ALTAS ttH Project for iSTEP

iSTEP 2014 IHEP, Beijing August 20-29, 2014

Glen Cowan (谷林·科恩) Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

Introduction

Goal: search for the production of a Higgs in conjunction with a ttbar pair in ATLAS ("ttH") with $H \rightarrow bb$.

MC training data in *n*-tuples tth_sig.root, tth_bkg.root Signal: ttH Pythia8, $m_{\rm H} = 125$ GeV Background: inclusive tt from Powheg + Pythia8

Preselection: Required 4 b-tagged jets + 2 opposite sign leptons

Effective luminosity after preselection:

Signal: $L_{MC} = 6.40 \times 10^4 \text{ fb}^{-1}$ Background: $L_{MC} = 1.09 \times 10^2 \text{ fb}^{-1}$

Find two b-jets with mass closest to 125 GeV

 \rightarrow Higgs candidate

Associate the other two b-jets with a lepton by lowest mass first \rightarrow top candidates (missing the neutrinos)

G. Cowan

Variables for MVA (updated)

TTree n-tuple mva contains for each event:

7.7	event weaht
W	event weght
mtot	total mass of 4jet + 2lepton system
met	missing transverse energy
m34	mass of Higgs candidate
pt34	$p_{\rm T}$ of Higgs candidate
ylo,yhi	$y = m^2$ (top-Higgs) / m^2_{tot} , order: $y_{hi} > y_{lo}$
ctbz	cos (angle between Higgs plane and ttbar plane)
cts	cos (decay angle of b-jets for Higgs candidate)
ctll	cos (angle between leptons)
pvxp_n	number of pile-up vertices in event

Naive counting analysis

Find expected number of events for Ldata = 20.5 fb-1

= sum of weights for selected events $\times L_{data} / L_{MC}$

Find for expected numbers of events for both signal and background with no further cuts, s_{tot} and b_{tot} .

Naive median discovery significance

$$med[Z|s] = s_{tot} / \sqrt{b_{tot}}$$

Goal is to use MVA to construct test statistic.

Cut on test statistic; expected numbers of events after cut:

$$s = s_{\text{tot}} \ \varepsilon_{\text{s}} = s_{\text{tot}} P(t > t_{\text{cut}} | \text{s})$$
$$b = b_{\text{tot}} \ \varepsilon_{\text{b}} = b_{\text{tot}} P(t > t_{\text{cut}} | \text{b})$$

Goal is to maximize the discovery significance after cut.

G. Cowan

Code

TMVA Code is in:

```
www.pp.rhul.ac.uk/~cowan/stat/beijing14/
```

istep_atlas_project.tar

Download to working directory and type

tar -xvf istep_atlas_project.tar

YOUR PROJECT:

- 1) Find s_{tot} and b_{tot} for $L_{data} = 20.5 \text{ fb}^{-1}$
- 2) Train coefficients of Fisher discriminant (tmvaTrain)
- 3) Use cut on Fisher disc. to get s and b versus t_{cut} . (analyzeData)
- 4) Plot s/\sqrt{b} versus t_{cut} and find maximum (use **TGraph**)
- 5) Find L_{data} required to have $s/\sqrt{b} = 5$.
- 6) Repeat for MLP and BDT (see TMVA manual).