

Taller de Altas Energías 2013

Statistics Problems: Solutions

Arely Cortes Gonzalez arelycg@ifae.es

l(a,b) Find the cumulative distribution...

Recall the definition of the *size* of the test:

Rejecting the hypothesis H_0 when it is true $P(x \in W | H_0) \leq \alpha$ $x_{cut}^3 = \alpha \rightarrow x_{cut} = \alpha^{1/3} = 0.368$ Power of the test: $P(x \in S - W | H_1) = \beta$, Power $= 1 - \beta$ $1 - (1 - x_{cut})^3 = 1 - (1 - 0.368)^3 = 0.748$

Bayes' theorem

1(c)
$$s_{tot} = 10, b_{tot} = 100, x_{cut} = 0.1$$

we found the cumulative probabilities before:

$$\epsilon_b = x_{cut}^3 \qquad \epsilon_s = 1 - (1 - x_{cut})^3$$

 $b = b_{\text{tot}} \cdot \epsilon_b = 100x_{cut}^3 \big|_{x_{cut=0.1}} = 0.10 \qquad s = s_{\text{tot}} \cdot \epsilon_s = 10(1 - (1 - x_{cut})^3) \big|_{x_{cut=0.1}} = 2.71$

1(d)
$$\pi_s = 0.09, \pi_b = 0.91$$

Recall Bayes' theorem
 $P(s|x < x_{cut}) = \frac{P(x < x_{cut}|s)\pi_s}{P(x < x_{cut}|s)\pi_s + P(x < x_{cut}|b)\pi_b} = \frac{\epsilon_s \pi_s}{\epsilon_s \pi_s + \epsilon_b \pi_b}$

Signal purity $P(s|x < x_{cut}) = 0.964$

p-value, significance

1(e) Experiment \rightarrow observe n_{obs} events, in the region $x < x_{cut}$.

Poison distribution $P(n|s, b) = \frac{(s+b)^n}{n!}e^{-(s+b)}$ Expected bkg events $b = 0.5 \rightarrow b \stackrel{n!}{=} b_{tot} \cdot \epsilon_b = b_{tot} \cdot x_{cut}^3 \rightarrow x_{cut} = 0.171$

p-value
$$p = P(n \ge n_{obs} | s = 0, b) = \sum_{n=n_{obs}}^{\infty} \frac{b^n}{n!} e^{-b} = 1 - \sum_{n=0}^{n_{obs}-1} \frac{b_n}{n!} e^{-b}$$

 $p = 1 - (1 + b + \frac{b^2}{2})e^{-b} = \frac{0.0144}{0.0144}$

p-value, significance

1(e) Experiment \rightarrow observe n_{obs} events, in the region $x < x_{cut}$.

Poison distribution $P(n|s, b) = \frac{(s+b)^n}{n!}e^{-(s+b)}$ Expected bkg events $b = 0.5 \rightarrow b \stackrel{n!}{=} b_{tot} \cdot \epsilon_b = b_{tot} \cdot x_{cut}^3 \rightarrow x_{cut} = 0.171$

$$p \text{-value } p = P(n \ge n_{obs} | s = 0, b) = \sum_{n=n_{obs}}^{\infty} \frac{b^n}{n!} e^{-b} = 1 - \sum_{n=0}^{n_{obs}-1} \frac{b_n}{n!} e^{-b}$$

$$p = 1 - (1 + b + \frac{b^2}{2}) e^{-b} = \frac{0.0144}{0.0144}$$

More events?! \rightarrow Use identity from Sec. 10 of arXiv:1307.2487, relating the sum of Poisson probabilities to the cumulative χ^2 distribution:

$$\sum_{n=0}^{m} \frac{b^{n}}{n!} e^{-b} = 1 - F_{\chi^{2}}(2b; n_{dof}), \text{ with } n_{dof} = 2(m+1) \rightarrow 2n_{obs}$$
$$p = F_{\chi^{2}}(2b; 2n_{obs}) = 1 - \text{TMath::Prob}(2b, 2n_{obs}) \quad \leftarrow \text{Function in ROOT}$$
$$p = 1 - \text{TMath::Prob}(1.0, 6) = 0.0144$$

Significance: $Z = \Phi^{-1}(1-p) = \text{TMath::NormQuantile}(1-p) = 2.19$

1(f) $x_{cut} = 0.1$

For $s \ll b$, $\operatorname{med}[Z_b|s+b] = s/\sqrt{b}$, otherwise $\operatorname{med}[Z_b|s+b] = \sqrt{2\left((s+b)\ln\left(1+\frac{s}{b}\right)-s\right)}$

We computed s and b for x_{cut} =0.1

 $b = b_{\text{tot}} \cdot \epsilon_b = 100x_{cut}^3 \big|_{x_{cut=0.1}} = 0.10 \qquad s = s_{\text{tot}} \cdot \epsilon_s = 10(1 - (1 - x_{cut})^3) \big|_{x_{cut=0.1}} = 2.71$

$$\operatorname{med}[Z_b|s+b] = \sqrt{2\left((s+b)\ln\left(1+\frac{s}{b}\right)-s\right)} = 3.65$$

Compare to: $med[Z_b|s+b] = \frac{s}{\sqrt{b}} = 8.57$

Write a program to compute the s and b at different x_{cut} , and then compute the median significance as a function of x_{cut} .

From the plot: Max $med[Z_b|s+b] = 3.68$ for $x_{cut} = 0.13$

Expected (median) significance

1(g) Design a test that exploits each measured value in the entire range of x. We define a test statistic to test the bkg-only hypothesis that is a monotonic function of the likelihood ratio

$$q = -2\sum_{i=1}^{n} \left[1 + \frac{s_{\text{tot}}f(x_i|s)}{b_{\text{tot}}f(x_i|b)} \right]$$

The code generates 10M experiments. Count number of events found in the b-only test, below the s+b median $a < mod[a] s \pm b] = 7$

$$q < \text{med}[q]s + b] = 7$$

$$p_b = 7 \times 10^{-7}$$

$$\text{med}[Z_b|s + b] = \Phi^{-1}(1 - p_b) = 4.83$$

Expected (median) significance

1(g) How to generate s+b hypothesis $f(x) = \pi_s f(x|s) + \pi_b f(x|b)$ Find $r \sim U[0, 1]$ If $(r < \pi_s)$ take $x \sim f(x|s)$ otherwise $x \sim f(x|b)$ \leftarrow Mixture model

For $x \sim f(x)$ we find the cumulative distribution function and solve for r

NB We are generating two independent random numbers here...