s is

or equivalently the log-likelihood is

Find the maximum by setting 

gives the estimator for s: 
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Approximate Poisson significance (continued)

The likelihood ratio statistic for testing s = 0 is

For sufficiently large s + b, (use Wilks‟ theorem), 

To find median[Z0|s+b], let n → s + b, 

This reduces to s/√b for s << b.
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Higgs search with profile likelihood

Combination of Higgs boson search channels (ATLAS)

Expected Performance of the ATLAS Experiment:  Detector, 

Trigger and Physics, arXiv:0901.0512, CERN-OPEN-2008-20.

Standard Model Higgs channels considered (more to be used later):

H → gg

H → WW (*) → e

H → ZZ(*) → 4l (l = e, )

H → t+t- → ll, lh

Used profile likelihood method for systematic uncertainties:

background rates, signal & background shapes.
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Combined discovery significance

Discovery signficance 

(in colour) vs. L, mH:

Approximations used here not 

always accurate for L < 2 fb-1

but in most cases conservative.
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Combined 95% CL exclusion limits

1 - p-value of mH

(in colour) vs. L, mH:
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Summary on limits

Different sorts of limits answer different questions.  

A frequentist confidence interval does not (necessarily)

answer, “What do we believe the parameter‟s value is?”

Look at sensitivity, e.g., E[sup | s = 0]; consider also:

need for consensus/conventions;

convenience and ability to combine results, ...

For any result, consumer will compute (mentally or otherwise):

Need likelihood (or summary thereof). consumer‟s prior



G. Cowan Statistical techniques for systematics page 37

Dealing with systematics

Suppose one needs to know the shape of a distribution.

Initial model (e.g. MC) is available, but known to be imperfect.

Q:  How can one incorporate the systematic error arising from

use of the incorrect model?

A:  Improve the model.

That is, introduce more adjustable parameters into the model

so that for some point in the enlarged parameter space it 

is very close to the truth.

Then use profile the likelihood with respect to the additional

(nuisance) parameters.  The correlations with the nuisance 

parameters will inflate the errors in the parameters of interest.

Difficulty is deciding how to introduce the additional parameters.

S. Caron, G. Cowan, S. Horner, J. Sundermann, E. Gross, 2009 JINST 4 P10009
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Example of inserting nuisance parameters

G. Cowan Statistical techniques for systematics

Fit of hadronic mass distribution from a specific t decay mode.  

Important uncertainty in background from non-signal t modes.

Background rate from other 

measurements, shape from MC.

Want to include uncertainty in rate, mean, width of background

component in a parametric fit of the mass distribution.

fit from MC
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Step 1:  uncertainty in rate

G. Cowan Statistical techniques for systematics

Scale the predicted background by a factor r:  bi → rbi

Uncertainty in r is sr

Regard r0 = 1 (“best guess”) as Gaussian (or not, as appropriate)

distributed measurement centred about the true value r, which 

becomes a new “nuisance” parameter in the fit.  

New likelihood function is:

For a least-squares fit, equivalent to



page 40

Dealing with nuisance parameters 

G. Cowan Statistical techniques for systematics

Ways to eliminate the nuisance parameter r from likelihood.

1) Profile likelihood:

2) Bayesian marginal likelihood:

(prior)

Profile and marginal likelihoods usually very similar.  

Both are broadened relative to original, reflecting the uncertainty 

connected with the nuisance parameter.
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Step 2:  uncertainty in shape

G. Cowan Statistical techniques for systematics

Key is to insert additional nuisance parameters into the model.

E.g. consider a distribution g(y) .  Let y → x(y), 
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More uncertainty in shape

G. Cowan Statistical techniques for systematics

The transformation can be applied to a spline of original MC

histogram (which has shape uncertainty).

Continuous parameter a shifts distribution right/left.

Can play similar game with width (or higher moments), e.g.,
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A sample fit (no systematic error)

G. Cowan Statistical techniques for systematics

Consider a Gaussian signal, polynomial background, and

also a peaking background whose form is take from MC:

Template 

from MC

True mean/width of signal:

True mean/width of back-

ground from MC:

Fit result:
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Sample fit with systematic error

G. Cowan Statistical techniques for systematics

Suppose now the MC template for the peaking background was

systematically wrong, having

Now fitted values of signal parameters wrong, 

poor goodness-of-fit:
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Sample fit with adjustable mean/width

G. Cowan Statistical techniques for systematics

Suppose one regards peak position and width of MC template

to have systematic uncertainties:

Incorporate this by regarding the nominal mean/width of the

MC template as measurements, so in LS fit add to c2 a term:

orignal mean 

of MC template

altered mean 

of MC template
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Sample fit with adjustable mean/width (II)

G. Cowan Statistical techniques for systematics

Result of fit is now “good”:

In principle, continue to add nuisance parameters until 

data are well described by the model.
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Systematic error converted to statistical

G. Cowan Statistical techniques for systematics

One can regard the quadratic difference between the statistical

errors with and without the additional nuisance parameters as

the contribution from the systematic uncertainty in the MC template: 

Formally this part of error has been converted to part of statistical

error (because the extended model is ~correct!).
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Systematic error from “shift method”

G. Cowan Statistical techniques for systematics

Note that the systematic error regarded as part of the new statistical 

error (previous slide) is much smaller than the change one would 

find by simply “shifting” the templates plus/minus one standard 

deviation, holding them constant, and redoing the fit.  This gives:

This is not necessarily “wrong”, since here we are not improving

the model by including new parameters.

But in any case it‟s best to improve the model!



G. Cowan Statistical techniques for systematics page 49

Issues with finding an improved model
Sometimes, e.g., if the data set is very large, the total c2 can

be very high (bad), even though the absolute deviation between

model and data may be small.

It may be that including additional parameters "spoils" the

parameter of interest and/or leads to an unphysical fit result

well before it succeeds in improving the overall goodness-of-fit.

Include new parameters in a clever (physically motivated,

local) way, so that it affects only the required regions.

Use Bayesian approach -- assign priors to the new nuisance

parameters that constrain them from moving too far (or use 

equivalent frequentist penalty terms in likelihood).

Unfortunately these solutions may not be practical and one may

be forced to use ad hoc recipes (last resort).
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Summary on systematics
Key to covering a systematic uncertainty is to include the 

appropriate nuisance parameters, constrained by all available info.

Enlarge model so that for at least one point in its

parameter space, its difference from the truth is negligible.

In frequentist approach can use profile likelihood (similar with

integrated product of likelihood and prior -- not discussed today).

Too many nuisance parameters spoils information about

parameter(s) of interest.

In Bayesian approach, need to assign priors to (all) parameters.

Can provide important flexibility over frequentist methods.

Can be difficult to encode uncertainty in priors.

Exploit recent progress in Bayesian computation (MCMC).

Finally, when the LHC announces a 5 sigma effect, it's important

to know precisely what the "sigma" means.
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Extra slides

G. Cowan Statistical techniques for systematics
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Summary on discovery

Current convention:  p-value of background-only < 2.9 × 10-7 (5s )

This should really depend also on other factors:

Plausibility of signal

Confidence in modeling of background

Can also use Bayes factor

Should hopefully point to same conclusion as p-value.

If not, need to understand why!

As yet not widely used in HEP, numerical issues not easy.



G. Cowan Statistical Methods in Particle Physics page 53

Upper limit versus b

b

If n = 0 observed, should upper limit depend on b?

Classical:  yes

Bayesian:  no

FC:  yes

Feldman & Cousins, PRD 57 (1998) 3873
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Coverage probability of confidence intervals

Because of discreteness of Poisson data, probability for interval

to include true value in general > confidence level („over-coverage‟)
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Cousins-Highland method 

Regard b as „random‟, characterized by pdf p(b).

Makes sense in Bayesian approach, but in frequentist 

model b is constant (although unknown).

A measurement bmeas is random but this is not the mean

number of background events, rather, b is.

Compute anyway

This would be the probability for n if Nature were to generate

a new value of b upon repetition of the experiment with pb(b).

Now e.g. use this P(n;s) in the classical recipe for upper limit

at CL = 1 - b:

Result has hybrid Bayesian/frequentist character.

G. Cowan Statistical Methods in Particle Physics
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„Integrated likelihoods‟ 

Consider again signal s and background b, suppose we have

uncertainty in b characterized by a prior pdf pb(b).

Define integrated likelihood as

also called modified profile likelihood, in any case not

a real likelihood.

Now use this to construct likelihood ratio test and invert

to obtain confidence intervals.

Feldman-Cousins  & Cousins-Highland (FHC2), see e.g.

J. Conrad et al., Phys. Rev. D67 (2003) 012002 and 

Conrad/Tegenfeldt PHYSTAT05 talk.

Calculators available (Conrad, Tegenfeldt, Barlow).

RHUL HEP seminar, 22 March, 2006G. Cowan Statistical Methods in Particle Physics
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Likelihood ratio limits (Feldman-Cousins)

Define likelihood ratio for hypothesized parameter value s:

Here       is the ML estimator, note 

Define a statistical test for a hypothetical value of s:      

Rejection region defined by low values of likelihood ratio.

Reject s if p-value = P(l(s) ≤ lobs | s) is less than g (e.g. g = 0.05).

Confidence interval at CL = 1-g is the set of s values not rejected.

Resulting intervals can be one- or two-sided (depending on n).

(Re)discovered for HEP by Feldman and Cousins, 

Phys. Rev. D 57 (1998) 3873.
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More on intervals from LR test (Feldman-Cousins)

Caveat with coverage: suppose we find  n >> b.

Usually one then quotes a measurement:

If, however, n isn‟t large enough to claim discovery, one

sets a limit on s.

FC pointed out that if this decision is made based on n, then

the actual coverage probability of the interval can be less than

the stated confidence level („flip-flopping‟).

FC intervals remove this, providing a smooth transition from

1- to 2-sided intervals, depending on  n.

But, suppose FC gives e.g. 0.1 < s < 5 at 90% CL, 

p-value of s=0 still substantial.  Part of upper-limit „wasted‟?
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Sensitivity
Discovery:

Generate data under s+b ( = 1) hypothesis;

Test hypothesis  = 0 → p-value → Z.

Exclusion:

Generate data under background-only ( = 0) hypothesis;

Test hypothesis   1.

If   1 has p-value < 0.05 exclude mH at 95% CL.

Presence of nuisance parameters leads to broadening of the

profile likelihood, reflecting the loss of information, and gives

appropriately reduced discovery significance, weaker limits.
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Sensitivity
Discovery:

Generate data under s+b ( = 1) hypothesis;

Test hypothesis  = 0 → p-value → Z.

Exclusion:

Generate data under background-only ( = 0) hypothesis;

Test hypothesis   1.

If   1 has p-value < 0.05 exclude mH at 95% CL.

Presence of nuisance parameters leads to broadening of the

profile likelihood, reflecting the loss of information, and gives

appropriately reduced discovery significance, weaker limits.
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Fit example: b → sg (BaBar)
B. Aubert et al. (BaBar), Phys. Rev. D 77, 051103(R) (2008).

Decay of one B fully reconstructed (Btag).

Look for high-energy g from rest of event.

Signal and background yields from fit to mES in bins of Eg.

e-
D*
p

e+

Btag

Bsignal

Xs

g high-energy g

"recoil method"
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Fitting mES distribution for b → sg

Fit mES distribution using 

superposition of Crystal Ball 

and Argus functions:

Crystal

Ball

Argus

shapesrates obs./pred. events in ith bin

log-likelihood:
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Simultaneous fit of all mES distributions

Need fits of mES distributions in 14 bins of  Eg:

At high Eg, not enough events to constrain shape,

so combine all Eg bins into global fit:

Start with no energy dependence, and include one

by one more parameters until data well described.

Shape parameters could vary (smoothly) with Eg.

So make Ansatz for shape parameters such as
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Finding appropriate model flexibility

Here for Argus x parameter, linear dependence gives significant

improvement; fitted coefficient of linear term -10.7 ± 4.2.

Inclusion of additional free parameters (e.g., quadratic E

dependence for parameter x) do not bring significant improvement.

So including the additional energy dependence for the shape

parameters converts the systematic uncertainty into a statistical

uncertainty on the parameters of interest.

D. Hopkins, PhD thesis, RHUL (2007).

c2(1) - c2(2) = 3.48

p-value of (1) = 0.062

→data want extra par.


