Statistics course outline

Lecture 1

1. Probability

2. Random variables, probability densities, etc.

3. Brief catalogue of probability densities
4. The Monte Carlo method

Lecture 2

1. Statistical tests

2. Fisher discriminants, neural networks, etc.

3. Goodness-of-fit tests
4. The significance of a signal

5. Introduction to parameter estimation

Lecture 3

1. The method of maximum likelihood (ML)
2. Variance of ML estimators
3. The method of least squares (LS)

4. Interval estimation, setting limits

The likelihood function

Consider data sample Z = (:131, e ,:L"n) where x follows f(a:,

Goal: estimate 6 (or in general 0= (01,...,6n)).
If f(x, 9) is true, then

P(all x; found in [a:i, x; + da:z]) = ‘ﬁl f(:):z, 9) dz;

7

If hypothesis (including value of 6) is true,

— expect high probability for the data we actually got.
If hypothesized 6 far away from true value,

— low probability to have observed what we did.

= true 0 should give high value for
n
L(#) = 11 f(x;,0)  (the likelihood function)
1=1
N.B. L(@) = fsample(f; 9), but L(@) regarded as function of
T treated as constant (experiment is over).
N.B. In classical statistics, L(@) is not a ‘pdf’ for 6.

— 6 is not a random variable (6 is).

In Bayesian statistics, treat L(6) = L(Z|6) as pdf for Z given
6, then use Bayes’ theorem to get posterior pdf p(9|f).
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Maximum likelihood estimators Example of ML estimator: parameter of exponential pdf

Define ML estimator 8 as the value of 8 that maximizes L(@). Consider the exponential pdf,
Write estimators with hat (£) to distinguish from true value 6, () | /7
T)=—e€
which may forever remain unknown. 7 T
A A d h dat letq,...,t,.

For m parameters, usually find solution 01, . . . , 6, by solving Anc SUppose We Have a data sampie &1, o

oL Usually use log-likelihood (maximum at same value of parameter

— =0 ¢=1,...,m.

891 ) J

=1 T

n n 1 tz
log L(7) = % log f(t;;7) = X (log - ) :
1= T

Sometimes L(@) has more than one local maximum,

Olog L
~ take highest one. Set oy 0 and solve for T,
N.B. no binning of data (‘all information used’). A= l % t;
n =1
N.B. the definition of ML estimators does not guarantee that they
are in any way ‘optimal’ Example: generate 50 values of £ with MC using 7 = 1,

— investigate properties such as bias, variance.

1

f(t)

For many cases of interest and for sufficiently large sample, ML oo

turns out to be about as good as we can do.
0.5

Not always optimal for small 2, but still usually best
0.25

practical solution.

0 L]

2 3 4 5
t
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Bias of ML estimator 7

1

n
Is T = — X t; an unbiased estimator for 77
nii=1

The hard way to check:
find pdf g(f'; 7'), compute b = E[ﬂ - T

Or use an easier way to compute F[7],
El#(t, .., t)] = [ ... [7(E) fiom(t; T) dts ... dt,

1 1
Se/T | Tl . .dt,
T T

:/.../(%éti)

1 n 1 1

=_ ti—e W/Tdt; 1 [ —e b/7dt,
nizl(/ Te jl;é[i/’re J
1 n

=—>XT=T
nii=1

— T is an unbiased estimator for 7.

The really easy way:

We already showed that the sample mean ¢ is an unbiased

estimator for /[t], and for the exponential pdf, K[t] = T.

Variance of estimator: analyitic method

n
Recall estimator for mean of exponential: 7 = — X ;.
ni=1

How wide is the pdf g(’f'; T, n)?

1 n \? 1
://( > ti) e hIT | Zet/TdE L dt,

1
-
1 n 1 1
— (// ( )3 ti) e ZetlTdr L ddt,
=1 )T
2

— variance of 7 is . times smaller than variance of t.

(In fact we knew this already, since here T = t.)

N.B. V[7], 0; functions of true (unknown!) 7. Estimate using
,f.
Jn

Often given as ‘statistical error’, e.g. 7 4+ 07 = 1.062 £ 0.15(

Oz =

This means: ML estimate for 7 is 1.062.
ML estimate for o of g(7;7,n) is 0.150.
If g(f'; T, n) is Gaussian, [7A' — 05T+ 5}] same as

‘68% confindence interval’ (more on this later).
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Variance of estimators: Monte Carlo method The RCF bound (information inequality)

Often form of é, g(é; 6, 1) not known explicitly, A lower bound on the variance of any estimator (not just ML) is
— get g(é; 6, n) from Monte Carlo. ) 52 log L
A V(g > ( ) /B |- (b = bias)
For example with exponential pdf we had 7 = 1.062. 062

Use thi ‘true’ 7 in MC - , . o L :
S¢ TS as e T ’ This is the Rao-Cramér—Frechet inequality (information inequali
generate samples of 7 = 50 values (1000 experiments), o A _
A If equality is met, 6 is said to be efficient.
compute 7 for each experiment and histogram: . .
— ML estimators are (almost always) efficient for large 1,

< s often assume this to be true and use RCF bound to estimate V[t
For the example with the exponential pdf, we obtain
100
Ologl n 21 n n 27
%:2(1—zti) :2(1—)
w0 | | or T TN i=1 T T
and we know that b = 0, so
° 0 015 i 15 2 1 1 92
- T
' V[%] > n 25\ N T
— _ _ 27 2E|1
Sample standard deviation from MC experiments gives E [ ?7( T )] _rﬂf (1 T ) n
A 1 Nexp 5 1/2 This is equal to the true variance — ML T is efficient for any 7.
Or = | = .Z (7'2'—7') :0.151 -
N, exp 1 =1 For = (91, RN 9m) with efficient estimator and zero bias,
Similar to previous estimate T = 0.150. (V_l)“ gl 0 10g L —n [ f(z; ) 0”log f(z; )(
" 90,00, | 86,00,
N.B. g(7; T, n) approximately Gaussian (cf. central limit theorem) 1

— true in general for ML estimators in large sample limit. — variance of efficient estimators o 5
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The RCF bound (continued)

02 log L
96,00,

function of the true parameters.

The expectation value of in the RCF bound is a

— estimate by evaluating with the (single) ML estimate:

—~ 0?log L
Vo), = = o
( )] 89189J *:97
For a single parameter one has
— 9?log L
2, — | -2
70 ( 1/ 06? )9:é

Often maximize log L numerically, estimate matrix of 2nd

derivatives (Hessian matrix) using finite differences.

— MINUIT routine HESSE.

Variance of ML estimators: graphical method

Consider single parameter 6, expand log L(6) about é,

Jlog L

log L(6) = log L(6) + 5,09
1 [0*log L )
i gzé(e—e) +

log L(é) = log Lnax and the second term is zero, therefore

(0 — 6)?

log L(0) = 10g Lyngx — ——— ",
og L(0) = log %7,

that is,

10g L(é + 6@) = 10g Lmax -5

— to get 0 4> change 6 away from é until log L decreases by 1/

— -52.5

I

{=2]

S t-nat. T teoR, _
Example of exponential:

53 log L.
7 =1.062
535 log L ~1/2 A7 =0.137, AT—i— = 0.
0r ~ AT~ AT, = 0.
-54 1 1
0.8 1 1.2 14 1.6

T
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Relationship between ML and Bayesian parameter estimation

In Bayesian statistics, both 8 and Z are r.v.s:

L(@) = L(f‘@) = fjoint(f‘e) (conditional pdf for Z given 6)

The Bayesian Method:

Use subjective probability for hypotheses (6),

before experiment, knowledge summarized by ’/T(@) (prior pdf),

use Bayes’ theorem to update prior in light of data:

L L@9)r()
POE) = o i

p(0|Z) = posterior pdf (conditional pdf for  given )
Purist Bayesian: p(9|f): contains all knowledge about 6.
Pragmatist Bayesian: p(@‘a_f) is a complicated function,

— summarize by means of estimator QBayes

Take mode of p(9|:f), (could also use e.g. expectation value).

What do we use for 7(6)?77?

No golden rule (subjective!), often represent ‘prior ignorance’ by
7T(9) = constant — éBayes = éML

But ... we could have used a different parameter, e.g. A = 1 / 6.
If prior for my(6) is constant, then 7T,\()\) is not!

— ‘complete prior ignorance’ not well defined
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The method of least squares (LS): connection with ML

Suppose we have Gaussian rv.s 4, ¢ = 1,..., N
Elyi] = Ai = Mzi; 0),
where Z1,...,Zy and V[yz] = 01-2 are known.
y
2
Yi+ 0
. e
Goal: estimate parameters 6, 15 7
i.e. fit the curve through L
the pOintS. AX0) —
05 [

The joint pdf for independent Gaussian y; is

LYoo N1 —(yi — i)’
9(7; A\, 0%) =TI exp (—(y ) )

’ i=1,2m0? 202

i.e. the log-likelihood function is (drop terms not depending on 0

o - 0))2

2i=1 o?

— maximizing log L(Q) same as minimizing

2/ _ (i — A($i5§))2
X ( ) - iz:l 0_22
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Definition of least squares (LS) estimators

If the y; follow a multivariate Gaussian, covariance matrix V',

1 1

=y _ o IR YA T Y-S
g(ya )‘7 V) - (27T)N/2|V‘1/2 eXp 2(y )‘) V (y )‘)
then the log-likelihood is

> I N > o
log L(0) = — % (4 = Mo )V )0y — Aa ),

i.e. we should minimize

—

0 = % (0= M@Vl — Moy )

~

Its minimum defines the least squares (LS) estimators 6,
even when ; not Gaussian. (In fact, y; often Gaussian because

central limit theorem leads to Gaussian measurement errors.)

C.F. Gauss, Theoria Motus Corporum Coelestium in Sectionibus
Conicis Solem Ambentium, Hamburgi Sumtibus Frid. Perthes et
H.Besser Liber I, Sectio IT (1809);

C.F. Gauss, Theoria Combinationis Observationum Erroribus
Minimis Obnoxiae, pars prior (15.2.1821) et pars posterior
(2.2.1823), Commentationes Societatis Regiae Scientiarium
Gottingensis Recectiores Vol. V. (MDCCCXXIII).

Linear least squares fit

—

LS has particularly simple properties if A(z; 6) linear in 6:

Nz;0) = 3 aj(z)6;

j=1
where a J(:B) are any linearly independent functions of x.
— 6 have zero bias, minimum variance (Gauss—Markov theorem
Matrix notation: let Aij = aj(xi),

—

X0 = G- XNV G- X

— Py T —1 /- P
= (4 —A0)" V™ (y— Af)
Set derivitives with respect to 6; to zero,

VX2 = —2ATV g — ATV 1AG) = 0

Solve to get the LS estimators,

~

0 = (ATV A ATV 1y = By

N.B. estimators #; are linear functions of the measurements ;.
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Variance of LS estimators

Error propagation (exact for linear problem) for Uz'j = COV[éi, éj]:
U=BVB" = ATV 14!

Equivalently, use

1
92

82X2

_1 .. P —
U= 3 | 29,00,

- R

i
— coincides with RCF bound if y; are Gaussian.

— —

For )\(a:; 9) linear in the parameters, X2( ) is quadratic,

= 2.2
2 — 9 ~ m a X A A
0) = 0) + — — 0, —0,)(0; — 0;
X“(0) = x( ”mﬁjaeia@]g:;( )(0; —6))
— variances from tangent planes to (hyper)ellipse,

—
— ~

X*(0) = X*(0) + 1 = X + 1
If )\(:E; 5) not linear in 6_: then expressions above not exact
(but may still be good approximations).
Still interpret region X2(§) < X12nin + 1 as ‘confidence region’,
having given probability of containing true 5 (more later).
N.B. formulae above don’t depend on ¥; being Gaussian,

but in any case need V;; = cov[y;, y;]-
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LS fit of a polynomial

m .
Fit a polynomial: )\(:L'; 90, cey Hm) — .Z ej 7
J=0 N
a;(z) =
y T
Examples: 6r — 0: order, X§:45.5
--- 1 order, X" =3.99 ‘
Oth order (1 parameter) Pouer, (=00 $
4t T
Ist order (2 parameters) ,_ +,/%,f+f
4th order (5 parameters) Sl /_.**; ]
R

X
1-parameter fit (i.e. horizontal line):
> 47
< (@
A~ 46.5 -
6o = 2.66 + 0.13
Xfmn — 45.5 46
455 R
215 216 2.‘7 218
90

74, from X2(é0 + 0’@0) = Xfmn + 1.

2.9
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Polynomial fit (continued)

2-parameter case (line with nonzero slope):

X" =X+ 1

A

LS estimate

0y = 0.93 % 0.30, -
0, = 0.68 £ 0.10 s |
cov]f, 61] = —0.028
r=—0.90 08
x* = 3.99 5

Tangent lines — T4, O,

0.6

0.8 1

Angle of ellipse — correlation (same as for ML)

Could transform (éo, él) — (ﬁo, ﬁl) such that Cov[ﬁo, ﬁl] =0

1.2

14

easier to work with uncorrelated estimators, but interpretation

of new parameters may not be obvious, c¢f. SDA Section 1.7.

D-parameter case:

curve goes through all points,

X?nin - 07

(number of parameters = number of data points)

Value of X?nin reflects agreement between data and hypothesis,

— use as goodness-of-fit test statistic

G. Cowan Introduction to Statistics CERN Summer Student Lectures

Testing goodness-of-fit with LS

If: they;, 2 =1,..., N, are Gaussian (V;; known),
the hypothesis A(; 5) is linear in 6;, 1 = 1, ..., m, and

the form of the hypothesis )\(:U; 9) is correct,

then X?nin follows chi-square pdf for N — m degrees of freedon

From this compute P-value,

P=[5 f(znd)dz

Consider e.g. 2-parameter fit:
X2 =399, N —m =3 — P =0.263

i.e. repeat experiment many times, 26.3% will have higher X?nh

(3

— %2 from MC experiments
f(Xz;nd:3)

1000 MC experiments:

For the horizontal line fit, we had
X2, =455 N—m=4—P=31x10"
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Goodness-of-fit vs. smallness-of-errors

Small statistical error does not mean a good fit (nor vice versa).
Curvature of X2 near its minimum — statistical errors (074)

Value of Xfmn — goodness-of-fit

Horizontal line fit, move the data points, keep errors on points same:

y T T
6 — 8,=28420.13

90 =2.84+0.13 X2 = 4.48
X2, = 4.48 at ]

Variance same as before,

now X12nin ‘good’.

— X2 (90) shifted down, same curvature as before.

Variance of estimator (statistical error) tells us:
if experiment repeated many times, how wide is the distribution
of the estimates 6. (Doesn’t tell us whether hypothesis correct.)
P-value tells us:
if hypothesis is correct and experiment repeated many times,
what fraction will give equal or worse agreement between data

and hypothesis according to the statistic X12nin'

Low P-value — hypothesis may be wrong — systematic error.
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LS with binned data

1 T

£(x)

— normalized histogram

Histogram: og L~ fited pdf |
N bins, n entries.
06 r -l
Hypothesized pdf:
fl(z;0) 0a | |
0.2 r _l

We have
Y; = number of entries in bin ¢,

— max — —

Ni0) = n [ f(;0)dz = npi(0)

LS fit: minimize

—

x(6)

i=1 o2
where o 22 = V[yi], here not known a priori.
Treat the y; as Poisson r.v.s, in place of true variance take either

—

02 =X\(0) (LS method)

7

o2 =vy;  (Modified LS method)

MLS sometimes easier computationally, but anin no longer follo

chi-square pdf (or is undefined) if some bins have few (or no) ent
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Combining measurements with LS

Use LS to obtain weighted average of /N measurements of A:

y; = result of measurement ¢, ¢ = 1,..., V;
02-2 = V'|y;], assume known;

A = true value (plays role of ).

For uncorrelated ¥;, minimize

N (yi — A)?

2 I
2
Set 55 = 0 and solve,

N 2
A = Siq Yi/ o

4)
>, 1/0?
. 1
V=
=AY
If cov]y;, y;] = Vij, minimize
N _
X(\) = 2 = AV Dii(yi =),
. N =V (VY
— A= > WY, w; = J=1 Y
= S (Vw

LS A has zero bias, minimum variance (Gauss—Markov theorem).
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Example of averaging two correlated measurements

2
o] pPo109 )

Suppose we have Y1, Yo, and V = ( 5
PO102 )

2 _
- A=wy + (1 —wys, w= 02— P10

7

o} + 03 — 2po107

2N 2 2
V[)\] — (1 P )0102 . 0_2

0?4+ 03 — 2po109

The increase in inverse variance due to 2nd measurement is

1 1 p 1)\?
NS TS
o7 1—p2 \o1 09

1
0-2
— 2nd measurement can only help.

Ifp> 0'1/0'2, — w < 0,
— weighted average is not between 41 and 3 (17)
Cannot happen if correlation due to common data, but

possible for shared random effect; very unreliable if e.g.

p, 01, 09 incorrect.

See example in SDA Section 7.6.1 with two measurements at san
temperature using two rulers, different thermal expansion coeffici
average is outside the two measurements; used to improve

estimate of temperature.

G. Cowan Introduction to Statistics CERN Summer Student Lectures



The standard deviation as statistical error

My experiment: data X1, . .., X, — estimate Oy

Also estimate variance of §, o 205, often report something like

~

Oobs & 6 = 5.73 + 0.21
What does this really mean?
We know é will follow some pdf g(é; 9),

estimate of 6 is 5.73,

~

estimate of 04 is 0.21 — 0 measures width of g(6; 6)

Often g(@; 9) is multivariate Gaussian,

6,V = Cﬁv[éi, é]] summarize our (estimated) knowledge

—

about 9(9; 9), — input for error propagation, LS averaging, . ..

We could stick with this as the convention for reporting errors,
regardless of the pdf of g(é ; 9).

Sometimes we do (e.g. for PDG averaging), but ...

if g(é; 6) is Gaussian, then the interval

A

[eobs - a-éa eobs + OA_@]
is a 68.3% central confidence interval (more later).

This is the more usual convention, and if g(@; 9) not Gaussian,

central confidence interval — asymmetric errors

9(6:9)
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Classical confidence intervals (1)

We have an estimator é for a parameter 6 and an estimate éobs:
we also need g(é; 9) for all 6.

Specify ‘upper and lower tail probabilities’, e.g. o = 3 = 0.05,
then, find functions ua(e), ’05(19) such that

a=P(f

AV

1a(0)) = [ 9(0:6)d0 = 1 — Glua(6);

Uy

B =P(0 <vs(0)) = [V 9(6;6)d8 = G (v3(6);6).

05 | E
)

8
R 5
8
etrue u(l(e)
4
The region between ua(Q) 3 s, Vy(8)
and ’0[3(9) is called the , L
confidence belt. )
a b
O L L
0 1 2 3 4
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Classical confidence intervals (2)

The probability to find é in the confidence belt, regardless of 6,
P(us(6) <6 < ua0)) =1—a— §

Assume ’ua(e), ’05(9) monotonic, then

The inequalities

imply

or together,

Pa@) <0<b@)=1—a-8.

Classical confidence intervals (3)

The interval [a(é), b(é)] is called a confidence interval with

confidence level or coverage probability 1 — av — 3.

[ts quintessential property:
probability to contain true parameter is 1 — o — f3.

N.B. the interval is random, the true @ is an unknown constant.

Often report interval |a, b] as 6 icc=60— a,d=0b— ¢

—c

~

So what does 6 = 80.25“&%}) mean? It does not mean:

P(80.00 < 0 < 80.56) =1 — o — 3, but rather:

repeat the experiment many times with same sample size,
construct interval according to same prescription each time,

in 1 — a — (3 of experiments, interval will cover 6.
Sometimes only specify & or (3, — one-sided interval (limit)
a7 e
Often take @ = 3 = 5 — coverage probability = 1 — 7y

— central confidence interval
N.B. ‘central’ confidence interval does not mean the interval
is symmetric about @, but only that @ = 3.

The HEP error ‘convention’: 68.3% central confidence interval.
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Classical confidence intervals (4)

Usually, we don’t construct the confidence belt, but rather solve

A

a= [~ g(0;a)dd =1 — G(Bssa)

obs

~

B = [%% g(6:b) df = G(Bos; b)

for interval limits @ and b. (Gives same thing.)

]

— @ is hypothetical value of 6 such that P (é > éobs) =

(0
b is hypothetical value of 8 such that PP (é < éobs) = 0.

g (@)
«D o
o 1 a e:obs B
05 r B
2 a
N4
. O
6
3 (b)
D o
IS 1 r eok?s b B
05 r B
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Confidence interval for Gaussian distributed estimator

2o 202

. 1 —(f — )2
Suppose we have g(@; 9) = —&Xp ((90))
0 0

To find confidence interval for 6, solve
- Oobs — @
a=1—-Glops;a,05) =1— (Obsi) ,
X Bops — b
B = G(lons; b,05) = @ (OS :
94
for a, b, where G is cumulative distribution for 0 and

)= [,

2 . .
o Te z'%/2 dx’ is cumulative of standard Gaus:
T

A

= a = Oops — 0y d 11— a),

b= 0Oops + 0,0 (1 — ).

d~! = quantile of standard Caussian

(inverse of cumulative distribution, CERNLIB routine GAUSIN).

— @_1(1 — a), @_1(1 — f3) give how many standard

deviations @, b are from 6.
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Quantiles of the standard Gaussian

To find the confidence interval for a parameter with a Gaussian,

estimator we need the following quantiles:

< 06 < 06
S (a) S (b)
oly2)  o(1-y2) @ (1-a)
04 F i 04 F
02 F  yn2 ) yi2 02
/ A
Y B W
-
o 2 . o
4 -2 0 2 4 4 2 0 2
X X

Usually take a round number for the quantile . ..

central one-sided
P11 —-7v/2) 1=y |®(1-0a) 1—a
1 0.6827 1 0.8413
2 0.9544 2 0.9772
3 0.9973 3 0.9987

Sometimes take a round number for the coverage probability . ..

central one-sided
1—vy &1 —v/2)|1—a &1 —a)
0.90 1.645 0.90 1.282
0.95 1.960 0.95 1.645
0.99 2.576 0.99 2.326

Confidence interval for mean of Poisson distribution

Suppose N is Poisson, I = M, estimate is Ughs = Mobs,

Vn
P(n;v) = Ee_”, n=0,1,...
Minor problem: for fixed v, 3, confidence belt doesn’t

exist for all . No matter. Just solve

N N nobs—1 @™
a=P0>0Upgsa)=1— > —e ¢
n=0 ’I’L'
. R Nobs O™
B=Pi<ipb)=3 —e
n=0 ’I’L'
for a, b. Use trick:
BV 1~ Fa(uing = 2m+1
roge=1- 2(2v;ng = 2(m + 1))

where F! \2 18 cumulative chi-square distribution for ng dof,
-1
a = 3 F o (a;nd = 2nebs),
-1
b = %FXQ (1 — ﬁ;nd = 2(nobs + 1))7

where F X_gl is the quantile of the chi-square distribution

(CERNLIB routine CHISIN).
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Interval for Poisson mean (continued)

Important special case: Nops = 0,

0 b —b
S B8=3 € —e? - b=—logh.
n=0 ’I’L'

For upper limit at confidence level 1 — 8 = 95%,

b= —log(0.05) = 2.996 ~ 3.

Some more useful numbers. . .

- lower limit a upper limit b
P la=01 a=0.05 a=0.01|=01 B=0.05 §=0.01
0 - - - 2.30 3.00 4.61
1 | 0.105 0.051 0.010 3.89 4.74 6.64
2 | 0.532 0.355 0.149 5.32 6.30 8.41
3 1.10 0.818 0.436 6.68 7.75 10.04
4 1.74 1.37 0.823 7.99 9.15 11.60
5 2.43 1.97 1.28 9.27 10.51 13.11
6 3.15 2.61 1.79 10.53 11.84 14.57
7 3.89 3.29 2.33 11.77 13.15 16.00
8 4.66 3.98 2.91 12.99 14.43 17.40
9 5.43 4.70 3.51 14.21 15.71 18.78
10 6.22 5.43 4.13 15.41 16.96 20.14

Approximate confidence intervals from log L or X2

Recall trick for estimating o4 if log L(6) parabolic:

A N2
log L(0 & Noj) = log Limax — ——

Claim: this still works even if log L not parabolic as an

approximation for the confidence interval, i.e. use

R N?

log L(627) = 10g Limax —
2n+dy 2 2

X (e—c) = Xmin + N )

where N = (13_1(1 — 7/2) is the quantile of the standard

Gaussian corresponding to the confidence level 1 — 7, e.g.

N=1-1—~=0.683

Our exponential example, now with . = 5 observations:

o
- t-At 1t T+,
g 4t g
log L.y
o +0.52
45 7 T = 085_030
log L.~ 1/2
5 !
0.5 1 15 2

T
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Lecture 3 summary

1. The likelihood function, ML estimators:

L(@) from joint pdf for the data, evaluate with the data we got.
ML estimator # at maximum of L (or In L ).

2. Variance of ML estimators:

Analytic method: best when possible
Monte Carlo method: useful but can be time consuming

The information inequality: equality (approx.) for large sample.

Graphical method: move 6 from é until In L — In Ly, — 1/2..

3. The method of least squares:

ML and LS same if data Gaussian.
X2 at minimum can be used for goodness-of-fit.

LS can be used with binned data and for combining (averaging)
measurements.

Recipes for variances of LS estimators same as for ML with

x2— —2InL .

4. Interval estimation:

Often sufficient to give &0 as 68.3% confidence interval.

Neyman construction for confidence intervals: coverage probability
independent of parameter’s true value.

Often quote one-sided interval as upper or lower limit
(also ‘unified intervals’, c.f. Feldman & Cousins).

Approximate confidence intervals from likelihood function.
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