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Outline 
Lecture 1:   

 Introduction 
 Statistical tests, relation to Machine Learning 
 p-values 

Lecture 2:   
 Parameter estimation 
 Methods of Maximum Likelihood and Least Squares 
 Bayesian parameter estimation 

Lecture 3:   
 Interval estimation (limits) 
 Confidence intervals, asymptotic methods 
 Experimental sensitivity 
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Some statistics books, papers, etc.  
G. Cowan, Statistical Data Analysis, Clarendon, Oxford, 1998 
R.J. Barlow, Statistics: A Guide to the Use of Statistical Methods in 
the Physical Sciences, Wiley, 1989 
Ilya Narsky and Frank C. Porter, Statistical Analysis Techniques in 
Particle Physics, Wiley, 2014. 
Luca Lista, Statistical Methods for Data Analysis in Particle 
Physics, Springer, 2017. 
L. Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986 
F. James., Statistical and Computational Methods in Experimental 
Physics, 2nd ed., World Scientific, 2006 
S. Brandt, Statistical and Computational Methods in Data 
Analysis, Springer, New York, 1998 (with program library on CD) 
M. Tanabashi et al. (PDG), Phys. Rev. D 98, 030001 (2018); see 
also pdg.lbl.gov sections on probability, statistics, Monte Carlo 
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Theory ↔ Statistics ↔ Experiment 

+ simulation 
of detector 
and cuts 

Theory (model, hypothesis): Experiment: 

+ data 
selection 
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Data analysis in particle physics  
Observe events (e.g., pp collisions) and for each, measure 
a set of characteristics: 

 particle momenta, number of muons, energy of jets,... 

Compare observed distributions of these characteristics to  
predictions of theory.  From this, we want to: 

   Estimate the free parameters of the theory: 

   Quantify the uncertainty in the estimates: 

   Assess how well a given theory stands in agreement  
   with the observed data: 

 
To do this we need a clear definition of PROBABILITY 
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A definition of probability  
Consider a set S with subsets A, B, ... 

Kolmogorov 
axioms (1933) 

Also define conditional  
probability of A given B: 

Subsets A, B independent if: 

If A, B independent, 
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Interpretation of probability 
I.  Relative frequency 

 A, B, ... are outcomes of a repeatable experiment  

cf. quantum mechanics, particle scattering, radioactive decay... 

II.  Subjective probability 
 A, B, ... are hypotheses (statements that are true or false)  

•   Both interpretations consistent with Kolmogorov axioms. 
•   In particle physics  frequency interpretation often most useful, 
but subjective probability can provide more natural treatment of  
non-repeatable phenomena:   
     systematic uncertainties, probability that Higgs boson exists,... 
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Bayes’ theorem 
From the definition of conditional probability we have, 

and 

but , so 

Bayes’ theorem 

First published (posthumously) by the 
Reverend Thomas Bayes (1702−1761) 

An essay towards solving a problem in the 
doctrine of chances, Philos. Trans. R. Soc. 53 
(1763) 370; reprinted in Biometrika, 45 (1958) 293. 
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The law of total probability 

Consider a subset B of  
the sample space S, 

B ∩ Ai 

Ai 

B 

S 

divided into disjoint subsets Ai 
such that ∪i Ai = S, 

→ 

→ 

→ law of total probability 

Bayes’ theorem becomes 
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An example using Bayes’ theorem 
Suppose the probability (for anyone) to have a disease D is: 

← prior probabilities, i.e., 
     before any test carried out 

Consider a test for the disease:  result is + or -

← probabilities to (in)correctly 
     identify a person with the disease 

← probabilities to (in)correctly 
     identify a healthy person 

Suppose your result is +.  How worried should you be?
G. Cowan  
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Bayes’ theorem example (cont.) 
The probability to have the disease given a + result is 

i.e. you’re probably OK! 

Your viewpoint:  my degree of belief that I have the disease is 3.2%. 

Your doctor’s viewpoint:  3.2% of people like this have the disease.

← posterior probability 

G. Cowan  
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Frequentist Statistics − general philosophy  
In frequentist statistics, probabilities are associated only with 
the data, i.e., outcomes of repeatable observations (shorthand:     ). 

 Probability = limiting frequency 

Probabilities such as 

 P (Higgs boson exists),  
 P (0.117 < αs < 0.121),  

etc. are either 0 or 1, but we don’t know which. 
The tools of frequentist statistics tell us what to expect, under 
the assumption of certain probabilities, about hypothetical 
repeated observations. 

A hypothesis is is preferred if the data are found in a region of 
high predicted probability (i.e., where an alternative hypothesis 
predicts lower probability). 
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Bayesian Statistics − general philosophy  
In Bayesian statistics, use subjective probability for hypotheses: 

posterior probability, i.e.,  
after seeing the data 

prior probability, i.e., 
before seeing the data 

probability of the data assuming  
hypothesis H (the likelihood) 

normalization involves sum  
over all possible hypotheses 

Bayes’ theorem has an “if-then” character:  If your prior 
probabilities were π(H), then it says how these probabilities 
should change in the light of the data. 

 No general prescription for priors (subjective!) 
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Random variables and probability density functions 
A random variable is a numerical characteristic assigned to an 
element of the sample space; can be discrete or continuous. 

Suppose outcome of experiment is continuous value x  

→ f (x) = probability density function (pdf) 

Or for discrete outcome xi with e.g. i = 1, 2, ... we have 

x must be somewhere 

probability mass function 

x must take on one of its possible values 

G. Cowan  



Braga Data Science School / 25-27 March 2019 / Lecture 1 15 

Other types of probability densities 
Outcome of experiment characterized by several values, 
e.g. an n-component vector, (x1, ... xn)  

Sometimes we want only pdf of some (or one) of the components 

→  marginal pdf  

→  joint pdf  

Sometimes we want to consider some components as constant 

→  conditional pdf  

x1, x2 independent if  

G. Cowan  
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Expectation values 
Consider continuous r.v. x with pdf  f (x).   

Define expectation (mean) value as 

Notation (often):                         ~ “centre of gravity” of pdf.  

For a function y(x) with pdf g(y),  

(equivalent) 

Variance: 

Notation: 

Standard deviation: 

σ ~ width of pdf, same units as x. 

G. Cowan  
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Covariance and correlation 
Define covariance cov[x,y] (also use matrix notation Vxy) as   

Correlation coefficient (dimensionless) defined as 

If x, y, independent, i.e.,  ,   then 

→ x and  y, ‘uncorrelated’ 

N.B. converse not always true. 

G. Cowan  
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Correlation (cont.)  

G. Cowan  
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Hypotheses 
A hypothesis H specifies the probability for the data, i.e., the  
outcome of the observation, here symbolically: x. 

 x could be uni-/multivariate, continuous or discrete. 
 E.g. write x ~ P(x|H). 
 x could represent e.g. observation of a single particle,  
 a single event, or an entire “experiment”. 

Possible values of x form the sample space S (or “data space”). 
Simple (or “point”) hypothesis:  P(x|H) completely specified. 
Composite hypothesis:  H contains unspecified parameter(s). 
The probability for x given H is also called the likelihood of 
the hypothesis, L(H) = P(x|H). 
Often label hypothesis by continuous parameter(s) θ, 

 → likelihood function L(θ). 
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Frequentist hypothesis tests  
Consider a hypothesis H0 and alternative H1. 

A test of H0  is defined by specifying a critical region w of the 
data space such that there is no more than some (small) probability 
α, assuming H0 is correct,  to observe the data there, i.e., 

  P(x ∈ w | H0 ) ≤ α 

Need inequality if data are 
discrete. 

α is called the size or  
significance level of the test. 

If x is observed in the  
critical region, reject H0. 

data space S  

critical region w 
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Definition of a test (2) 
But in general there are an infinite number of possible critical 
regions that give the same significance level α. 

So the choice of the critical region for a test of H0  needs to take 
into account the alternative hypothesis H1. 

Roughly speaking, place the critical region where there is a low  
probability to be found if H0 is true, but high if H1 is true: 
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Type-I, Type-II errors  
Rejecting the hypothesis H0 when it is true is a Type-I error.   

The maximum probability for this is the size of  the test: 

 P(x ∈ W | H0 ) ≤ α       

But we might also accept H0 when it is false, and an alternative  
H1 is true. 

This is called a Type-II error, and occurs with probability 

 P(x ∈ S - W | H1 ) = β 

One minus this is called the power of the test with respect to 
the alternative H1: 

 Power = 1 – β 
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A simulated SUSY event 

high pT 
muons 

high pT jets  
of hadrons 

missing transverse energy 

p p 

G. Cowan  
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Background events 

This event from Standard  
Model ttbar production also 
has high  pT jets and muons, 
and some missing transverse 
energy. 

→ can easily mimic a  
     SUSY event. 

G. Cowan  
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Physics context of a statistical test 
1) Event Selection:  Data space = measured properties of individual event. 

 The event types corresponding to the different hypotheses are 
 known to exist, e.g.,  separation of different particle types (electron 
 vs muon) or known event types (ttbar vs QCD multijet). 

 E.g. test H0 : event is background vs. H1 : event is signal. 
 Use selected events for further study. 

2) Search for New Physics:  Data space = properties of a sample of events. 

The null hypothesis is 
 H0 : all events correspond to background (e.g. Standard Model),  

and the alternative is 
 H1 : events include a type whose existence is not yet established 

         (signal plus background)  
The optimal statistical test  for a search is closely related to that used for 
event selection. 
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For each reaction we consider we will have a hypothesis for the 
pdf of     , e.g.,  

Statistical tests for event selection 
Suppose the result of a measurement for an individual event  
is a collection of numbers 

 x1 = number of muons, 

 x2 = mean pT of jets, 

 x3 = missing energy, ... 

     follows some n-dimensional joint pdf, which depends on  
the type of event produced, i.e., was it  

etc. 
E.g. call H0 the background hypothesis (the event type we  
want to reject); H1 is signal hypothesis (the type we want). 

G. Cowan  
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Selecting events 
Suppose two kinds of events, corresponding to hypotheses H0 
(background) and H1 (signal) and we want to select those of 
signal type. 
Formally do this by constructing a test of H0 (background).  If 
the H0 is rejected, the event is “accepted” as candidate signal. 

What is the best critical region (“decision boundary”) for this? 

accept 
H1 

H0 

Perhaps select events 
with ‘cuts’: 

G. Cowan  
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Other ways to select events 
Or maybe use some other sort of boundary: 

accept 
H1 

H0 

accept 
H1 

H0 

linear or nonlinear 

How can we do this in an ‘optimal’ way? 

G. Cowan  
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Test statistics 
The boundary of the critical region for an n-dimensional data 
space x = (x1,..., xn) can be defined by an equation of the form 

We can work out the pdfs 

Decision boundary is now a 
single ‘cut’ on t, defining 
the critical region. 

So for an n-dimensional 
problem we have a 
corresponding 1-d problem. 

where t(x1,…, xn) is a scalar test statistic. 
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Test statistic based on likelihood ratio  
How can we choose a test’s critical region in an ‘optimal way’? 

 Neyman-Pearson lemma states: 

To get the highest power for a given significance level in a test of 
H0, (background) versus H1, (signal) the critical region should have 

inside the region, and  ≤ c outside, where c is a constant chosen 
to give a test of the desired size. 

Equivalently, optimal scalar test statistic is 

N.B. any monotonic function of this is leads to the same test. 
G. Cowan  
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Efficiencies, purity 
Let  H0 = b (event is background,  H1 = s (event is signal). 

For each event test b.  If b rejected, “accept” as candidate signal. 

To find purity of candidate signal sample, use Bayes’ theorem: 

Here W is signal region 
prior probability 

posterior probability = signal purity  

background efficiency = εb = P(x ∈ W | b ) =  α 

signal efficiency = εs  = power =  P(x ∈ W | s ) = 1 - β 
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Neyman-Pearson doesn’t usually help 
We usually don’t have explicit formulae for the pdfs f (x|s), f (x|b), 
so for a given x we can’t evaluate the likelihood ratio 

Instead we may have Monte Carlo models for signal and 
background processes, so we can produce simulated data: 

 generate x ~ f (x|s)     →     x1,..., xN 

 generate x ~ f (x|b)     →     x1,..., xN 
 
This gives samples of “training data” with events of known type. 

Can be expensive (1 fully simulated LHC event ~ 1 CPU minute). 
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Approximate LR from histograms 
Want t(x) = f (x|s)/ f(x|b) for x here 

N (x|s) ≈ f (x|s) 

N (x|b) ≈ f (x|b) 

N
(x
|s
)

N
(x
|b
)

One possibility is to generate 
MC data and construct 
histograms for both 
signal and background. 
 
Use (normalized) histogram  
values to approximate LR: 

x

x

Can work well for single  
variable. 
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Approximate LR from 2D-histograms 
Suppose problem has 2 variables.  Try using 2-D histograms: 

Approximate pdfs using N (x,y|s), N (x,y|b) in corresponding cells. 
But if we want M bins for each variable, then in n-dimensions we 
have Mn cells; can’t generate enough training data to populate. 

 → Histogram method usually not usable for n > 1 dimension. 

signal back- 
ground 
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Strategies for multivariate analysis 

Neyman-Pearson lemma gives optimal answer, but cannot be 
used directly, because we usually don’t have f (x|s), f (x|b). 

Histogram method with M bins for n variables requires that 
we estimate Mn parameters (the values of the pdfs in each cell), 
so this is rarely practical. 

A compromise solution is to assume a certain functional form 
for the test statistic t (x) with fewer parameters; determine them 
(using MC) to give best separation between signal and background. 

Alternatively, try to estimate the probability densities f (x|s) and  
f (x|b) (with something better than histograms) and use the  
estimated pdfs to construct an approximate likelihood ratio. 
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Multivariate methods (→ Machine Learning) 
Many new (and some old) methods: 

 Fisher discriminant 
 (Deep) neural networks 
 Kernel density methods 
 Support Vector Machines 
 Decision trees 
  Boosting 
  Bagging   

Much more on this in the lectures by Tommaso Dorigo
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Resources on multivariate methods 

C.M. Bishop, Pattern Recognition and Machine Learning, 
Springer, 2006 

T. Hastie, R. Tibshirani, J. Friedman, The Elements of 
Statistical Learning, 2nd ed., Springer, 2009 

R. Duda, P. Hart, D. Stork, Pattern Classification, 2nd ed., 
Wiley, 2001 

A. Webb, Statistical Pattern Recognition, 2nd ed., Wiley, 2002. 

Ilya Narsky and Frank C. Porter, Statistical Analysis 
Techniques in Particle Physics, Wiley, 2014. 

朱永生 （ 著）， 数据多元 分析， 科学出版社，  
北京，2009。 
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Testing significance / goodness-of-fit 
Suppose hypothesis H predicts pdf  
observations 

for a set of 

We observe a single point in this space: 

What can we say about the validity of H in light of the data? 

Decide what part of the  
data space represents less  
compatibility with H than  
does the point xobs.       less  

compatible 
with H 

     more  
compatible 
with H 

Note – “less compatible 
with H” means “more 
compatible with some 
alternative H′ ”. 
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p-values 

where π(H) is the prior probability for H. 

Express ‘goodness-of-fit’ by giving the p-value for H: 

p = probability, under assumption of H, to observe data with  
equal or lesser compatibility with H relative to the data we got.  

This is not the probability that H is true! 

In frequentist statistics we don’t talk about P(H) (unless H  
represents a repeatable observation). In Bayesian statistics we do;  
use Bayes’ theorem to obtain 

For now stick with the frequentist approach;  
result is p-value, regrettably easy to misinterpret as P(H). 
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Distribution of  the p-value 
The p-value is a function of the data, and is thus itself a random 
variable with a given distribution.  Suppose the p-value of H is  
found from a test statistic t(x) as 

Braga Data Science School / 25-27 March 2019 / Lecture 1 

The pdf of pH under assumption of H is 

In general for continuous data,  under  
assumption of H, pH ~ Uniform[0,1] 
and is concentrated toward zero for  
Some class of relevant alternatives. pH 

g(pH|H) 

0 1 

g(pH|H′) 
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Using a p-value to define test of H0 

One can show the distribution of the p-value of H, under  
assumption of H, is uniform in [0,1]. 

So the probability to find the p-value of H0, p0, less than α is 

Braga Data Science School / 25-27 March 2019 / Lecture 1 

We can define the critical region of a test of H0 with size α  as the  
set of data space where p0 ≤ α. 

Formally the p-value relates only to H0, but the resulting test will 
have a given power with respect to a given alternative H1. 
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Significance from p-value 
Often define significance Z as the number of standard deviations 
that a Gaussian variable would fluctuate in one direction 
to give the same p-value. 

1 - TMath::Freq 

TMath::NormQuantile 
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E.g. Z = 5 (a “5 sigma effect”) corresponds to p = 2.9 × 10-7. 
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The Poisson counting experiment 
Suppose we do a counting experiment and observe n events. 

 Events could be from signal process or from background –  
 we only count the total number. 

Poisson model:   

s = mean (i.e., expected) # of signal events 

b = mean # of background events 

Goal is to make inference about s, e.g., 

     test s = 0 (rejecting H0 ≈ “discovery of signal process”) 

     test all non-zero s  (values not rejected =  confidence interval) 

In both cases need to ask what is relevant alternative hypothesis. 
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Poisson counting experiment: discovery p-value 
Suppose b = 0.5 (known), and we observe nobs = 5.   

Should we claim evidence for a new discovery?   

    Give p-value for hypothesis s = 0: 
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Poisson counting experiment: discovery significance 

In fact this tradition should be 
revisited:  p-value intended to 
quantify probability of a signal-
like fluctuation assuming 
background only; not intended to 
cover, e.g., hidden systematics, 
plausibility signal model, 
compatibility of data with signal, 
“look-elsewhere effect”  
(~multiple testing), etc. 

Equivalent significance for p = 1.7 × 10-4:   

Often claim discovery if Z > 5 (p < 2.9 × 10-7, i.e., a “5-sigma effect”) 
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Extra slides 
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Some distributions 
Distribution/pdf  Example use in HEP 
Binomial   Branching ratio 
Multinomial   Histogram with fixed N 
Poisson   Number of events found 
Uniform   Monte Carlo method 
Exponential   Decay time 
Gaussian   Measurement error 
Chi-square   Goodness-of-fit 
Cauchy   Mass of resonance 
Landau   Ionization energy loss 
Beta    Prior pdf for efficiency 
Gamma   Sum of exponential variables 
Student’s t   Resolution function with adjustable tails 
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Binomial distribution 
Consider N independent experiments (Bernoulli trials): 

outcome of each is ‘success’ or ‘failure’, 
probability of success on any given trial is p. 

Define discrete r.v. n = number of successes (0 ≤ n ≤  N). 

Probability of a specific outcome (in order), e.g. ‘ssfsf’ is 

But order not important; there are 

ways (permutations) to get n successes in N trials, total  
probability for n is sum of probabilities for each permutation. 
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Binomial distribution  (2) 
The binomial distribution is therefore 

random 
variable 

parameters 

For the expectation value and variance we find: 
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Binomial distribution  (3) 
Binomial distribution for several values of the parameters: 

Example:  observe N decays of W±,  the number n of which are  
W→µν is a binomial r.v., p = branching ratio. 
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Multinomial distribution 
Like binomial but now m outcomes instead of two, probabilities are 

For N trials we want the probability to obtain: 

n1 of outcome 1, 
n2 of outcome 2, 

 ⠇ 
nm of outcome m. 

This is the multinomial distribution for 
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Multinomial distribution (2) 
Now consider outcome i as ‘success’, all others as ‘failure’. 

→ all ni individually binomial with parameters N, pi 

for all i 

One can also find the covariance to be 

Example:   represents a histogram 

with m bins, N total entries, all entries independent. 
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Poisson distribution 
Consider binomial n in the limit 

→ n follows the Poisson distribution: 

Example:  number of scattering events 
n with cross section σ found for a fixed 
integrated luminosity, with 
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Uniform distribution 
Consider a continuous r.v. x with -∞ < x < ∞ .  Uniform pdf is: 

N.B.  For any r.v. x with cumulative distribution F(x), 
y = F(x) is uniform in [0,1]. 

Example:  for π0 → γγ, Eγ is uniform in [Emin, Emax], with 
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Exponential distribution 
The exponential pdf for the continuous r.v. x is defined by: 

Example:  proper decay time t of an unstable particle 

(τ = mean lifetime) 

Lack of memory (unique to exponential): 
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Gaussian distribution 
The Gaussian (normal) pdf for a continuous r.v. x is defined by: 

Special case: µ = 0, σ2 = 1   (‘standard Gaussian’): 

(N.B. often µ, σ2 denote 
mean, variance of any 
r.v., not only Gaussian.) 

If y ~ Gaussian with µ, σ2, then  x = (y - µ) /σ  follows φ(x). 
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Gaussian pdf and the Central Limit Theorem 
The Gaussian pdf is so useful because almost any random 
variable that is a sum of a large number of small contributions 
follows it.  This follows from the Central Limit Theorem: 

For n independent r.v.s xi with finite variances σi
2, otherwise 

arbitrary pdfs, consider the sum 

Measurement errors are often the sum of many contributions, so 
frequently measured values can be treated as Gaussian r.v.s. 

In the limit n → ∞, y is a Gaussian r.v. with 
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Central Limit Theorem (2) 
The CLT can be proved using characteristic functions (Fourier 
transforms), see, e.g., SDA Chapter 10. 

Good example:  velocity component vx of air molecules. 

OK example:  total deflection due to multiple Coulomb scattering. 
(Rare large angle deflections give non-Gaussian tail.) 

Bad example:  energy loss of charged particle traversing thin 
gas layer.  (Rare collisions make up large fraction of energy loss, 
cf. Landau pdf.) 

For finite n, the theorem is approximately valid to the 
extent that the fluctuation of  the sum is not dominated by 
one (or few) terms.  

Beware of measurement errors with non-Gaussian tails. 
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Multivariate Gaussian distribution 
Multivariate Gaussian pdf for the vector  

are column vectors,  are transpose (row) vectors,  

For n = 2 this is 

where ρ = cov[x1, x2]/(σ1σ2) is the correlation coefficient. 
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Chi-square (χ2) distribution 
The chi-square pdf for the continuous r.v. z  (z ≥ 0) is defined by 

n = 1, 2, ... =  number of ‘degrees of 
                       freedom’ (dof) 

For independent Gaussian xi, i = 1, ..., n, means µi, variances σi
2, 

follows χ2 pdf with n dof. 

Example:  goodness-of-fit test variable especially in conjunction 
with method of least squares. 
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Cauchy (Breit-Wigner) distribution 
The Breit-Wigner pdf for the continuous r.v. x is defined by 

(Γ = 2, x0 = 0 is the Cauchy pdf.) 

E[x] not well defined,   V[x] →∞. 

x0 = mode (most probable value) 

Γ = full width at half maximum 

Example:  mass of resonance particle, e.g. ρ, K*, φ0, ... 

Γ = decay rate (inverse of mean lifetime) 
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Landau distribution 
For a charged particle with β = v /c traversing a layer of matter 
of thickness d, the energy loss Δ follows the Landau pdf: 

L. Landau, J. Phys. USSR 8 (1944) 201; see also 
W. Allison and J. Cobb, Ann. Rev. Nucl. Part. Sci. 30 (1980) 253. 

+ - + - 

- + - + β

d 

Δ
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Landau distribution  (2) 

Long ‘Landau tail’ 
     →  all moments ∞ 

Mode (most probable  
value) sensitive to β , 
     →  particle i.d. 
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Beta distribution 

Often used to represent pdf  
of continuous r.v. nonzero only 
between finite limits.  
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Gamma distribution 

Often used to represent pdf  
of continuous r.v. nonzero only 
in [0,∞]. 

Also e.g. sum of n exponential 
r.v.s or time until nth event 
in Poisson process ~ Gamma 
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Student's t distribution 

ν = number of degrees of freedom 
      (not necessarily integer) 

ν = 1 gives Cauchy, 

ν → ∞ gives Gaussian. 


