Statistical Methods in Particle Physics Day 5: Bayesian Methods

清华大学高能物理研究中心 2010年4月12—16日

Glen Cowan Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

Outline of lectures

Day #1: Introduction Review of probability and Monte Carlo Review of statistics: parameter estimation

- Day #2: Multivariate methods (I) Event selection as a statistical test Cut-based, linear discriminant, neural networks
- Day #3: Multivariate methods (II) More multivariate classifiers: BDT, SVM ,...
- Day #4: Significance tests for discovery and limits Including systematics using profile likelihood

Day #5: Bayesian methods Bayesian parameter estimation and model selection

Day #5: outline

Reminder of Bayesian approach Systematic errors and nuisance parameters Example: fitting a straight line to data Frequentist approach Bayesian approach Bayesian approach to limits Bayesian model selection Frequentist Statistics – general philosophy

In frequentist statistics, probabilities are associated only with the data, i.e., outcomes of repeatable observations.

Probability = limiting frequency

Probabilities such as

P (Higgs boson exists), *P* (0.117 < $\alpha_{\rm s}$ < 0.121),

etc. are either 0 or 1, but we don't know which.

The tools of frequentist statistics tell us what to expect, under the assumption of certain probabilities, about hypothetical repeated observations.

The preferred theories (models, hypotheses, ...) are those for which our observations would be considered 'usual'.

Bayesian statistics – general philosophy

In Bayesian statistics, interpretation of probability extended to degree of belief (subjective probability). Use this for hypotheses:

probability of the data assuming hypothesis *H* (the likelihood) prior probability, i.e., before seeing the data $P(H|\vec{x}) = \frac{P(\vec{x}|H)\pi(H)}{\int P(\vec{x}|H)\pi(H) dH}$ posterior probability, i.e., after seeing the data over all possible hypotheses

The hypothesis *H* can, for example refer to a parameter θ . All knowledge about the hypothesis (or parameters) is encapsulated in the posterior probability.

Statistical vs. systematic errors Statistical errors:

How much would the result fluctuate upon repetition of the measurement?

Implies some set of assumptions to define probability of outcome of the measurement.

Systematic errors:

What is the uncertainty in my result due to uncertainty in my assumptions, e.g.,

model (theoretical) uncertainty; modeling of measurement apparatus.

Usually taken to mean the sources of error do not vary upon repetition of the measurement. Often result from uncertain value of calibration constants, efficiencies, etc.

Systematic errors and nuisance parameters

Model prediction (including e.g. detector effects) never same as "true prediction" of the theory:

 ${\mathcal X}$

Model can be made to approximate better the truth by including more free parameters.

systematic uncertainty \leftrightarrow nuisance parameters

Example: fitting a straight line

Data: $(x_i, y_i, \sigma_i), i = 1, ..., n$.

Model: measured y_i independent, Gaussian: $y_i \sim N(\mu(x_i), \sigma_i^2)$

Statistical Methods in Particle Physics

Frequentist approach with θ_1 known a priori

$$L(\theta_0) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma_i}} \exp\left[-\frac{1}{2} \frac{(y_i - \mu(x_i; \theta_0, \theta_1))^2}{\sigma_i^2}\right] \,.$$

 $\chi^{2}(\theta_{0}) = -2 \ln L(\theta_{0}) + \text{const} = \sum_{i=1}^{n} \frac{(y_{i} - \mu(x_{i}; \theta_{0}, \theta_{1}))^{2}}{\sigma_{i}^{2}}.$

For Gaussian y_i , ML same as LS

Minimize $\chi^2 \rightarrow \text{estimator } \hat{\theta}_0$. Come up one unit from χ^2_{\min} to find $\sigma_{\hat{\theta}_0}$.

Frequentist approach with both θ_0 and θ_1 unknown

$$L(\theta_0, \theta_1) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma_i} \exp\left[-\frac{1}{2} \frac{(y_i - \mu(x_i; \theta_0, \theta_1))^2}{\sigma_i^2}\right] \,,$$

$$\chi^{2}(\theta_{0},\theta_{1}) = -2 \ln L(\theta_{0},\theta_{1}) + \text{const} = \sum_{i=1}^{n} \frac{(y_{i} - \mu(x_{i};\theta_{0},\theta_{1}))^{2}}{\sigma_{i}^{2}}$$

Standard deviations from

tangent lines to contour

 $\chi^2 = \chi^2_{\rm min} + 1 \; .$

Correlation between $\hat{\theta}_0, \hat{\theta}_1$ causes errors to increase.

G. Cowan

The profile likelihood

The 'tangent plane' method is a special case of using the profile likelihood: $L'(\theta_0) = L(\theta_0, \hat{\theta}_1)$.

 $\hat{\theta}_1$ is found by maximizing $L(\theta_0, \theta_1)$ for each θ_0 . Equivalently use $\chi^{2'}(\theta_0) = \chi^2(\theta_0, \hat{\theta}_1)$.

The interval obtained from $\chi^{2'}(\theta_0) = \chi^{2'}_{\min} + 1$ is the same as what is obtained from the tangents to $\chi^2(\theta_0, \theta_1) = \chi^2_{\min} + 1$.

Well known in HEP as the 'MINOS' method in MINUIT.

Profile likelihood is one of several 'pseudo-likelihoods' used in problems with nuisance parameters. See e.g. talk by Rolke at PHYSTAT05. Frequentist case with a measurement t_1 of θ_1

$$\chi^{2}(\theta_{0},\theta_{1}) = \sum_{i=1}^{n} \frac{(y_{i} - \mu(x_{i};\theta_{0},\theta_{1}))^{2}}{\sigma_{i}^{2}} + \frac{(\theta_{1} - t_{1})^{2}}{\sigma_{t_{1}}^{2}}.$$
The information on θ_{1}
improves accuracy of $\hat{\theta}_{0}$.

Statistical Methods in Particle Physics

0.02 L 1.24

1.26

1.28

1.3

 $\sigma_{_{\boldsymbol{\hat{\theta}}_0}}$

1.32

1.34

 θ_0

G. Cowan

The Bayesian approach

In Bayesian statistics we can associate a probability with a hypothesis, e.g., a parameter value θ .

Interpret probability of θ as 'degree of belief' (subjective). Need to start with 'prior pdf' $\pi(\theta)$, this reflects degree of belief about θ before doing the experiment.

Our experiment has data x, \rightarrow likelihood function $L(x|\theta)$. Bayes' theorem tells how our beliefs should be updated in light of the data x:

$$p(\theta|x) = \frac{L(x|\theta)\pi(\theta)}{\int L(x|\theta')\pi(\theta') d\theta'} \propto L(x|\theta)\pi(\theta)$$

Posterior pdf $p(\theta | x)$ contains all our knowledge about θ .

Bayesian method

We need to associate prior probabilities with θ_0 and θ_1 , e.g.,

$\pi(\theta_0,\theta_1)$	=	$\pi_0(\theta_0)\pi_1(\theta_1)$	reflects 'prior ignorance', in any
$\pi_0(\theta_0)$	=	const.	case much broader than $L(\theta_0)$
$\pi_1(\theta_1)$	=	$\frac{1}{\sqrt{2\pi}\sigma_{t_1}}e^{-(\theta_1-t_1)}$	$^{2/2\sigma_{t_1}^2} \leftarrow \text{based on previous}$ measurement

Putting this into Bayes' theorem gives:

$$p(\theta_0, \theta_1 | \vec{y}) \propto \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma_i}} e^{-(y_i - \mu(x_i; \theta_0, \theta_1))^2 / 2\sigma_i^2} \pi_0 \frac{1}{\sqrt{2\pi\sigma_{t_1}}} e^{-(\theta_1 - t_1)^2 / 2\sigma_{t_1}^2}$$

$$posterior \propto likelihood \times prior$$

Bayesian method (continued)

We then integrate (marginalize) $p(\theta_0, \theta_1 | x)$ to find $p(\theta_0 | x)$:

$$p(\theta_0|x) = \int p(\theta_0, \theta_1|x) d\theta_1$$
.

In this example we can do the integral (rare). We find

$$p(\theta_0|x) = \frac{1}{\sqrt{2\pi}\sigma_{\theta_0}} e^{-(\theta_0 - \hat{\theta}_0)^2 / 2\sigma_{\theta_0}^2} \text{ with}$$
$$\hat{\theta}_0 = \text{ same as ML estimator}$$
$$\sigma_{\theta_0} = \sigma_{\hat{\theta}_0} \text{ (same as before)}$$

Usually need numerical methods (e.g. Markov Chain Monte Carlo) to do integral.

Digression: marginalization with MCMC Bayesian computations involve integrals like

$$p(\theta_0|x) = \int p(\theta_0, \theta_1|x) d\theta_1$$
.

often high dimensionality and impossible in closed form, also impossible with 'normal' acceptance-rejection Monte Carlo. Markov Chain Monte Carlo (MCMC) has revolutionized Bayesian computation.

MCMC (e.g., Metropolis-Hastings algorithm) generates correlated sequence of random numbers:

cannot use for many applications, e.g., detector MC; effective stat. error greater than if uncorrelated .

Basic idea: sample multidimensional $\vec{\theta}$, look, e.g., only at distribution of parameters of interest.

Example: posterior pdf from MCMC Sample the posterior pdf from previous example with MCMC:

Summarize pdf of parameter of interest with, e.g., mean, median, standard deviation, etc.

Although numerical values of answer here same as in frequentist case, interpretation is different (sometimes unimportant?)

MCMC basics: Metropolis-Hastings algorithm Goal: given an *n*-dimensional pdf $p(\vec{\theta})$, generate a sequence of points $\vec{\theta}_1, \vec{\theta}_2, \vec{\theta}_3, \dots$

- 1) Start at some point $\vec{\theta}_0$
- 2) Generate $\vec{\theta} \sim q(\vec{\theta}; \vec{\theta}_0)$

Proposal density $q(\vec{\theta}; \vec{\theta}_0)$ e.g. Gaussian centred about $\vec{\theta}_0$

3) Form Hastings test ratio $\alpha = \min \left| 1 \right|$

$$, \frac{p(\vec{\theta})q(\vec{\theta}_{0};\vec{\theta})}{p(\vec{\theta}_{0})q(\vec{\theta};\vec{\theta}_{0})} \bigg]$$

- 4) Generate $u \sim \text{Uniform}[0, 1]$
- 5) If $u \le \alpha$, $\vec{\theta_1} = \vec{\theta}$, \leftarrow move to proposed point else $\vec{\theta_1} = \vec{\theta_0} \leftarrow$ old point repeated

6) Iterate

Metropolis-Hastings (continued)

This rule produces a *correlated* sequence of points (note how each new point depends on the previous one).

For our purposes this correlation is not fatal, but statistical errors larger than it would be with uncorrelated points.

The proposal density can be (almost) anything, but choose so as to minimize autocorrelation. Often take proposal density symmetric: $q(\vec{\theta}; \vec{\theta}_0) = q(\vec{\theta}_0; \vec{\theta})$

Test ratio is (*Metropolis*-Hastings): $\alpha = \min \left[1, \frac{p(\vec{\theta})}{p(\vec{\theta}_0)}\right]$

I.e. if the proposed step is to a point of higher $p(\vec{\theta})$, take it; if not, only take the step with probability $p(\vec{\theta})/p(\vec{\theta}_0)$. If proposed step rejected, hop in place.

Metropolis-Hastings caveats

Actually one can only prove that the sequence of points follows the desired pdf in the limit where it runs forever.

There may be a "burn-in" period where the sequence does not initially follow $p(\vec{\theta})$.

Unfortunately there are few useful theorems to tell us when the sequence has converged.

Look at trace plots, autocorrelation.

Check result with different proposal density.

If you think it's converged, try starting from different points and see if the result is similar.

Bayesian method with alternative priors

Suppose we don't have a previous measurement of θ_1 but rather, e.g., a theorist says it should be positive and not too much greater than 0.1 "or so", i.e., something like

$$\pi_1(\theta_1) = \frac{1}{\tau} e^{-\theta_1/\tau}, \quad \theta_1 \ge 0, \quad \tau = 0.1.$$

From this we obtain (numerically) the posterior pdf for θ_0 :

This summarizes all knowledge about θ_0 .

Look also at result from variety of priors.

A more general fit (symbolic) $y_i \pm \sigma_i^{\text{stat}} \pm \sigma_i^{\text{sys}}, \quad i = 1, \dots, n$ Given measurements: and (usually) covariances: $V_{ij}^{\text{stat}}, V_{ij}^{\text{sys}}$. Predicted value: $\mu(x_i; \theta)$, expectation value $E[y_i] = \mu(x_i; \theta) + b_i$ control variable parameters **Often take:** $V_{ij} = V_{ij}^{\text{stat}} + V_{ij}^{\text{sys}}$

Minimize $\chi^2(\theta) = (\vec{y} - \vec{\mu}(\theta))^T V^{-1} (\vec{y} - \vec{\mu}(\theta))$

Equivalent to maximizing $L(\theta) \sim e^{-\chi^2/2}$, i.e., least squares same as maximum likelihood using a Gaussian likelihood function.

Its Bayesian equivalent Take $L(\vec{y}|\vec{\theta},\vec{b}) \sim \exp\left[-\frac{1}{2}(\vec{y}-\vec{\mu}(\theta)-\vec{b})^T V_{\text{stat}}^{-1}(\vec{y}-\vec{\mu}(\theta)-\vec{b})\right]$ $\pi_b(\vec{b}) \sim \exp\left[-\frac{1}{2}\vec{b}^T V_{\text{sys}}^{-1}\vec{b}\right]$ $\pi_\theta(\theta) \sim \text{const.}$ Joint probability for all parameters and use Bayes' theorem: $p(\theta,\vec{b}|\vec{y}) \propto L(\vec{y}|\theta,\vec{b})\pi_\theta(\theta)\pi_b(\vec{b})$

To get desired probability for θ , integrate (marginalize) over **b**:

$$p(\theta|\vec{y}) = \int p(\theta, \vec{b}|\vec{y}) d\vec{b}$$

→ Posterior is Gaussian with mode same as least squares estimator, σ_{θ} same as from $\chi^2 = \chi^2_{\min} + 1$. (Back where we started!)

Alternative priors for systematic errors

Gaussian prior for the bias *b* often not realistic, especially if one considers the "error on the error". Incorporating this can give a prior with longer tails:

$$\pi_{b}(b_{i}) = \int \frac{1}{\sqrt{2\pi}s_{i}\sigma_{i}^{\text{Sys}}} \exp\left[-\frac{1}{2}\frac{b_{i}^{2}}{(s_{i}\sigma_{i}^{\text{Sys}})^{2}}\right] \pi_{s}(s_{i}) ds_{i}$$

$$\frac{\widehat{\Phi}}{\sum_{i=1}^{20}} \frac{-\sigma_{s} = 0.0 \qquad \cdots \sigma_{s} = 0.3}{-\sigma_{s} = 0.1 \qquad \cdots \sigma_{s} = 0.4}$$
Represents 'error on the error'; standard deviation of $\pi_{s}(s)$ is σ_{s} .

G. Cowan

Statistical Methods in Particle Physics

A simple test Suppose fit effectively averages four measurements.

Take $\sigma_{sys} = \sigma_{stat} = 0.1$, uncorrelated.

with mode and standard deviation:

 $\sigma_{\rm S} = 0.0$: $\mu = 1.000 \pm 0.071$ $\sigma_{\rm S} = 0.5$: $\hat{\mu} = 1.000 \pm 0.072$

Simple test with inconsistent data

 $\sigma_{\rm S} = 0.5$: $\hat{\mu} = 1.093 \pm 0.089$

\rightarrow Bayesian fit less sensitive to outlier.

(See also D'Agostini 1999; Dose & von der Linden 1999)

Goodness-of-fit vs. size of error

In LS fit, value of minimized χ^2 does not affect size of error on fitted parameter.

In Bayesian analysis with non-Gaussian prior for systematics, a high χ^2 corresponds to a larger error (and vice versa).

The Bayesian approach to limits

In Bayesian statistics need to start with 'prior pdf' $\pi(\theta)$, this reflects degree of belief about θ before doing the experiment.

Bayes' theorem tells how our beliefs should be updated in light of the data *x*:

$$p(\theta|x) = \frac{L(x|\theta)\pi(\theta)}{\int L(x|\theta')\pi(\theta') d\theta'} \propto L(x|\theta)\pi(\theta)$$

Integrate posterior pdf $p(\theta | x)$ to give interval with any desired probability content.

For e.g. Poisson parameter 95% CL upper limit from

$$0.95 = \int_{-\infty}^{s_{\rm up}} p(s|n) \, ds$$

Bayesian prior for Poisson parameter

Include knowledge that $s \ge 0$ by setting prior $\pi(s) = 0$ for s < 0. Often try to reflect 'prior ignorance' with e.g.

 $\pi(s) = \begin{cases} 1 & s \ge 0\\ 0 & \text{otherwise} \end{cases}$

Not normalized but this is OK as long as L(s) dies off for large s.

Not invariant under change of parameter — if we had used instead a flat prior for, say, the mass of the Higgs boson, this would imply a non-flat prior for the expected number of Higgs events.

Doesn't really reflect a reasonable degree of belief, but often used as a point of reference;

or viewed as a recipe for producing an interval whose frequentist properties can be studied (coverage will depend on true *s*).

Jeffreys prior

An important procedure for deriving objective priors is due to Jeffreys. According to *Jeffreys' rule* one takes the prior as

$$\pi(\boldsymbol{\theta}) \propto \sqrt{\det(I(\boldsymbol{\theta}))}$$
, (32.25)

where

$$I_{ij}(\boldsymbol{\theta}) = -E\left[\frac{\partial^2 \ln L(\boldsymbol{x}|\boldsymbol{\theta})}{\partial \theta_i \partial \theta_j}\right] = -\int \frac{\partial^2 \ln L(\boldsymbol{x}|\boldsymbol{\theta})}{\partial \theta_i \partial \theta_j} L(\boldsymbol{x}|\boldsymbol{\theta}) \, d\boldsymbol{x}$$
(32.26)

is the Fisher information matrix. One can show that the Jeffreys prior leads to inference that is invariant under a transformation of parameters. One should note that the Jeffreys prior depends on the likelihood function, and thus contains information about the measurement model itself, which goes beyond one's degree of belief about the value of a parameter. As examples, the Jeffreys prior for the mean μ of a Gaussian distribution is a constant, and for the mean of a Poisson distribution one finds $\pi(\mu) \propto 1/\sqrt{\mu}$.

New for PDG 2009

Bayesian interval with flat prior for s

Solve numerically to find limit s_{up} .

For special case b = 0, Bayesian upper limit with flat prior numerically same as classical case ('coincidence').

Otherwise Bayesian limit is everywhere greater than classical ('conservative').

Never goes negative.

Doesn't depend on *b* if n = 0.

Bayesian limits with uncertainty on b

Uncertainty on b goes into the prior, e.g.,

 $\begin{aligned} \pi(s,b) &= \pi_s(s)\pi_b(b) \quad \text{(or include correlations as appropriate)} \\ \pi_s(s) &= \text{const}, \quad \sim 1/s, \dots \\ \pi_b(b) &= \frac{1}{\sqrt{2\pi}\sigma_b} e^{-(b-b_{\text{meas}})^2/2\sigma_b^2} \quad \text{(or whatever)} \end{aligned}$

Put this into Bayes' theorem,

 $p(s,b|n) \propto L(n|s,b)\pi(s,b)$

Marginalize over *b*, then use p(s|n) to find intervals for *s* with any desired probability content.

Controversial part here is prior for signal $\pi_s(s)$ (treatment of nuisance parameters is easy).

Bayesian model selection ('discovery')

The probability of hypothesis H_0 relative to its complementary alternative H_1 is often given by the posterior odds:

The Bayes factor is regarded as measuring the weight of evidence of the data in support of H_0 over H_1 .

Interchangeably use $B_{10} = 1/B_{01}$

Assessing Bayes factors

One can use the Bayes factor much like a *p*-value (or *Z* value). There is an "established" scale, analogous to our 5σ rule:

<i>B</i> ₁₀	Evidence against H_0
1 to 3	Not worth more than a bare mention
3 to 20	Positive
20 to 150	Strong
> 150	Very strong

Kass and Raftery, Bayes Factors, J. Am Stat. Assoc 90 (1995) 773.

Will this be adopted in HEP?

Rewriting the Bayes factor

Suppose we have models H_i , i = 0, 1, ...,

each with a likelihood $p(x|H_i, \vec{\theta_i})$

and a prior pdf for its internal parameters $\pi_i(\vec{\theta_i})$

so that the full prior is $\pi(H_i, \vec{\theta}_i) = p_i \pi_i(\vec{\theta}_i)$

where $p_i = P(H_i)$ is the overall prior probability for H_i .

The Bayes factor comparing H_i and H_i can be written

$$B_{ij} = \frac{P(H_i|\vec{x})}{P(H_i)} / \frac{P(H_j|\vec{x})}{P(H_j)}$$

Bayes factors independent of $P(H_i)$

For B_{ij} we need the posterior probabilities marginalized over all of the internal parameters of the models:

$$P(H_i|\vec{x}) = \int P(H_i, \vec{\theta}_i | \vec{x}) d\vec{\theta}_i \qquad \text{Use Bayes} \\ = \frac{\int L(\vec{x} | H_i, \vec{\theta}_i) p_i \pi_i(\vec{\theta}_i) d\vec{\theta}_i}{P(x)}$$

So therefore the Bayes factor is

Ratio of marginal likelihoods

$$B_{ij} = \frac{\int L(\vec{x}|H_i, \vec{\theta}_i) \pi_i(\vec{\theta}_i) d\vec{\theta}_i}{\int L(\vec{x}|H_j, \vec{\theta}_j) \pi_j(\vec{\theta}_j) d\vec{\theta}_j}$$

The prior probabilities $p_i = P(H_i)$ cancel.

G. Cowan

Numerical determination of Bayes factors

Both numerator and denominator of B_{ij} are of the form

$$m = \int L(\vec{x}|\vec{\theta}) \pi(\vec{\theta}) d\vec{\theta} \quad \longleftarrow \text{`marginal likelihood'}$$

Various ways to compute these, e.g., using sampling of the posterior pdf (which we can do with MCMC).

Harmonic Mean (and improvements) Importance sampling Parallel tempering (~thermodynamic integration) Nested sampling

See e.g. Kass and Raftery, Bayes Factors, J. Am. Stat. Assoc. 90 (1995) 773-795.

. . .

Summary

The distinctive features of Bayesian statistics are:

Subjective probability used for hypotheses (e.g. a parameter).

Bayes' theorem relates the probability of data given H (the likelihood) to the posterior probability of H given data:

$$P(H|\vec{x}) = \frac{P(\vec{x}|H)\pi(H)}{\int P(\vec{x}|H)\pi(H) \, dH}$$

Requires prior probability for *H*

Bayesian methods often yield answers that are close (or identical) to those of frequentist statistics, albeit with different interpretation. This is not the case when the prior information is important relative to that contained in the data.

Extra slides

Some Bayesian references

P. Gregory, *Bayesian Logical Data Analysis for the Physical Sciences*, CUP, 2005

D. Sivia, Data Analysis: a Bayesian Tutorial, OUP, 2006

S. Press, Subjective and Objective Bayesian Statistics: Principles, Models and Applications, 2nd ed., Wiley, 2003

A. O'Hagan, Kendall's, *Advanced Theory of Statistics, Vol. 2B*, *Bayesian Inference*, Arnold Publishers, 1994

A. Gelman et al., Bayesian Data Analysis, 2nd ed., CRC, 2004

W. Bolstad, Introduction to Bayesian Statistics, Wiley, 2004

E.T. Jaynes, Probability Theory: the Logic of Science, CUP, 2003

Analytic formulae for limits

There are a number of papers describing Bayesian limits for a variety of standard scenarios

> Several conventional priors Systematics on efficiency, background Combination of channels

and (semi-)analytic formulae and software are provided.

Joel Heinrich, Bayesian limit software: multi-channel with correlated backgrounds and efficiencies, CDF/MEMO/STATISTICS/PUBLIC/7587 (2005).

Joel Heinrich et al., Interval estimation in the presence of nuisance parameters. 1. Bayesian approach, CDF/MEMO/STATISTICS/PUBLIC/7117, physics/0409129 (2004).

Luc Demortier, A Fully Bayesian Computation of Upper Limits for Poisson Processes, CDF/MEMO/STATISTICS/PUBLIC/5928 (2004).

But for more general cases we need to use numerical methods (e.g. L.D. uses importance sampling).

Harmonic mean estimator

E.g., consider only one model and write Bayes theorem as:

$$\frac{\pi(\boldsymbol{\theta})}{m} = \frac{p(\boldsymbol{\theta}|\mathbf{x})}{L(\mathbf{x}|\boldsymbol{\theta})}$$

 $\pi(\theta)$ is normalized to unity so integrate both sides,

posterior expectation

$$m^{-1} = \int \frac{1}{L(\mathbf{x}|\boldsymbol{\theta})} p(\boldsymbol{\theta}|\mathbf{x}) d\boldsymbol{\theta} = E_p[1/L]$$

Therefore sample θ from the posterior via MCMC and estimate *m* with one over the average of 1/L (the harmonic mean of *L*).

M.A. Newton and A.E. Raftery, Approximate Bayesian Inference by the Weighted Likelihood Bootstrap, Journal of the Royal Statistical Society B 56 (1994) 3-48.

SUSSP65, St Andrews, 16-29 August 2009 / Statistical Methods 2

Improvements to harmonic mean estimator

The harmonic mean estimator is numerically very unstable; formally infinite variance (!). Gelfand & Dey propose variant:

Rearrange Bayes thm; multiply both sides by arbitrary pdf $f(\theta)$:

$$\frac{f(\boldsymbol{\theta})p(\boldsymbol{\theta}|\mathbf{x})}{L(\mathbf{x}|\boldsymbol{\theta})\pi(\boldsymbol{\theta})} = \frac{f(\boldsymbol{\theta})}{m}$$

Integrate over
$$\boldsymbol{\theta}$$
: $m^{-1} = \int \frac{f(\boldsymbol{\theta})}{L(\mathbf{x}|\boldsymbol{\theta})\pi(\boldsymbol{\theta})} p(\boldsymbol{\theta}|\mathbf{x}) = E_p \left[\frac{f(\boldsymbol{\theta})}{L(\mathbf{x}|\boldsymbol{\theta})\pi(\boldsymbol{\theta})} \right]$

Improved convergence if tails of $f(\theta)$ fall off faster than $L(x|\theta)\pi(\theta)$ Note harmonic mean estimator is special case $f(\theta) = \pi(\theta)$.

A.E. Gelfand and D.K. Dey, *Bayesian model choice: asymptotics and exact calculations*, Journal of the Royal Statistical Society B 56 (1994) 501-514.

Importance sampling

Need pdf $f(\theta)$ which we can evaluate at arbitrary θ and also sample with MC.

The marginal likelihood can be written

$$m = \int \frac{L(\mathbf{x}|\boldsymbol{\theta})\pi(\boldsymbol{\theta})}{f(\boldsymbol{\theta})} f(\boldsymbol{\theta}) d\boldsymbol{\theta} = E_f \left[\frac{L(\mathbf{x}|\boldsymbol{\theta})\pi(\boldsymbol{\theta})}{f(\boldsymbol{\theta})} \right]$$

Best convergence when $f(\theta)$ approximates shape of $L(x|\theta)\pi(\theta)$.

Use for $f(\theta)$ e.g. multivariate Gaussian with mean and covariance estimated from posterior (e.g. with MINUIT).