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Abstract

These lectures concern two topics that are becoming increasingly important
in the analysis of High Energy Physics (HEP) data: Bayesian statistics and
multivariate methods. In the Bayesian approach we extend the interpretiation o
probability to cover not only the frequency of repeatable outcomes hutals
include a degree of belief. In this way we are able to associate probability with
a hypothesis and thus to answer directly questions that cannot be settires
easily with traditional frequentist methods. In multivariate analysis we try
to exploit as much information as possible from the characteristics that we
measure for each event to distinguish between event types. In particelar
will look at a method that has gained popularity in HEP in recent years: the
boosted decision tree (BDT). Finally we give a brief sketch of how multtar
methods can be applied in a search for a new signal process.

1 Introduction

When a high-energy physics experiment enters the phase of data collactianalysis, the daily tasks
of its postgraduate students are often centred not around the partisieptheories one is trying to test
but rather on statistical methods. These methods are the tools needed toedatpavith theory and
guantify the extent to which one stands in agreement with the other. Ofeconesmust understand the
physical basis of the models being tested and so the theoretical emphasifgiragoate education is no
doubt well founded. But with the increasing cost of HEP experimentssibeaome important to exploit
as much of the information as possible in the hard-won data, and to quantfycagtely as possible
the inferences one draws when confronting the data with model predictions

Despite efforts to make the lectures self contained, some familiarity with bask afe#atistical
data analysis is assumed. Introductions to the subject can be founaafopke, in the reviews of the
Particle Data Group [1] or in the texts [2—6].

In these two lectures we will discuss two topics that are becoming increagimgytant: Bayesian
statistics and multivariate methods. In Section 2 we will review briefly the cdarafggrobability and
see how this is used differently in the frequentist and Bayesian ap@®athen in Section 2.2 we will
discuss a simple example, the fitting of a straight line to a set of measurements ithé frequentist
and Bayesian approaches and compare different aspects of thehigavill include in Section 2.2.3 a
brief description of Markov Chain Monte Carlo (MCMC), one of the most intgat tools in Bayesian
computation. We generalize the treatment in Section 2.3 to include systemats: error

In Section 3 we take up the general problem of how to distinguish betweedasases of events,
say, signal and background, on the basis of a set of characteristasured for each event. We first
describe how to quantify the performance of a classification method in theedvark of a statistical
test. Although the Neyman—Pearson lemma indicates that this problem has anl gptitian using
the likelihood ratio, this usually cannot be used in practice and one is foocseek other methods. In
Section 3.1 we look at a specific example of such a method, the boosted dé@sioUsing this example
we describe several issues common to many classification methods, su@rtesming. Finally, some
conclusions are mentioned in Section 4.



2 Bayesian statistical methods for high-energy physics

In this section we look at the basic ideas of Bayesian statistics and exphlorthbse can be applied in
particle physics. We will contrast these with the corresponding notiongquémtist statistics, and to
make the treatment largely self contained, the main ideas of the frequentishabpvill be summarized

as well.

2.1 The role of probability in data analysis

We begin by defining probability with the axioms written down by Kolmogorov [§ihg the language
of set theory. Consider a s&tcontaining subsetd, B, . ... We define the probability’ as a real-valued
function with the following properties:

1. Forevery subset in S, P(A) > 0;
2. For disjoint subsets (i.,eA N B = ()), P(AU B) = P(A) + P(B);
3. P(S)=1.

In addition, we define the conditional probabili§( A|B) (readP of A givenB) as

P(ANB)

P(AIB) = =5

1)
From this definition and using the fact thatn B andB N A are the same, we obtaBayes’ theorem

BlA)P(A)

pB) = e )

From the three axioms of probability and the definition of conditional probabii¢ycan derive theaw
of total probability,

P(B) = ZP(B\A»P(A» : (3)

for any subseB and for disjointA; with U; A; = S. This can be combined with Bayes’ theorem (2) to
give

 PBIAPA)
PAIB) = = pBIA) P4 @

where the subset could, for example, be one of thég,.

The most commonly used interpretation of the subsets of the sample spacgt@mes of a
repeatable experiment. The probabillB(A) is assigned a value equal to the limiting frequency of
occurrence ofd. This interpretation forms the basisfoequentist statistics

The subsets of the sample space can also be interpretegbathesesi.e., statements that are
either true or false, such as “The mass oflitidoson lies between 80.3 and 80.5 GeV.” In the frequency
interpretation, such statements are either always or never true, i.e., taggmrding probabilities would
be 0 or 1. Usingsubjective probabilityhowever,P(A) is interpreted as the degree of belief that the
hypothesisA is true.

Subijective probability is used iBayesian(as opposed to frequentist) statistics. Bayes’ theorem
can be written

P(theorydatg « P(datdtheory) P(theory) , (5)



where ‘theory’ represents some hypothesis and ‘data’ is the outcome ekgieriment. Her@(theory)

is theprior probability for the theory, which reflects the experimenter’s degree legfliefore carrying
out the measurement, arié(datdtheory) is the probability to have gotten the data actually obtained,
given the theory, which is also called thieslihood

Bayesian statistics provides no fundamental rule for obtaining the pribapitity; this is neces-
sarily subjective and may depend on previous measurements, theoreticaliges, etc. Once this has
been specified, however, Eq. (5) tells how the probability for the theosst breimodified in the light of
the new data to give theosteriorprobability, P(theorydatg. As Eq. (5) is stated as a proportionality,
the probability must be normalized by summing (or integrating) over all possyipletheses.

The difficult and subjective nature of encoding personal knowledgegriors has led to what
is calledobjective Bayesian statisticgvhere prior probabilities are based not on an actual degree of
belief but rather derived from formal rules. These give, for exammli®rs which are invariant under
a transformation of parameters or which result in a maximum gain in informatioa fpven set of
measurements. For an extensive review see, for example, Ref. [8].

2.2 An example: fitting a straight line

In Section 2.2 we look at the example of a simple fit in both the frequentist apesiga frameworks.
Suppose we have independent data valyes = 1, ..., n, that are each made at a given valyeof a
control variablex. Suppose we model thg as following a Gaussian distribution with given standard
deviationss; and mean valueg; given by a function that we evaluate at the corresponding

wu(x;6p,61) =6y + 012 . (6)

We would like to determine values of the parametgrand#, such that the model best describes the
data. The ingredients of the analysis are illustrated in Fig. 1(a).
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Fig. 1: (a) lllustration of fitting a straight line to data (see tex{p) Thex? as a function of the parametéy,
illustrating the method to determine the estimapand its standard deviatiorbo.

Now suppose the real goal of the analysis is only to estimate the paraiyetdre slope parameter
#; must also be included in the model to obtain a good description of the dataglarewot interested
in its value as such. We refer 8l as the parameter of interest, afidas anuisance parameteiin the
following sections we treat this problem using both the frequentist anddgaryapproaches.



2.2.1 The frequentist approach

Our model states that the measurements are Gaussian distributed, i.e., tig@lipyatensity function
(pdf) for theith measuremeny; is

Flyi: 0) = U in(2::6))?/202 @)

\V2mo; ’
wheref = (90, 91)
Thelikelihood functioris the joint pdf for all of they;, evaluated with thg; obtained and regarded

as a function of the parameters. Since we are assuming that the measurareentependent, the
likelihood function is in this case given by the product

n n

1(0) = T] £l 0) = ] oo (o207 (8)

i=1 i1 V2mo;

In the frequentist approach we construct estimafiier the parameter8, usually by finding the values
that maximize the likelihood function. (We will write estimators for parameters with.hén this case
one can see from (8) that this is equivalent to minimizing the quantity

X2(0) _ i (yz - M(in; 0))2 - 9 lnL(O) +C, (9)

=1 ¢
where C represents terms that do not depend on the parameters. Thus for ¢hefdadependent
Gaussian measurements, the maximum likelihood (ML) estimators for the pararetecide with
those of the method of least squares (LS).

Suppose first that the slope paraméteis known exactly, and so it is not adjusted to maximize
the likelihood (or minimize the?) but rather held fixed. The quantity’ versus the single adjustable
parametef, would be as shown in Fig. 1(b), where the minimum indicates the value of the &stiina

Methods for obtaining the standard deviations of estimators — the statistioas @frour mea-
sured values — are described in many references such as [1-6¢ itHére case of a single fitted
parameter the rule boils down to moving the parameter away from the estimatg2intireases by one
unit (i.e.,In L decreases from its maximum hy?2) as indicated in the figure.

It may be, however, that we do not know the value of the slope parafetand so even though
we do not care about its value in the final result, we are required to tr@seit adjustable parameter in
the fit. Minimizing x2(8) results in the estimato® = (6, 0;), as indicated schematically in Fig. 2(a).
Now the recipe to obtain the statistical errors, however, is not simply a matteowhg the parameter
away from its estimated value until the goes up by one unit. Here the standard deviations must be
found from the tangent lines (or in higher-dimensional problems, the tahgperplanes) to the contour
defined byx?(6) = x2,;, + 1, as shown in the figure.

The tilt of the contour in Fig. 2(a) reflects the correlation between the estistaiandé;. A

useful estimate for the inverse of the matrix of covarianggs= cov{V;, V;] can be found from the
second derivative of the log-likelihood evaluated at its maximum,

Afl_ 82111.[/

U 090,00 gy (10)

More information on how to extract the full covariance matrix from the contamrbe found, for exam-
ple, in Refs. [1-6]. The point to note here is that the correlation betweesstimators for the parameter
of interest and the nuisance parameter has the result of inflating the rstaledéations of both. That is,
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Fig. 2: Contour ofy?(8) = x2,,, + 1 centred about the estimaté, 0, ) (a) with no prior measurement 6f and
(b) when a prior measurement &f is included.

if 81 were known exactly, then the distance one would have to ri@esvay from its estimated value to
make they? increase by one unit would be less, as one can see from the figuréh&agh we can im-
prove the ability of a model to describe the data by including additional niegaar@ameters, this comes
at the price of increasing the statistical errors. This is an important themé wiiavill encounter often
in data analysis.

Now consider the case where we have a prior measuremeht ¢for example, we could have
a measuremerty which we model as following a Gaussian distribution centred aBpaind having a
given standard deviatiosy,. If this measurement is independent of the othevalues, then the full
likelihood function is obtained simply by multiplying the original one by a Gaussiad,so when we
find the newy? from —21n L there is an additional term, namely,

x'(8) = Zn: v~ pl2i6)° | (01 —t)" (11)

i=1 % 9%

As shown in Fig. 2(b), the new (solid) contourgf = x2. + 1 is compressed relative to the old
(dashed) one in th@, direction, and this compression has the effect of decreasing the etipagwell.
The lesson is: by better constraining nuisance parameters, one imprevastiktical accuracy of the
parameters of interest.

2.2.2 The Bayesian approach
To treat the example above in the Bayesian framework, we write Bayegsketing@) as
L(y|0)w(6)

VoY) = T @) (12)

Here® = (6, 60,) symbolizes the hypothesis whose probability we want to determine. The likdlihoo
L(y|0) is the probability to obtain the daga= (y1,...,y,) given the hypothesis, and the prior prob-
ability 7(0]y) represents our degree of belief about the parameters before seeingtttome of the
experiment. The posterior probability#) encapsulates all of our knowledge ab6uwvhen the data

is combined with our prior beliefs. The denominator in (12) serves to nornthkzposterior pdf to unit
area.



The likelihood L(y|@0) is the same as th&(0) that we used in the frequentist approach above.
The slightly different notation here simply emphasizes its role as the condipooizébility for the data
given the parameter.

To proceed we need to write down a prior probability densit§, 6;). This phase of a Bayesian
analysis, sometimes called tléicitation of expert opinionis in many ways the most problematic, as
there are no universally accepted rules to follow. Here we will explomgesaf the important issues that
come up.

In general, prior knowledge about one parameter might affect kngelethout the other, and
if so this must be built intor (6, 61). Often, however, one may regard the prior knowledge about the
parameters as independent, in which case the density factorizes as

7T(90,91) = 7T0<90)7T1(91) . (13)

For purposes of the present example we will assume that this holds.

For the parameter of interegg, it may be that we have essentially no prior information, so the
densitym(6p) should be very broad. Often one takes the limiting case of a broad distritsimgaty to
be a constant, i.e.,

mo(fp) = const.. (14)

Now one apparent problem with Eq. (14) is that it is not normalizable to ueét, @nd so does not appear
to be a valid probability density. It is said to be iamproper prior. The prior always appears in Bayes’
theorem multiplied by the likelihood, however, and as long as this falls off guakough as a function
of the parameters, then the resulting posterior probability density can beliped to unit area.

A further problem with uniform priors is that if the prior pdf is flat & then it is not flat for a
nonlinear function o, and so a different parametrization of the problem would lead in genegal to
non-equivalent posterior pdf.

For the special case of a constant prior, one can see from Bayegéth€12) that the posterior is
proportional to the likelihood, and therefore the mode (peak position) gidkterior is equal to the ML
estimator. The posterior mode, however, will change in general upomstaranation of parameter. A
summary statistic other than the mode may be used as the Bayesian estimatas,theanedian, which
is invariant under a monotonic parameter transformation. But this will notmegé coincide with the
ML estimator.

For the priorm;(0;), let us assume that our prior knowledge about this parameter includes the
earlier measuremerti, which we modelled as a Gaussian distributed variable centred @pauth
standard deviation;, . If we had taken, even prior to that measurement, a constant priéy fiaren the
‘intermediate-state’ prior that we have before looking atithis simply this flat prior times the Gaussian
likelihood, i.e., a Gaussian prior fy:

1 (6. —
m(01) = me (01-t1)% /207, (15)
t1

Putting all of these ingredients into Bayes’ theorem gives

R L 2 /952 1 —(61—t1)2 /202
p(0o,01]y) ox [ [ m=—e Wimleto 07200 g —— = (1=t /2e (16)
]‘;[1 V2mo; V2moy,

wherer represents the constant priorém and the equation has been written as a proportionality with
the understanding that the final posterior pdf should be normalized toreait a



What Bayes’ theorem gives us is the full joint pa9y, 61|y) for both the parameter of interest
0y as well as the nuisance parameier To find the pdf for the parameter of interest only, we simply
integrate (marginalize) the joint pdf, i.e.,

p(00ly) = [ pl60,1ly) @ )
In this example, it turns out that we can do the integral in closed form. We fidaussian posterior,

1 —(80—00)2 /202
plboly) = ———¢ (Bo=60)"/20%, (18)
0

whered, is in fact the same as the ML (or LS) estimator found above with the frequepfisbach, and
og, is the same as the standard deviation of that estinagtor

So we find something that looks just like the frequentist answer, althoughtineiinterpretation
of the result is different. The posterior pgf¢y|y) gives our degree of belief about the location of the
parameter in the light of the data. We will see below how the Bayesian appoaac however, lead to
results that differ both in interpretation as well as in numerical value fromitwould be obtained in a
frequentist calculation. First, however, we need to pause for a sigogisdion on Bayesian computation.

2.2.3 Bayesian computation and MCMC

In most real Bayesian calculations, the marginalization integrals cannatrbieccout in closed form,
and if the number of nuisance parameters is too large then they can alsdiddtdid compute with
standard Monte Carlo methods. Howeudiarkov Chain Monte CarlMCMC) has become the most
important tool for computing integrals of this type and has revolutionized 8agecomputation. In-
depth treatments of MCMC can be found, for example, in the texts by Rahei€Casella [9], Liu [10],
and the review by Neal [11].

The basic idea behind using MCMC to marginalize the joint pdk), 6,]y) is to sample points
0 = (6, 0y) according to the posterior pdf but then only to look at the distribution of tinepoment of
interestfy. A simple and widely applicable MCMC method is the Metropolis-Hastings algorithghw
allows one to generate multidimensional poiétdistributed according to a target pdf that is proportional
to a given functiorp(@), which here will represent our posterior pdf. It is not necessaryat@h(6)
normalized to unit area, which is useful in Bayesian statistics, as postesioalmlity densities are often
determined only up to an unknown normalization constant, as is the case ixample.

To generate points that follop(@), one first needs a proposal pd®; 6, ), which can be (almost)
any pdf from which independent random val#kesan be generated, and which contains as a parameter
another point in the same spag For example, a multivariate Gaussian centred aBgwian be used.
Beginning at an arbitrary starting poifl§, the Hastings algorithm iterates the following steps:

. Generate a valug using the proposal density6; 6,);

; s p(0)q(00:0) |.
. Form the Hastings test rati@,= min [1, p(oo)q(e;oo)}f

1
2
3. Generate a value uniformly distributed in[0, 1];
4. If u < o, takef; = 0. Otherwise, repeat the old point, i.68;, = 6.

If one takes the proposal density to be symmetri@iand 8, then this is theMetropolis-Hastings
algorithm, and the test ratio becomes= min|[1, p(8)/p(0o)]. That s, if the proposead is at a value of
probability higher tha, the step is taken. If the proposed step is rejected, hop in place.

Methods for assessing and optimizing the performance of the algorithrisatesded, for example,
in Refs. [9-11]. One can, for example, examine the autocorrelation @scédn of the lags, i.e., the

7



correlation of a sampled point with oesteps removed. This should decrease as quickly as possible for
increasingk. Generally one chooses the proposal density so as to optimize some quaktyrensach

as the autocorrelation. For certain problems it has been shown that loiegescoptimal performance
when the acceptance fraction, that is, the fraction of points with «, is around 40%. This can be
adjusted by varying the width of the proposal density. For example, anesmfor the proposal pdf a
multivariate Gaussian with the same covariance matrix as that of the targbupdtaled by a constant.

For our example above, MCMC was used to generate points accordingtodtegior pdp (6, 61)
by using a Gaussian proposal density. The result is shown in Fig. 3.
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Fig. 3: MCMC marginalization of the posterior pgf6y, 6 |y): (a) scatter-plot of points i(d,, 6,) plane and the
marginal distribution of (b) the parameter of interéstand (c) the nuisance parameter

From the(6y, 61) points in the scatter plot in Fig. 3(a) we simply look at the distribution of the
parameter of interesfy [Fig. 3(b)]. The standard deviation of this distribution is what we would repo
as the statistical error in our measurement@f The distribution of the nuisance paramefigrfrom
Fig. 3(c) is not directly needed, although it may be of interest in some otiméext where that parameter
is deemed interesting.

In fact one can go beyond simply summarizing the width of the distributions witl $tatistic
such as the standard deviation. The full form of the posterior distribufigiy contains useful infor-
mation about where the parameter’s true value is likely to be. In this examplésthiéutions will in
fact turn out to be Gaussian, but in a more complex analysis there coulohb&awssian tails and this
information can be relevant in drawing conclusions from the result.

2.2.4 Sensitivity analysis

The posterior distribution of; obtained above encapsulates all of the analyst’s knowledge about the
parameter in the light of the data, given that the prior beliefs were reflégtéde densityr(6y,0,). A
different analyst with different prior beliefs would in general obtairifeecent posterior pdf. We would

like the result of a Bayesian analysis to be of value to the broader sciewtifi;manity, not only to those

that share the prior beliefs of the analyst. And therefore it is important isy@8an analysis to show by
how much the posterior probabilities would change upon some reasonaialiovain the prior. This is
sometimes called theensitivity analysisind is an important part of any Bayesian calculation.

In the example above, we can imagine a situation where there was no priarmareast; of the
parameted,, but rather a theorist had told us that, based on considerations of symowisjstency,
aesthetics, etcd; was “almost certainly” positive, and had a magnitude “probably less thaorGa”.
When pressed to be precise, the theorist sketches a curve rougdyalasy an exponential with a mean
of 0.1. So we can express this prior as

1
m(61) = ;e-el/f (61 >0), (19)



with 7 =~ 0.1. We can substitute this prior into Bayes’ theorem (16) to obtain the joint pdffandé,
and then marginalize to find the pdf f@§. Doing this numerically with MCMC results in the posterior
distributions shown in Fig. 4(a).
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Fig. 4: Posterior probability densities for the paramékgobtained using (a) an exponential prior figrof different
widths and (b) several different functional forms for thépr

Now the theorist who proposed this prior #yr may feel reluctant to be pinned down, and so it is
important to recall (and to reassure the theorist about) the ‘if-then’ @atua Bayesian analysis. One
does not have to be absolutely certain about the prior in Eq. (19). R&hges’ theorem simply says
thatif one were to have these prior beligfsenwe obtain certain posterior beliefs in the light of the data.

One simple way to vary the prior here is to try different values of the meas shown in Fig. 4(a).
We see here the same basic feature as shown already in the frequaaljistsamamely, that when one
increases the precision about the nuisance parantgtethen the knowledge about the parameter of
interestdy, is improved.

Alternatively (or in addition) we may try different functional forms for thegp, as shown in
Fig. 4(b). In this case using a uniform distribution for(6;) with 0 < 6; < 0.5 or Gaussian with
o = 0.1 truncated ford; < 0 both give results similar to the exponential with a mear.af So one
concludes that the result is relatively insensitive to the detailed nature tfithef 7 (6;).

2.3 Afit with systematic errors

We can now generalize the example of Section 2.2 to explore some furtleetaepa Bayesian analysis.
Let us suppose that we are given a set ofieasurements as above, but now in addition to the statistical
errors we also are given systematic errors. That is, we are gjvem$** + ¢>** fori = 1,...,n where

the measurements as before are each carried out for a specified valcerdrol variabler.

More generally, instead of having + o5'*' + 52 it may be that the set of measurements comes
with ann x n covariance matri/s*3* corresponding to the statistical errors and another matiix for
the systematic ones. Here the square roots of the diagonal elements gimtedor each measurement,
and the off-diagonal elements provide information on how they are cteckla

As before we assume some functional foutx; @) for the expectation values of thg. This
could be the linear model of Eg. (6) or something more general, but in &yitdepends on a vector of
unknown parametei®. In this example, however, we will allow that the model is not perfect, buerath
could have a systematic bias. That is, we write that the true expectation Vahmith measurement
can be written



Ely] = p(vi;0) + b, (20)

whereb; represents the bias. Tlhgcan be viewed as the systematic errors of the model, present even
when the parametesare adjusted to give the best description of the data. We do not know ltiessva

of theb;. If we did, we would account for them in the model and they would no lobgdriases. We do

not in fact know that their values are nonzero, but we are allowing ptssibility that they could be.
The reported systematic errors are intended as a quantitative measore laffpe we expect the biases

to be.

As before, the goal is to make inferences about the param@tessme of these may be of di-
rect interest and others may be nuisance parameters. In Section 2.3.il we o do this using the
frequentist approach, and in Section 2.3.2 we will use the Bayesian method.

2.3.1 Afrequentist fit with systematic errors

If we adopt the frequentist approach, we need to write down a likelihoodtion such as Eq. (8), but
here we know in advance that the mogék; 8) is not expected to be fully accurate. Furthermore it is
not clear how to insert the systematic errors. Often, perhaps withoutigjasgification, one simply adds
the statistical and systematic errors in quadrature, or in the case whehaotiee covariance matrices
Vstat and Vs, they are summed to give a sort of ‘full’ covariance matrix:

Vij — V;?tat 4 VZYS ' (21)

One might then use this in a multivariate Gaussian likelihood function, or dgoiait could be used
to construct the?,

X(0) = (y — u(6))" V™ y — n(6)) , (22)
which is then minimized to find the LS estimators #r In Eq. (22) the vectoy = (y1,...,Yn)
should be understood as a column vectdi®) = (u(z1;0),. .., u(zy,; 0)) is the corresponding vector

of model values, and the superscriptrepresents the transpose (row) vector. Minimizing {iggives
the generalized LS estimatdsand the usual procedures can be applied to find their covariances, whic
now in some sense include the systematics.

But in what sense is there any formal justification for adding the covagiaratrices in Eq. (21)?
Next we will treat this problem in the Bayesian framework and see that tkeneleed some reason
behind this recipe, but with limitations, and further we will see how to get atdliese limitations.

2.3.2 The equivalent Bayesian fit

In the corresponding Bayesian analysis, one treats the statistical @srgrgen byl’s'%* as reflecting the
distribution of the dat in the likelihood. The systematic errors, through'®, reflect the width of the
prior probabilities for the bias parametégs That is, we take

L(y|6,b) x exp[—1(y—u(0) —b) Vi i(y — u(@®) —b)] , (23)
m(b) o exp[—3bTV I b] ,  m(8) = const., (24)
p(97 bb’) X L(Y|0? b)ﬂ'@(e)ﬂ-b(b) ) (25)

where in (25), Bayes' theorem is used to obtain the joint probability for #narpeters of interesd, and
also the biaseb. To obtain the probability fof we integrate (marginalize) ovér,
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p(6ly) = / p(8. bly) db (26)

One finds that the mode p{0|y) is at the same position as the least-squares estimates, and its covariance
will be the same as obtained from the frequentist analysis where the falliaoce matrix was given by

the sumV = Vstat 4 s¥s_ So this can be taken in effect as the formal justification for the addition in
guadrature of statistical and systematic errors in a least-squares fit.

2.3.3 The error on the error

If one stays with the prior probabilities used above, the Bayesian andsigastes approaches deliver
essentially the same result. An advantage of the Bayesian frameworkyédmovgethat it allows one to
refine the assessment of the systematic uncertainties as expresset theopigor probabilities.

For example, the least-squares fit including systematic errors is equitaldre assumption of
a Gaussian prior for the biases. A more realistic prior would take into attbermexperimenter's own
uncertainty in assigning the systematic error, i.e., the ‘error on the eBoppose, for example, that the
ith measurement is characterized by a reported systematic uncestgingnd an unreported factey,
such that the prior for the bids is

1 1 2
i) = | = — 57Ty | Ts(si)dsi 27
Wb(b ) / 27T$Z'0',?yb exXp |: 9 (Siafys)z] Q0 (3 )dS ( )

Here the ‘error on the error’ is encapsulated in the prior for the fagtat;(s). For this we can take
whatever function is deemed appropriate. For some types of systematigteroid be close to the
ideal case of a delta function centred about unity. Many reported systsraee, however, at best rough
guesses, and one could easily imagine a functigis) with a mean of unity but a standard deviation
of, say,0.5 or more. Here we show examples using a Gamma distribution fr), which results in
substantially longer tails for the priat,(b) than those of the Gaussian. This can be seen in Fig. 5, which
showsln 7, (b) for different values of the standard deviationgfs), o5. Related studies using an inverse
Gamma distribution can be found in Refs. [12, 13], which have the advathag the posterior pdf can
be written down in closed form.

Fig. 5: The log of the prior pdf for a bias
parameteb for different values of the stan-
dard deviation ofr(s).

-10 -6 -2 2 6 10
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Using a prior for the biases with tails longer than those of a Gaussian resaltsdaced sensitivity
to outliers, which arise when an experimenter overlooks an importantesofisystematic uncertainty
in the estimated error of a measurement. As a simple test of this, consider thie sktgpshown in
Fig. 6(a). Suppose these represent four independent measureffitbetsame quantity, here a parameter
called, and the goal is to combine the measurements to provide a single estimat@ludt is, we are
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effectively fitting a horizontal line to the set of measugedalues, where the control variables just a
label for the measurements.

In this example, suppose that each measuremgnt= 1,...4, is modelled as Gaussian dis-
tributed aboutu, having a standard deviatian,; = 0.1, and furthermore each measurement has a
systematic uncertainty,,s = 0.1, which here is taken to refer to the standard deviation of the Gaussian
component of the priof, (b;). This is then folded together with;(s;) to get the full prior forb; using
Eq. (27), and the joint prior for the vector of bias parameters is simply théuot of the correspond-
ing terms, as the systematic errors here are treated as being independese. idgredients are then
assembled according to the recipe of Egs. (23)—(26) to produce ttexipopdf for i, p(u|y).

Results of the exercise are shown in Fig. 6. In Fig. 6(a), the four memsuntsy; are reasonably
consistent with each other. Figure 6(b) shows the correspondingipogté:|y) for two values ofoy,
which reflect differing degrees of non-Gaussian tails in the prior forbiae parametersy,(b;). For
os = 0, the prior for the bias is exactly Gaussian, whereassfoe= 0.5, the non-Gaussian tails are
considerably longer, as can be seen from the corresponding éorves 5. The posterior pdfs for both
cases are almost identical, as can be see in Fig. 6(a). Determining the ndestaratard deviation of the
posterior for each givegd = 1.000 + 0.71 for the case ob; = 0, andjr = 1.000 £+ 0.72 for o5 = 0.5.
So assuming a 50% ‘error on the error’ here one only inflates the drthe @veraged result by a small
amount.

—0,=00 - 0,=0.5 —0,=00 - 0,=05
(a) 15 15 ! (b)
I 1 1
1 f : T ; 1 i ’ i
05 o5k
0 1 2 3 4 0 1 2 3 4
2 8 S 8
= —0,=00 no outlier = —0,=00 with outlier
6L 0,205 6l 0,205
(©) (d)
4 4
2 2
0 . I . 0 | e
0.6 038 1 12 1.4 06 038
H H

Fig. 6: (a) Data values which are relatively consistent and (b) a dat with an outlier; the horizontal lines
indicate the posterior mean for two different values of taeameter ;. (c) and (d) show the posterior distributions
corresponding to (a) and (b), respectively. (The dashedalid curves in (a) and (c) overlap.)

Now consider the case where one of the measured values is substantiatigrdifrom the other
three, as shown in Fig. 6(c). Here using the same priors for the biasptae results in the posteriors
shown in Fig. 6(d). The posterior means and standard deviations aré.125 + 0.71 for the case of
os =0, andj = 1.093 £ 0.089 for o5 = 0.5.

When we assume a purely Gaussian prior for the bigs=£t 0.0), the presence of the outlier
has in fact no effect on the width of the posterior. This is rather colnteitive and results from our
assumption of a Gaussian likelihood for the data and a Gaussian prior fbiathearameters. The
posterior mean is however pulled substantially higher than the three otheunm@asnts, which are
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clustered around.0. If the priorsm,(b;) have longer tails, as occurs when we take= 0.5, then the
posterior is broader, and furthermore it is pulled less far by the outlieambe seen in Fig. 6(d).

The fact is that the width of the posterior distribution, which effectively teighe uncertainty
on the parameter of interegt becomes coupled to the internal consistency of the data. In contrast, in
the (frequentist) least-squares method, or in the Bayesian approaghauGiaussian prior for the bias
parameters, the final uncertainty on the parameter of interest is undfiecthe presence of outliers.
And in many cases of practical interest, it would be in fact appropriatertolede that the presence of
outliers should indeed increase one’s uncertainty about the final pemaesémates. The example shown
here can be generalized to cover a wide variety of model uncertaintieclogliimg prior probabilities
for an enlarged set of model parameters.

2.4 Summary on Bayesian methods

In these lectures we have seen how Bayesian methods can be usednetearstimation, and this has
also given us the opportunity to discuss some aspects of Bayesian computatioding the important
tool of Markov Chain Monte Carlo. Although Bayesian and frequentist ogstimay often deliver results
that agree numerically, there is an important difference in their interpretaiarthermore, Bayesian
methods allow one to incorporate prior information that may be based not enm#masurements but
rather on theoretical arguments or purely subjective considerationd.aéithese considerations may
not find universal agreement, it is important to investigate how the resuit8al/esian analysis would
change for a reasonable variation of the prior probabilities.

Itis important to keep in mind that in the Bayesian approach, all informationtabe parameters
is encapsulated in the posterior probabilities. So if the analyst also wantsujopse limits or determine
intervals that cover the parameter with a specified probability, then this isighgfeaward matter of
finding the parameter limits such that the integrated posterior pdf has theddpstEability content. A
discussion of Bayesian methods to the important problem of setting upper limat®oisson parameter
is covered in Ref. [1] and references therein; we will not have time inethestures to go into that
guestion here.

We will also unfortunately not have time to explore Bayesian model selectibis allows one
to quantify the degree to which the the data prefer one model over the aihgraiquantity called the
Bayes factor. These have not yet been widely used in particle physicshbuld be kept in mind as
providing important complementary information to the corresponding outpdteafientist hypothesis
testing such ag-values. A brief description of Bayes factors can be found in Refafifa more in-depth
treatment is given in Ref. [14].

3 Statistical tests and multivariate analysis

In the second part of these lectures we will take a look at the important tbpiuktivariate analysis.

In-depth information on this topic can be found in the textbooks [15-18% particle physics context,
multivariate methods are often used when selecting events of a certain tggesame potentially large
number of measurable characteristics for each event. The basic fraknee/avill use to examine these
methods is that of a frequentist hypothesis test.

The fundamental unit of data in a particle physics experiment is the ‘ewenith in most cases
corresponds to a single particle collision. In some cases it could be instesidg, and the picture does
not change much if we look, say, at individual particles or tracks. Buttet@oncrete let us suppose
that we want to search for events from proton—proton collisions at th€ thdt correspond to some
interesting ‘signal’ process, such as supersymmetry.

When running at full intensity, the LHC should produce close to a billion esseer second. After
a quick sifting, the data from around 200 per second are recordddrtoer study, resulting in more
than a billion events per year. But only a tiny fraction of these are of poténtaest. If one of the
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speculative theories such as supersymmetry turns out to be realized e Nag&n this will result in a

subset of events having characteristic features, and the SUSY evidrsisnply be mixed in randomly

with a much larger number of Standard Model events. The relevant digigg features depend on
what new physics Nature chooses to reveal, but one might see, fopéxaighp jets, leptons, missing

energy.

Unfortunately, background processes (e.g., Standard Model §eantsften mimic these features
and one will not be able to say with certainty that a given event shows aalaence for something
new such as supersymmetry. For example, even Standard Model exemitsntain neutrinos which also
escape undetected. The typical amount and pattern of missing energgeéretrents differs on average,
however, from what a SUSY event would give, and so a statistical sisalgin be applied to test whether
something besides Standard Model events is present.

In a typical analysis there is a class of event we are interested in findinta(signd these, if
they exist at all, are mixed in with the rest of the events (background).da@tefor each event is some
collection of numberx = (z1,...,z,) representing particle energies, momenta, etc. We will refer to
these as thmput variablesof the problem. And the probabilities are joint densitiest@iven the signal
(s) or background (b) hypothese&x|s) and f (x|b).

To illustrate the general problem, consider the scatterplots shown in FipedeTBhow the distri-
bution of two variablesg; andxzs, which represent two out of a potentially large number of quantities
measured for each event. The blue circles could represent the safteyhsignal events, and the red
triangles the background. In each of the three figures there is a delomimalary representing a possible
way of classifying the events.

Fig. 7: Scatter plots of two variables corresponding to two hypsgise signal and background. Event selection
could be based, e.g., on (a) cuts, (b) a linear boundary,{opbnear boundary.

Figure 7(a) represents what is commonly called the ‘cut-based’ agpro@ne selects signal
events by requiring;; < ¢; andzs < ¢y for some suitably chosen cut valuesandcs. If z; and
o represent quantities for which one has some intuitive understandingthiseran help guide one’s
choice of the cut values.

Another possible decision boundary is made with a diagonal cut as shadwig.i@(b). One can
show that for certain problems a linear boundary has optimal propertieis, the example here, because
of the curved nature of the distributions, neither the cut-based nor the Bokdion is as good as the
nonlinear boundary shown in Fig. 7(c).

The decision boundary is a surface in th@&imensional space of input variables, which can be
represented by an equation of the foyix) = ycut, Wherey.,; is some constant. We accept events as
corresponding to the signal hypothesis if they are on one side of thedhoyre.g.y(x) < yeu could
represent the acceptance region afxl) > y.,; could be the rejection region.

Equivalently we can use the functigiix) as a scalatest statistic Once its functional form is
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specified, we can determine the pdfsyok) under both the signal and background hypothes@gs)
andp(y|b). The decision boundary is now effectively a single cut on the scal@bhiary, as illustrated
in Fig. 8.

)
e yCU[
accepts <—+—> rejects
15
1t p(yls)
p(ylb)
8T Fig. 8: Distributions of the scalar test
statisticy(x) under the signal and back-
0 ‘ ‘ ground hypotheses.

To quantify how good the event selection is, we can defineeffigiencywith which one selects
events of a given type as the probability that an event will fall in the acneptaegion. That s, the signal
and background efficiencies are

Yeut

es = P(accept eve%):Af(x\s)dx:l p(yls) dy , (28)
Ycut

e, = P(accept everlib):/Af(x\b) dx:/ p(y|b)dy , (29)

where the region of integration A represents the acceptance region.

Dividing the space of input variables into two regions where one acceptsjerts the signal
hypothesis is essentially the language of a frequentist statistical test. Egaedrbackground as the
‘null hypothesis’, then the background efficiency is the same as whasiatistical context would be
called the significance level of the test, or the rate of ‘type-I error’. igmthe signal process as the
alternative, the signal efficiency is then what a statistician would call theepoivthe test; it is the
probability to reject the background hypothesis if in fact the signal hygsishs true. Equivalently, this
is one minus the rate of ‘type-Il error’.

The use of a statistical test to distinguish between two classes of event @igihbackground),
comes up in different ways. Sometimes both event classes are knownti@agithe goal is to select one
class (signal) for further study. For example, proton—proton collisioaditg to the production of top
guarks are a well-established process. By selecting these eventsarerigeout precise measurements
of the top quark’s properties such as its mass. In other cases, the gigoaks could represent an
extension to the Standard Model, say, supersymmetry, whose existenmeyist established, and the
goal of the analysis is to see if one can do this. Rejecting the Standard MadHed sufficiently high
significance level amounts to discovering something new, and of couvedeopes that the newly revealed
phenomena will provide important insights into how Nature behaves.

What the physicist would like to have is a test with maximal power with respecbtoad class
of alternative hypotheses. For two specific signal and backgroupaotihgses, it turns out that there is a
well defined optimal solution to our problem. Thieyman—Pearsolemma states that one obtains the
maximum power relative for the signal hypothesis for a given significkeves (background efficiency)
by defining the acceptance region such thatxfamside the region, thiékelihood ratig, i.e., the ratio of
pdfs for signal and background,
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f(x]s)

A6 = i) )
is greater than or equal to a given constant, and it is less than this coastapivhere outside the
acceptance region. This is equivalent to the statement that the ratio (883eats the test statistic with
which one obtains the highest signal efficiency for a given backgrediiciency, or equivalently, for a
given signal purity.

In principle the signal and background theories should allow us to wdrtheuequired functions
f(x|s) and f(x|b), but in practice the calculations are too difficult and we do not have exfaititulae
for these. What we have insteadfifx|s) and f (x|b) are complicated Monte Carlo programs, that is, we
can samplex to produce simulated signal and background events. Because of theamatéwnature of
the data, wherg may contain at least several or perhaps even hundreds of compahemdsnontrivial
problem to construct a test with a power approaching that of the likelihatoa r

In the usual case where the likelihood ratio (30) cannot be used explititlse exists a variety
of other multivariate classifiers that effectively separate differentsygieevents. Methods often used
in HEP includeneural networksor Fisher discriminants Recently, further classification methods from
machine learning have been applied in HEP analyses; these irnpriotokbility density estimation (PDE)
techniqueskernel-based PDEKDE or Parzen windowy support vector machingsnddecision trees
Techniques such as ‘boosting’ and ‘bagging’ can be applied to combmerdoer of classifiers into
a stronger one with greater stability with respect to fluctuations in the trainiteg d2escriptions of
these methods can be found, for example, in the textbooks [15-18] andded®lings of the PHYSTAT
conference series [19]. Software for HEP includesTieA [20] andStatPatternRecognition [21]
packages, although support for the latter has unfortunately beemtiiaoed.

As we will not have the time to examine all of the methods mentioned above, in thevifajo
section we look at a specific example of a classifier to illustrate some of the masofla multivariate
analysis: the boosted decision tree (BDT).

3.1 Boosted decision trees

Boosted decision trees exploit relatively recent developments in machiminigand have gained sig-
nificant popularity in HEP. First in Section 3.1.1 we describe the basic idaaletision tree, and then
in Section 3.1.2 we will say how the the technique of ‘boosting’ can be used toVmjts performance.

3.1.1 Decision trees

A decision tree is defined by a collection of successive cuts on the sgtutfyariables. To determine
the appropriate cuts, one begins with a sampl& dfaining events which are known to be either signal
or background, e.g., from Monte Carlo. The sehahput variables measured for each event constitutes
a vectorx = (z1,...x,). Thus we haveV instances ok, x1,...xy, as well as the corresponding

true class labelgy, . .., yx. It is convenient to assign numerical values to the labels so thatye-g],
corresponds to signal and= —1 for background.
In addition we will assume that each event can be assigned a weightjth: = 1,..., N. For

any subset of the events and for a set of weights, the signal fractimityds taken to be

p— oS - (31)
D iesWi + X ich Wi
where s and b refer to the signal and background event types. Tigata@are not strictly speaking

necessary for a decision tree, but will be used in connection with boostiggction 3.1.2. For a
decision tree without boosting we can simply take all the weights to be equal.
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To quantify the degree of separation achieved by a classifier for ategleabset of the events
one can use, for example, ti&ni coefficient[22], which historically has been used as a measure of
dispersion in economics and is defined as

G=p(l-p). (32)

The Gini coefficient is zero if the selected sample is either pure signalobigbaund. Another measure
is simply the misclassification rate,

e=1-maxp,1-p). (33)

The idea behind a decision tree is illustrated in Fig. 9, from an analysis byitiB&dNE neutrino
oscillation experiment at Fermilab [23].

Fig. 9: lllustration of a decision tree used
by the MiniBooNE experiment [23] (see
text).

One starts with the entire sample of training events in the root node, shownfiguhe with 52
signal and 48 background events. Out of all of the possible inputhlagan the vectok, one finds the
component that provides the best separation between signal anddauitdpy use of a single cut. This
requires a definition of what constitutes ‘best separation’, and thera aumber of reasonable choices.
For example, for a cut that splits a set of eventato two subset$ andc, one can define the degree of
separation through the weighted change in the Gini coefficients,

A = W,Go — WyGpy — WG . (34)

where

Wa=) w, (35)
i€a
and similarly foriW, andW,. Alternatively one may use a quantity similar to (34) but with the mis-
classification rate (33), for example, instead of the Gini coefficient. Ndossibilities can be found in
Ref. [20].
For whatever chosen measure of degree of separatioone finds the cut on the variable amongst
the components af that maximizes it. In the example of the MiniBooNE experiment shown in Fig. 9,
this happened to be a cut on the number of PMT hits with a value of 100. Thssthe training sample
into the two daughter nodes shown in the figure, one of which is enhancggnal and the other in
background events.

The algorithm requires a stopping rule based, for example, on the nurheeerds in a node or
the misclassification rate. If, for example, the number of events or the migicassn rate in a given
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node falls below a certain threshold, then this is defined as a terminal nddafarlt is classified as a
signal or background leaf based on its predominant event type. I8 Figr example, the node after the
cut on PMT hits with 4 signal and 37 background events is classified asyatdibackground node.

For nodes that have not yet reached the stopping criterion, one itdratpeocedure and finds, as
before, the variable that provides the best separation with a single deig.l@ this is an energy cut of
0.2 GeV. The steps are continued until all nodes reach the stopping criterion.

The resulting set of cuts effectively divides thespace into two regions: signal and background.
To provide a numerical output for the classifier we can define

flx) =

1 x in signal region
{ gnal reg (36)

-1 x in background region

Equation (36) defines a decision tree classifier. In this form, these tenel verlp sensitive to
statistical fluctuations in the training data. One can easily see why this is, done, if two of the
components ok have similar discriminating power between signal and background. Feea gaining
sample, one variable may be found to give the best degree of sepanadids @hosen to make the cut,
and this affects the entire further structure of the tree. In a differetistatally independent sample
of training events, the other variable may be found to be better, and théngstee could look very
different. Boosting is a technique that can decrease the sensitivity asifidato such fluctuations, and
we describe this in the following section.

3.1.2 Boosting

Boosting is a general method of creating a set of classifiers which camit@med to give a new classifier
that is more stable and has a smaller misclassification rate than any individudt imeften applied
to decision trees, precisely because they suffer from sensitivity to staltiitictuations in the training
sample, but the technique can be applied to any classifier.

Let us suppose as above that we have a sampl¥ tfaining events, i.e.]V instances of the
data vectorxy,...,xy, and N true class labelg;,...,yn, with y = 1 for signal andy = —1 for
background. Also as above assume we Hﬁvweights@”, - ,w%), where the superscrigl ) refers

to the fact that this is the first training set. We initially set the weights equal ardalized such that

Sw=1. (37)

The idea behind boosting is to create from the initial sample, a series offtndlir@ng samples
which differ from the initial one in that the weights will be changed according g&pecific rule. A
number of boosting algorithms have been developed, and these differiprim#he rule used to update
the weights. We will describe the AdaBoost algorithm of Freund and $&hggd], as it was one of the
first such algorithms and its properties have been well studied.

One begins with the initial training sample and from it derives a classifier. &We im mind here
a decision tree, but it could be any type of classifier for where the tragmmpioys the event weights.
The resulting functiory; (x) will have a certain misclassification rate. In general for théth classifier
(i.e., based on thkth training sample), we can write the error rate as

N
en = w" I(y; fr(xi) < 0) | (38)
=1

wherel(X) = 1 if the Boolean expressioX is true, and is zero otherwise. We then assign a score to
the classifier based on its error rate. For the AdaBoost algorithm this is
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1_
ap = 1In sljk , (39)

which is positive as long as the error rate is lower than 50%, i.e,. the claskifisrbetter than random
guessing.

Having carried out these steps for the initial training sample, we define tbedéraining sample
by updating the weights. More generally, the weights for &tepl are found from those for stépby

—a Xi)yi/2
uék+1)=:uék)ek€;)y/’, (40)
k

where the factorZ;, is chosen so that the sum of the updated weights is equal to unity. Note that if
an event is incorrectly classified, then the true class lgbahd the valuef;(x;) have opposite signs,
and thus the new weights are greater than the old ones. Correctly classiiets have their weights
decreased. This means that the updated training set will pay more attentiemiexthiteration to those
events that were not correctly classified, the idea being that it shouldtdehto get it right the next
time around.

After K iterations of this procedure one has classifigfx), . . ., fx (x), each with a certain error
rate and score based on Egs. (38) and (39). In the case of decetsntine set of new trees is called a
forest From these one defines an averaged classifier as

K
y(x) = apfr(x) . (41)
k=1

Equation (41) defines a boosted decision tree (or more generally, eea@ssion of whatever classifier
was used).

One of the important questions to be addressed is how many boosting itetatioges. One can
show that for a sufficiently large number of iterations, a boosted decigemntill eventually classify all
of the events in the training sample correctly. Similar behaviour is found witttkasgification method
where one can control to an arbitrary degree the flexibility of the decisiandiary. The user can arrange
it so that the boundary twists and turns so as to get all of the events on lihsidg.

In the case of a neural network, for example, one can increase theenwhbidden layers, or
the number of nodes in the hidden layers; for a support vector machmeea;am adjust the width of the
kernel function and the regularization parameter to increase the flexibilthyedioundary. An example
is shown in Fig. 10(a), where an extremely flexible classifier has managatttose all of the signal
events and exclude all of the background.

Of course if we were now to take the decision boundary shown in Fig.) Hd@ apply it to a
statistically independent data sample, there is no reason to believe that tbeioos that led to such
good performance on the training sample will still work. This can be seen irlB{@), which shows the
same boundary with a new data sample. In this case the classifier is saidvertrained Its error rate
calculated from the same set of events used to train the classifier undetestingarate on a statistically
independent sample.

To deal with overtraining, one estimates the misclassification rate not only withaihéng data
sample but also with a statistically independent test sample. We can then potdbesas a function
of the parameters that regulate the flexibility of the decision boundary, eegnuimber of boosting
iterations used to form the BDT. For a small number of iterations, one will finééieral that the error
rates for both samples drop. The error rate based on the training sampientiliue to drop, eventually
reaching zero. But at some point the error rate from the test sample adléde decrease and in general
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Fig. 10: Scatter plot of events of two types and the decision boundatgrmined by a particularly flexible classi-
fier. Plot (a) shows the events used to train the classifidr(lanshows an independent sample of test data.

will increase. One chooses the architecture of the classifier (humberostibg iterations, number of
nodes or layers in a neural network, etc.) to minimize the error rate on theatagte.

As the test sample is used to choose between a number of competing arobitdetsed on the
minimum observed error rate, this in fact gives a biased estimate of the toxeae. In principle one
should use a third validation sample to obtain an unbiased estimate of the &grdinrenany cases the
bias is small and this last step is omitted, but one should be aware of its poteigiahee.

In some applications, the training data is relatively inexpensive; one simpbrgies more events
with Monte Carlo. But often event generation can take a prohibitively longainteone may be reluctant
to use only a fraction of the events for training and the other half for testimguch cases, procedures
such agross validation(see, e.g., Refs. [15, 16]) can be used where the available evemarttiened
in a number of different ways into training and test samples and the resattged.

Boosted decision trees have become increasingly popular in particle pltysecent years. One
of their advantages is that they are relatively insensitive to the number of uapiables used in the
data vectox. Components that provide little or no separation between signal and loackbare rarely
chosen as for the cut that provides separation, i.e., to split the tree,nthdy are effectively ignored.
Decision trees have no difficulty in dealing with different types of data;elees be real, integer, or
they can simply be labels for which there is no natural ordering (cateddata). Furthermore, boosted
decision trees are surprisingly insensitive to overtraining. That is, athdle error rate on the test
sample will not decrease to zero as one increases the number of boosttigrite(as is the case for the
training sample), it tends not to increase. Further discussion of this poirtte found in Ref. [25].

3.2 Using a multivariate classifier to search for new physics

An important application of a multivariate classifier is to search for a sigralgss whose existence
is not established. In this section we will sketch briefly how this can be d@&gpose as before
each event is characterized by a vector of measured quantidesl that a classifier functiom(x) has
been constructed to distinguish a hypothetical signal from events fremsdue to known processes
(background).

If we observen events, then we have values of the statisticy, ..., y,, and on the basis of
these data we want to test hypotheses representing different mixtuséggnaf and background. The
first step in establishing the existence of the signal process is to rejeca¢kgrbund-only hypothesis,
here labeled, in a test with a sufficiently low significance lewel Even if we cannot establish that the
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signal exists, we will want to know what signal models, or regions of a megeltameter space, can
be rejected. That is, we test the ‘signal-plus-background’-erb hypothesis, and from this we can set
limits on the signal rate.

Suppose that the background-only model predicts an expected numbeesndsb, and for the

signal-plus-background hypothesis one expectsb events. The probability to obserweevents under
the two hypothese$,ands + b, will therefore be described by the Poisson distributions

o
P(nlb) = e b (42)
P(n|ls+0b) = ('S—Iqj“l))e_(s+b). (43)

Once the classifier function(x) has been chosen, we can work out, usually using Monte Carlo,
the probability densities af that would result if one had exclusively signal or background evenqiss)
andp(y|b). Given an observed number of eventand the corresponding values of the statigtic . . , y,,
we can therefore write the likelihoods for thends + b hypotheses as

T
Ly = e "TI»wlb) (44)
=1
s+b o (s b
Loy = ( (+b)H< —|—S+bp(yi|b)> . (45)

That is, for thes + b model the distribution of is a mixture ofp(y|s) andp(y|b), with the coefficients
given by the respective prior probabilities for an event to be of theesponding type.

We want to construct a test that will have the maximum probability to reject ttiegbaund-only
hypothesis if in fact the signal-plus-background model is true. Accgritithe Neyman-Pearson lemma
discussed above, the optimal test statistic for this will be the ratio of the two likelyar equivalently
a monotonic function thereof. We therefore define the test stafistis

s+b |8)
Q=-2In - +Zl <1+bp yz’b)> . (46)

Note that the additive term s in (46) plays no role in discriminating between the two hypotheses as it
merely shifts the distribution a by a fixed amount, and thus it can be dropped.

lllustrative distributions of) under theéb ands + b hypotheses are shown in Fig. 11(a). The actual
data results in a single value &f, here called),s, as indicated on the plot. To quantify the level of
discrepancy between the observed data and the two hypotheses;Hovegive thep-value, which is
defined as the probability, under assumption of the given hypothesis diadia with equal or worse
compatibility relative to what was observed. Because here the valugsaoé on average lower for the
s + b hypothesis than fob, for thep-value ofs + b we take the region of equal or lower compatibility
to beQ > Q.ns. Similarly, equal or lower compatibility relative to the background-only hypsihis
taken to mean data outcomes with< ().,s. Thep-values for the two hypotheses are thus given by the
shaded areas as indicated on the plot.

Using thep-valuesp, andp,,;, we can carry out statistical tests of the two hypotheses. For this
we define the critical regions to correspond to data outcomes with the loagsibfep-values. That is,
if we find p, < « then the background-only hypothesis is rejected in a test ofsizand similarly if
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Fig. 11: (a) Distributions of a test statistiQ under thes ands + b hypotheses. The shaded areas indicate the
p-values of the hypotheses given the observed vélug. (b) lllustration of the broadening of the distributions
when a systematic uncertainty in the background rate isided.

ps+p 1S found less a given threshold then the corresponding signal modgtese@. Often in HEP one
converts thep-value to an equivalergignificanceZ defined as the number of standard deviations of a
Gaussian variable centred about zero needed to give an upper tadcral to, i.e.,Z = d~1(1 — p),
where® ! is the quantile (inverse of the cumulative distribution) of the standard Gaussia

Recall that the size of the test, is the probability to reject the hypothesis if it is true (the type-I
error rate). Because announcing a new discovery is a rather impaftaint one would like to be very
certain that the observed effect is not simply the result of a statistical #itictu A common practice in
HEP has been to require that the observed signal correspond to adarskateviation effect, which is
equivalent to rejecting the background-only hypothesis in a test obsize.9 x 1077 (i.e., thep-value
is found less thaR.9 x 10~7).

In fact it may seem clear that an observed effect is unlikely to be a fliwtuaven at, say, 3
standard deviations, oravalue of 1.3 x 1073. But at this level one may nevertheless be reluctant
to announce a discovery because of uncertainties related to systemetis.efOr it may be that the
alternative is highly implausible (e.g., violation of Lorentz invariance) and thuaim discovery one
feels the evidence should be of a higher standard.

In addition one may be worried that because many effectively indepesdanches have been
carried out, the probability that the background-only hypothesis will Jexted in at least one of them,
even in the absence of any new signal processes, can be substantiglyttean the nominal type-|
error ratea. In HEP this is known as the ‘look-elsewhere effect’, and one oftetiegpp correction
so that thep-value reported corresponds to the probability, under the assumpticeckfjtmund-only,
to find data with equal or worse compatibility any of the tests carried outMethods for constructing
such a correction are discussed in Ref. [26]. If this effect has peserly taken into account, then the
significance at which most physicists believe that an observed effeat $mply a fluctuation is usually
well below50, and is probably somewhere closeBto. To then say that the observation is actually due
to a new signal rather than a systematic bias is a further step, but the fabes ien systematics, not
statistical fluctuations. This is a topic of ongoing discussion in the HEP community.

Even if we do not reject the background-only hypothesis we will wantniguge whether the
signhal model is compatible with the data. By convention we often test a signaljmodnore precisely
a point in its parameter space, with a significance level ef 0.05. That is, the model is rejected if one
findsps,, < 0.05 or equivalently if the significanc@ ! (1 — p,,) is greater than 1.64. If it is rejected
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then we say the model, for the given parameter values, is excluded at@8dence level.

In the previous example we assumed that the data distributions undeatits + b hypotheses
were known exactly. In practice there will be some systematic uncertairdresxample, in the expected
number of background evertisin this case we must takkeas a nuisance parameter, and as a result our
sensitivity to the parameter of interestwill be reduced, as discussed in Sec. 2.

There are several ways of dealing with nuisance parameters swdh asatistical tests. Funda-
mentally one would like to regard a given hypothesized value & rejected only ips, < « for all
possible values df. This often leads to a situation where one is unable to reject a signal modw if o
were to assume some strongly disfavoured value &o an alternative is to carry out the test using the
value ofb which is most compatible with the data given the value bking considered. This is called
the ‘profile construction’ method in HEP or ‘hybrid resampling’ by statisticige, e.g., [27]).

Alternatively the uncertainty ih may be treated in the Bayesian framework and characterized by
a prior pdfr(b). This could, for example, be taken as a Gaussian centred about avgiverb, with a
standard deviatios,. In fact, since we know a priori that> 0, the Gaussian is at best an approximation,
and other choices, such as the log-normal or gamma distributions arg@genbae appropriate. For now
we will assume that an appropriatéb) has been assigned, and look at how this influenceg-tredues
for the two hypotheses that we want to test.

To obtain the desireg-values, we need to determine the distributions of the statigtimder
the background-only and signal-plus-background hypotheseshd@wuican we find the distribution of
@ under these two hypotheses if we do not even known exactly the expaatelder of background
events? One approach is to usephier predictive distributionfor @@, which is found by multiplying the
distribution of @ givenb (with or without the addition of signal, as appropriate) by the pri@f) and
then integrating ovef, i.e.,

Q) = / F(QIbyr(b) db (47)

This model no longer corresponds to what would really happen if we teerepeat the experiment
many times, since in that case one would have the same valbewdry time. Rather, this averaged
model corresponds to first samplibhdrom 7(b) and then using thdt to generate a number of events
observed, then using(y|b) to generate the corresponding valuesyadnd finally using these to find

Q. By repeating this procedure many times, which results in a different vdlbheach time, one can

determine the distributiofi(@). This is done for both the background-only and signal-plus-backgiou
hypotheses.

Including the systematic uncertainty nas reflected by the prior distribution(b) results in a
broadening of the distributions @} under both thé ands + b hypotheses as shown in Fig. 11(b). For
a givenQns, the broader distributions thus give largevalues. Thus when the systematic uncertainties
are included, as expected one loses sensitivity and is less able to exchidetbe other model for a test
of a given significance level. The procedure shown here for treatilgpnce parameters first employs
the Bayesian approach to obtain the prior predictive distributia@ ehd then uses this in a frequentist
statistical test, and in HEP it is therefore often called ‘hybrid’ method.

This section has provided only a brief look at how to construct a statistisatdesearch for
new physics. Other related types of test statistics can be used, e.g.,dmaterprofile likelihood, as
described in [28]. In addition one may use Bayesian methods to quantifyetirealto which the data
favour one hypothesis or the other using a quantity called the Bayes,fgsten by ratio of marginal
likelihoods constructed by integrating over the model’s internal parametederee, e.g., for the mean
background rate in Eq. (47). A brief description of Bayes factorsbeafound in Ref. [1].
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3.3 Summary on tests and multivariate methods

The boosted decision tree is an example of a relatively modern developnidachine Learning that
has attracted substantial attention in HEP. Support Vector Machines (S¢ptesent another such de-
velopment and will no doubt also find further application in particle physicther discussion on SVMs
can be found in Refs. [15,16] and references therein. Lineairifitasand neural networks will no doubt
continue to play an important role, as will probability density estimation methodistosgpproximate
the likelihood ratio.

Multivariate methods have the advantage of exploiting as much informationsagbfmoout of all
of the quantities measured for each event. In an environment of competiiaedn experiments, this
can be a natural motivation to use them. Some caution should be exercisedenhdefore placing too
much faith in the performance of a complicated classifier, to say nothing ehhination of complicated
classifiers. These may have decision boundaries that indeed explbitezorfeatures of the training
data, often based on Monte Carlo. But if these features have nevebegéed experimentally, then
they may or may not be present in the real data. There is thus the riskypfir&berestimating the rate
of background events present in a region where one looks for sighath could lead to a spurious
discovery. Simpler classifiers are not immune to such dangers either,sughrcases the problems may
be easier to control and mitigate.

One should therefore keep in mind the following quote, often heard in the emigdtie analysis
community:

Keep it simple. As simple as possible. Not any simpler.
— A. Einstein

To this we can add the more modern variant,

If you believe in something you don’'t understand, you suffer, .. .
—Stevie Wonder

Having made the requisite warnings, however, it seems clear that multivaréteds will play
an important role in the discoveries we hope to make at the LHC. One can ieaagine, for example,
that 5-sigma evidence for New Physics from a highly performant, and locetgd, classifier would be
regarded by the community with some scepticism. But if this is backed up by}-siyma significance
from a simpler, more transparent analysis, then the conclusion would keeasily accepted, and the
team that pursues both approaches may well win the race.

4 Summary and conclusions

In these lectures we have looked at two topics in statistics, Bayesian methdsudtivariate analysis,
which will play an important role in particle physics in the coming years. Bapesiathods provide
important tools for analysing systematic uncertainties, where prior informaieynbe available that
does not necessarily stem solely from other measurements, but raihetHeoretical arguments or
other indirect means. The Bayesian framework allows one to investigatéhegumosterior probabilities
change upon variation of the prior probabilities. Through this type ofita@hsanalysis, a Bayesian
result becomes valuable to the broader scientific community.

As experiments become more expensive and the competition more intenseijllcaleays be
looking for ways to exploit as much information as possible from the data. Wulite methods provide
a means to achieve this, and advanced tools such as boosted decisitrmbeasrecent years become
widely used. And while their use will no doubt increase as the LHC expetsmeature, one should
keep in mind that a simple analysis also has its advantages. As one studiesaheegdmultivariate
techniques, however, their properties become more apparent andrhauodity will surely find ways of
using them so as to maximize the benefits without excessive risk.
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