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Outline of lectures

Day #1:  Introduction

Review of probability and Monte Carlo

Review of statistics:  parameter estimation

Day #2:  Multivariate methods (I)

Event selection as a statistical test

Cut-based, linear discriminant, neural networks      

Day #3:  Multivariate methods (II)

More multivariate classifiers:  BDT, SVM ,...

Day #4:  Significance tests for discovery and limits

Including systematics using profile likelihood

Day #5:  Bayesian methods

Bayesian parameter estimation and model selection
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Day #5:  outline

Reminder of Bayesian approach

Systematic errors and nuisance parameters

Example:  fitting a straight line to data

Frequentist approach

Bayesian approach

Bayesian approach to limits

Bayesian model selection
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Frequentist Statistics − general philosophy 

In frequentist statistics, probabilities are associated only with

the data, i.e., outcomes of repeatable observations.

Probability = limiting frequency

Probabilities such as

P (Higgs boson exists), 

P (0.117 < as < 0.121), 

etc. are either 0 or 1, but we don‟t know which.

The tools of frequentist statistics tell us what to expect, under

the assumption of certain probabilities, about hypothetical

repeated observations.

The preferred theories (models, hypotheses, ...) are those for 

which our observations would be considered „usual‟.
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Bayesian statistics − general philosophy

In Bayesian statistics, interpretation of probability extended to

degree of belief (subjective probability).  Use this for hypotheses:

posterior probability, i.e., 

after seeing the data

prior probability, i.e.,

before seeing the data

probability of the data assuming 

hypothesis H (the likelihood)

normalization involves sum 

over all possible hypotheses

The hypothesis H can, for example refer to a parameter q.

All knowledge about the hypothesis (or parameters) is encapsulated

in the posterior probability.
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Statistical vs. systematic errors
Statistical errors:  

How much would the result fluctuate upon repetition of 

the measurement?

Implies some set of assumptions to define probability of 

outcome of the measurement.

Systematic errors:

What is the uncertainty in my result due to 

uncertainty in my assumptions, e.g.,

model (theoretical) uncertainty;

modeling of measurement apparatus.

Usually taken to mean the sources of error do not vary 

upon repetition of the measurement.  Often result from 

uncertain value of calibration constants, efficiencies, etc.
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Systematic errors and nuisance parameters
Model prediction (including e.g. detector effects) 

never same as "true prediction" of the theory:

x

y model:  

truth:

Model can be made to approximate better the truth by including

more free parameters.

systematic uncertainty ↔ nuisance parameters
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Example:  fitting a straight line

Data:

Model:  measured yi independent, Gaussian:

assume xi and si known.

Goal:  estimate q0

(don‟t care about q1).
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Frequentist approach with  q1 known a priori

For Gaussian yi, ML same as LS

Minimize c2 → estimator

Come up one unit from     

to find 

G. Cowan Statistical Methods in Particle Physics
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Correlation between

causes errors

to increase.

Standard deviations from

tangent lines to contour

Frequentist approach with both q0 and q1 unknown
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The „tangent plane‟ method is a special case of using the

profile likelihood:   

The profile likelihood

is found by maximizing L (q0, q1) for each q0.

Equivalently use 

The interval obtained from                                    is the same as 

what is obtained from the tangents to

Well known in HEP as the „MINOS‟ method in MINUIT.

Profile likelihood is one of several „pseudo-likelihoods‟ used

in problems with nuisance parameters.  See e.g. talk by Rolke

at PHYSTAT05.
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The information on q1

improves accuracy of

Frequentist case with a measurement t1 of q1
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The Bayesian approach

In Bayesian statistics we can associate a probability with

a hypothesis, e.g., a parameter value q.

Interpret probability of q as „degree of belief‟ (subjective).

Need to start with „prior pdf‟ p(q), this reflects degree 

of belief about q before doing the experiment.

Our experiment has data x, → likelihood function L(x|q).

Bayes‟ theorem tells how our beliefs should be updated in

light of the data x:

Posterior pdf p(q|x) contains all our knowledge about q.

G. Cowan Statistical Methods in Particle Physics
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Bayesian method

We need to associate prior probabilities with q0 and q1, e.g.,

Putting this into Bayes‟ theorem gives:

posterior     likelihood          prior

← based on previous 

measurement

reflects „prior ignorance‟, in any

case much broader than
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Bayesian method (continued)

Usually need numerical methods (e.g. Markov Chain Monte

Carlo) to do integral.

We then integrate (marginalize)  p(q0, q1 | x) to find p(q0 | x):

In this example we can do the integral (rare).  We find
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Digression: marginalization with MCMC

Bayesian computations involve integrals like

often high dimensionality and impossible in closed form,

also impossible with „normal‟ acceptance-rejection Monte Carlo.

Markov Chain Monte Carlo (MCMC) has revolutionized

Bayesian computation.  

MCMC (e.g., Metropolis-Hastings algorithm) generates 

correlated sequence of random numbers:

cannot use for many applications, e.g., detector MC;

effective stat. error greater than if uncorrelated .

Basic idea:  sample multidimensional 

look, e.g., only at distribution of parameters of interest. 
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Although numerical values of answer here same as in frequentist

case, interpretation is different (sometimes unimportant?)

Example:  posterior pdf from MCMC

Sample the posterior pdf from previous example with MCMC:

Summarize pdf of parameter of

interest with, e.g., mean, median,

standard deviation, etc.
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MCMC basics:  Metropolis-Hastings algorithm

Goal:  given an n-dimensional pdf 

generate a sequence of points 

1)  Start at some point 

2)  Generate  

Proposal density

e.g. Gaussian centred

about

3)  Form Hastings test ratio

4)  Generate

5)  If

else

move to proposed point

old point repeated

6)  Iterate
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Metropolis-Hastings (continued)

This rule produces a correlated sequence of points (note how 

each new point depends on the previous one).

For our purposes this correlation is not fatal, but statistical

errors larger than it would be with uncorrelated points.

The proposal density can be (almost) anything, but choose

so as to minimize autocorrelation.  Often take proposal

density symmetric:

Test ratio is (Metropolis-Hastings):

I.e. if the proposed step is to a point of higher           , take it;  

if not, only take the step with probability 

If proposed step rejected, hop in place.



G. Cowan Statistical Methods in Particle Physics page 20

Metropolis-Hastings caveats

Actually one can only prove that the sequence of points follows

the desired pdf in the limit where it runs forever.

There may be a “burn-in” period where the sequence does

not initially follow

Unfortunately there are few useful theorems to tell us when the

sequence has converged.

Look at trace plots, autocorrelation.

Check result with different proposal density.

If you think it‟s converged, try starting from different

points and see if the result is similar.
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Bayesian method with alternative priors
Suppose we don‟t have a previous measurement of q1 but rather, 

e.g., a theorist says it should be positive and not too much  greater

than 0.1 "or so", i.e., something like

From this we obtain (numerically)

the posterior pdf for q0:

This summarizes all 

knowledge about q0.

Look also at result from 

variety of  priors.
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A more general fit (symbolic)

Given measurements: 

and (usually) covariances:

Predicted value:

control variable parameters bias

Often take:

Minimize

Equivalent to maximizing L(q) » e-c2/2, i.e., least squares same 

as maximum likelihood using a Gaussian likelihood function. 

expectation value
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Its Bayesian equivalent

and use Bayes‟ theorem:

To get desired probability for q, integrate (marginalize) over b:

→ Posterior is Gaussian with mode same as least squares estimator, 

sq same as from c2 = c2
min + 1.  (Back where we started!)

Take

Joint probability

for all parameters
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Alternative priors for systematic errors
Gaussian prior for the bias b often not realistic, especially if one

considers the "error on the error".  Incorporating this can give

a prior with longer tails:

Represents „error

on the error‟; 

standard deviation 

of ps(s) is ss.
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A simple test
Suppose fit effectively averages four measurements.

Take ssys = sstat = 0.1, uncorrelated.

Case #1: data appear compatible Posterior p(|y):

Usually summarize posterior p(|y) 

with mode and standard deviation:

experiment

m
ea

su
re

m
en

t
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Simple test with inconsistent data

Case #2: there is an outlier

→ Bayesian fit less sensitive to outlier.

experiment

m
ea

su
re

m
en

t

(See also D'Agostini 1999; Dose & von der Linden 1999)
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Goodness-of-fit vs. size of error

In LS fit, value of minimized c2 does not affect size

of error on fitted parameter.

In Bayesian analysis with non-Gaussian prior for systematics,

a high c2 corresponds to a larger error (and vice versa).

2000 repetitions of

experiment, ss = 0.5,

here no actual bias.

p
o
st

er
io

r 
s



c2

s from least squares
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The Bayesian approach to limits

In Bayesian statistics need to start with „prior pdf‟ p(q), this 

reflects degree of belief about q before doing the experiment.

Bayes‟ theorem tells how our beliefs should be updated in

light of the data x:

Integrate posterior pdf p(q | x) to give interval with any desired

probability content.  

For e.g. Poisson parameter 95% CL upper limit from
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Bayesian prior for Poisson parameter

Include knowledge that s ≥0 by setting prior p(s) = 0 for s<0.

Often try to reflect „prior ignorance‟ with e.g. 

Not normalized but this is OK as long as L(s) dies off for large s.

Not invariant under change of parameter — if we had used instead

a flat prior for, say, the mass of the Higgs boson, this would 

imply a non-flat prior for the expected number of Higgs events.

Doesn‟t really reflect a reasonable degree of belief, but often used

as a point of reference;

or viewed as a recipe for producing an interval whose frequentist

properties can be studied (coverage will depend on true s). 
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Jeffreys prior

New for PDG 2009
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Bayesian interval with flat prior for s

Solve numerically to find limit sup.

For special case b = 0, Bayesian upper limit with flat prior

numerically same as classical case („coincidence‟). 

Otherwise Bayesian limit is

everywhere greater than

classical („conservative‟).

Never goes negative.

Doesn‟t depend on b if n = 0.
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Bayesian limits with uncertainty on b

Uncertainty on b goes into the prior, e.g.,

Put this into Bayes‟ theorem,

Marginalize over b, then use p(s|n) to find intervals for s

with any desired probability content.

Controversial part here is prior for signal ps(s) 

(treatment of nuisance parameters is easy).
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Bayesian model selection („discovery‟)

no Higgs

Higgs

The probability of hypothesis H0 relative to its complementary

alternative H1 is often given by the posterior odds:

Bayes factor B01 prior odds

The Bayes factor is regarded as measuring the weight of 

evidence of the data in support of H0 over H1.

Interchangeably use B10 = 1/B01
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Assessing Bayes factors

One can use the Bayes factor much like a p-value (or Z value).

There is an “established” scale, analogous to our 5s rule:

B10 Evidence against H0

--------------------------------------------

1 to 3 Not worth more than a bare mention

3 to 20 Positive

20 to 150 Strong

> 150 Very strong

Kass and Raftery, Bayes Factors, J. Am Stat. Assoc 90 (1995) 773.

Will this be adopted in HEP?
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Rewriting the Bayes factor

Suppose we have models Hi, i = 0, 1, ...,

each with a likelihood

and a prior pdf for its internal parameters 

so that the full prior is

where                         is the overall prior probability for Hi. 

The Bayes factor comparing Hi and Hj can be written 
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Bayes factors independent of P(Hi)

For Bij we need the posterior probabilities marginalized over

all of the internal parameters of the models:

Use Bayes

theorem

So therefore the Bayes factor is

The prior probabilities pi = P(Hi) cancel.

Ratio of  marginal 

likelihoods
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Numerical determination of Bayes factors

Both numerator and denominator of Bij are of the form

„marginal likelihood‟

Various ways to compute these, e.g., using sampling of the 

posterior pdf (which we can do with MCMC).

Harmonic Mean (and improvements)

Importance sampling

Parallel tempering (~thermodynamic integration)

Nested sampling

...

See e.g. 
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Summary

The distinctive features of Bayesian statistics are:

Subjective probability used for hypotheses (e.g. a parameter).

Bayes' theorem relates the probability of data given H

(the likelihood) to the posterior probability of H given data:

Requires prior 

probability for H

Bayesian methods often yield answers that are close (or identical)

to those of frequentist statistics, albeit with different interpretation.

This is not the case when the prior information is important

relative to that contained in the data.
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Extra slides 
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Some Bayesian references 

P. Gregory, Bayesian Logical Data Analysis for the Physical 

Sciences, CUP, 2005

D. Sivia, Data Analysis: a Bayesian Tutorial, OUP, 2006

S. Press, Subjective and Objective Bayesian Statistics:  Principles, 

Models and Applications, 2nd ed., Wiley, 2003

A. O‟Hagan, Kendall‟s, Advanced Theory of Statistics, Vol. 2B, 

Bayesian Inference, Arnold Publishers, 1994

A. Gelman et al., Bayesian Data Analysis, 2nd ed., CRC, 2004

W. Bolstad, Introduction to Bayesian Statistics, Wiley, 2004

E.T. Jaynes, Probability Theory:  the Logic of Science,  CUP, 2003
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Analytic formulae for limits
There are a number of papers describing Bayesian limits

for a variety of standard scenarios

Several conventional priors

Systematics on efficiency, background

Combination of channels

and (semi-)analytic formulae and software are provided.

But for more general cases we need to use numerical methods 

(e.g. L.D. uses importance sampling).
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Harmonic mean estimator

E.g., consider only one model and write Bayes theorem as:

p(q) is normalized to unity so integrate both sides,

Therefore sample q from the posterior via MCMC and estimate m

with one over the average of 1/L (the harmonic mean of L).

posterior

expectation
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Improvements to harmonic mean estimator

The harmonic mean estimator is numerically very unstable;

formally infinite variance (!).  Gelfand & Dey propose variant:

Rearrange Bayes thm; multiply 

both sides by arbitrary pdf f(q):

Integrate over q :

Improved convergence if tails of f(q) fall off faster than L(x|q)p(q)

Note harmonic mean estimator is special case f(q) = p(q).

.
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Importance sampling

Need pdf f(q) which we can evaluate at arbitrary q and also

sample with MC.

The marginal likelihood can be written

Best convergence when f(q) approximates shape of L(x|q)p(q).

Use for f(q) e.g. multivariate Gaussian with mean and covariance

estimated from posterior (e.g. with MINUIT).


