ALTAS ttH Project for iSTEP

iSTEP 2014 IHEP，Beijing August 20－29， 2014

Glen Cowan（谷林•科恩） Physics Department
Royal Holloway，University of London
g．cowan＠rhul．ac．uk www．pp．rhul．ac．uk／～cowan

Introduction

Goal: search for the production of a Higgs in conjunction with a ttbar pair in ATLAS ("ttH") with $\mathrm{H} \rightarrow \mathrm{bb}$.

MC training data in n-tuples tth_sig.root, tth_bkg.root
Signal: ttH Pythia8, $m_{\mathrm{H}}=125 \mathrm{GeV}$
Background: inclusive $t t$ from Powheg + Pythia8
Preselection: Required 4 b-tagged jets +2 opposite sign leptons
Effective luminosity after preselection:
Signal: $\quad L_{\mathrm{MC}}=6.40 \times 10^{4} \mathrm{fb}^{-1}$
Background: $L_{\mathrm{MC}}=1.09 \times 10^{2} \mathrm{fb}^{-1}$
Find two b-jets with mass closest to 125 GeV
\rightarrow Higgs candidate
Associate the other two b-jets with a lepton by lowest mass first
\rightarrow top candidates (missing the neutrinos)

Variables for MVA (updated)

TTree n-tuple mva contains for each event:

w	event weght mtot
metal mass of 4jet + 2lepton system	
met	missing transverse energy
m34	mass of Higgs candidate
pt34	p_{T} of Higgs candidate
ylo,yhi	$y=m^{2}\left(\right.$ top-Higgs) $/ \mathrm{m}^{2}$ tot , order: $y_{\text {hi }}>y_{\mathrm{lo}}$
ctbz	cos (angle between Higgs plane and ttbar plane)
cts	cos (decay angle of b-jets for Higgs candidate)
ctll	cos (angle between leptons)
pvxp_n	number of pile-up vertices in event

Naive counting analysis

Find expected number of events for Ldata $=20.5 \mathrm{fb}-1$
$=$ sum of weights for selected events $\times L_{\text {data }} / L_{\mathrm{MC}}$
Find for expected numbers of events for both signal and background with no further cuts, $s_{\text {tot }}$ and $b_{\text {tot }}$.

Naive median discovery significance

$$
\operatorname{med}[Z \mid \mathrm{s}]=s_{\mathrm{tot}} / \sqrt{ } b_{\mathrm{tot}}
$$

Goal is to use MVA to construct test statistic.
Cut on test statistic; expected numbers of events after cut:

$$
\begin{aligned}
& s=s_{\mathrm{tot}} \varepsilon_{\mathrm{s}}=s_{\mathrm{tot}} P\left(t>t_{\mathrm{cut}} \mid \mathbf{s}\right) \\
& b=b_{\mathrm{tot}} \varepsilon_{\mathrm{b}}=b_{\mathrm{tot}} P\left(t>t_{\mathrm{cut}} \mid \mathrm{b}\right)
\end{aligned}
$$

Goal is to maximize the discovery significance after cut.

Code

TMVA Code is in:
www.pp.rhul.ac.uk/~cowan/stat/beijing14/
istep_atlas_project.tar
Download to working directory and type
tar -xvf istep_atlas_project.tar
YOUR PROJECT:

1) Find $s_{\text {tot }}$ and $b_{\text {tot }}$ for $L_{\text {data }}=20.5 \mathrm{fb}^{-1}$
2) Train coefficients of Fisher discriminant (tmvaTrain)
3) Use cut on Fisher disc. to get s and b versus $t_{\text {cut }}$ (analyzeData)
4) Plot $s / \sqrt{ } b$ versus $t_{\text {cut }}$ and find maximum (use TGraph)
5) Find $L_{\text {data }}$ required to have $s / \sqrt{ } b=5$.
6) Repeat for MLP and BDT (see TMVA manual).
