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Introduction to Statistics − Day 2

Glen Cowan

Lecture 1
Probability
Random variables, probability densities, etc.
Brief catalogue of probability densities

Lecture 2
The Monte Carlo method
Statistical tests
Fisher discriminants, neural networks, etc.

Lecture 3
Goodness-of-fit tests
Parameter estimation
Maximum likelihood and least squares
Interval estimation (setting limits)

CERN Summer Student Lectures on Statistics
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What it is:  a numerical technique for calculating probabilities
and related quantities using sequences of random numbers.

The usual steps:

(1)  Generate sequence r1, r2, ..., rm uniform in [0, 1].

(2)  Use this to produce another sequence x1, x2, ..., xn

       distributed according to some pdf  f (x)  in which
       we’re interested (x can be a vector).

(3)   Use the x values to estimate some property of  f (x), e.g.,
       fraction of x values with a < x < b gives

→  MC calculation = integration (at least formally)

MC generated values = ‘simulated data’
→  use for testing statistical procedures

The Monte Carlo method
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Random number generators
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Goal:  generate uniformly distributed values in [0, 1].
Toss coin for e.g. 32 bit number... (too tiring).

→  ‘random number generator’ 

       = computer algorithm to generate r1, r2, ..., rn.

Example:  multiplicative linear congruential generator (MLCG)

ni+1 = (a ni) mod m ,    where

ni = integer

a = multiplier

m = modulus

n0 = seed (initial value)

N.B.  mod = modulus (remainder), e.g. 27 mod 5 = 2.

This rule produces a sequence of numbers n0, n1, ...
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Random number generators  (2)
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The sequence is (unfortunately) periodic!

Example (see Brandt Ch 4):  a = 3, m = 7, n0 = 1

←  sequence repeats

Choose a, m to obtain long period (maximum = m  1); m usually 
close to the largest integer that can represented in the computer.

Only use a subset of a single period of the sequence.
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Random number generators  (3)
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are in [0, 1] but are they ‘random’?

Choose a, m so that the ri pass various tests of randomness:

uniform distribution in [0, 1],

all values independent (no correlations between pairs),

e.g. L’Ecuyer, Commun. ACM 31 (1988) 742 suggests

    a = 40692
    m = 2147483399

Far better algorithms available, e.g. RANMAR, period

See F. James, Comp. Phys. Comm. 60 (1990) 111; Brandt Ch. 4
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The transformation method
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Given r1, r2,..., rn uniform in [0, 1], find x1, x2,..., xn

that follow  f (x) by finding a suitable transformation  x (r).

Require:

i.e.

That is,       set and solve for  x (r).
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Example of the transformation method
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Exponential pdf:

Set and solve for  x (r).

→ works too.)
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The acceptance-rejection method
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Enclose the pdf in a box:

(1)  Generate a random number x, uniform in [xmin, xmax], i.e.

r1 is uniform in [0,1].

(2)  Generate a 2nd independent random number u uniformly

       distributed between 0 and  fmax, i.e.

(3)  If u <  f (x), then accept x.  If not, reject x and repeat.
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Example with acceptance-rejection method
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If dot below curve, use 
x value in histogram.
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Monte Carlo event generators
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Simple example:  ee → 

Generate cos and :

Less simple:  ‘event generators’ for a variety of reactions: 
 e+e- → , hadrons, ...
 pp → hadrons, D-Y, SUSY,...

e.g. PYTHIA, HERWIG, ISAJET...

Output = ‘events’, i.e., for each event we get a list of
generated particles and their momentum vectors, types, etc.
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Monte Carlo detector simulation
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Takes as input the particle list and momenta from generator.

Simulates detector response:
multiple Coulomb scattering (generate scattering angle),
particle decays (generate lifetime),
ionization energy loss (generate ),
electromagnetic, hadronic showers,
production of signals, electronics response, ...

Output = simulated raw data →  input to reconstruction software:
track finding, fitting, etc. 

Predict what you should see at ‘detector level’ given a certain 
hypothesis for ‘generator level’.  Compare with the real data.

Estimate ‘efficiencies’ = #events found / # events generated.

Programming package:  GEANT
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For each reaction we consider we will have a hypothesis for the
pdf of     , e.g., 

Statistical tests (in a particle physics context)
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Suppose the result of a measurement for an individual event 
is a collection of numbers

x1 = number of muons,

x2 = mean pt of jets,

x3 = missing energy, ...

     follows some n-dimensional joint pdf, which depends on 
the type of event produced, i.e., was it 

etc.

Often call H0 the signal hypothesis (the event type we want);
H1, H2, ... are background hypotheses.
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Selecting events
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Suppose we have a data sample with two kinds of events,
corresponding to hypotheses H0 and H1 and we want to select 
those of type H0.

Each event is a point in     space.  What ‘decision boundary’ 
should we use to accept/reject events as belonging to event type 
H0?

accept
H0

H1

Perhaps select events
with ‘cuts’:
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Other ways to select events
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Or maybe use some other sort of decision boundary:

accept
H0

H1

accept

H0

H1

linear or nonlinear

How can we do this in an ‘optimal’ way?

What are the difficulties in a high-dimensional space?
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Test statistics
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Construct a ‘test statistic’ of lower dimension (e.g. scalar)

We can work out the pdfs

Try to compactify data without losing ability to discriminate
between hypotheses.

Decision boundary is now a 
single ‘cut’ on t.

This effectively divides the 
sample space into two regions, 
where we accept or reject H0.
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Significance level and power of a test
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Probability to reject H0 if it is true 
(error of the 1st kind):

(significance level)

Probability to accept H0 if H1 is true
 (error of the 2nd kind):

( power)
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Efficiency of event selection
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Probability to accept an event which
is signal (signal efficiency):

Probability to accept an event which
is background (background efficiency):
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Purity of event selection
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Suppose only one background type b; overall fractions of signal
and background events are s and b (prior probabilities).

Suppose we select events with t < tcut.  What is the
‘purity’ of our selected sample?

Here purity means the probability to be signal given that
the event was accepted.  Using Bayes’ theorem we find:

So the purity depends on the prior probabilities as well as on the
signal and background efficiencies.
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Constructing a test statistic
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How can we select events in an ‘optimal way’?

Neyman-Pearson lemma (proof in Brandt Ch. 8) states:

To get the lowest b for a given s (highest power for a given 
significance level), choose acceptance region such that

where c is a constant which determines s.

Equivalently, optimal scalar test statistic is
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Why Neyman-Pearson doesn’t always help
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The problem is that we usually don’t have explicit formulae for
the pdfs

Instead we may have Monte Carlo models for signal and 
background processes, so we can produce simulated data,
and enter each event into an n-dimensional histogram.

Use e.g. M bins for each of the n dimensions, total of Mn cells.

But n is potentially large, →  prohibitively large number of cells 
to populate with Monte Carlo data.

Compromise:  make Ansatz for form of test statistic
with fewer parameters; determine them (e.g. using MC) to 
give best discrimination between signal and background.
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Linear test statistic
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Ansatz:

→  Fisher:  maximize

Choose the parameters a1, ..., an so that the pdfs
have maximum ‘separation’.  We want:

s b

t

g (t) b

large distance  between 
mean values, small widths

s
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Fisher discriminant
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Using this definition of separation gives a Fisher discriminant.

accept
H0

H1

Corresponds to a linear
decision boundary.

Equivalent to Neyman-Pearson if the signal and background 
pdfs are multivariate Gaussian with equal covariances;
otherwise not optimal, but still often a simple, practical solution.
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Nonlinear test statistics
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The optimal decision boundary may not be a hyperplane,

→  nonlinear test statistic

accept

H0

H1Multivariate statistical methods

are a Big Industry:

Particle Physics can benefit from progress in Machine Learning.

Neural Networks,

Support Vector Machines,

Kernel density methods,

...
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Neural network example from LEP II
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Signal:  ee → WW    (often 4 well separated hadron jets)

Background:  ee → qqgg  (4 less well separated hadron jets)

←  input variables based on jet
structure, event shape, ...
none by itself gives much separation.

Neural network output does better...

(Garrido, Juste and Martinez, ALEPH 96-144)



25

Wrapping up lecture 2
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We’ve seen the Monte Carlo method:
calculations based on sequences of random numbers,
used to simulate particle collisions, detector response.

And we looked at statistical tests and related issues:
discriminate between event types (hypotheses),
determine selection efficiency, sample purity, etc.

Some modern (and less modern) methods were mentioned:
Fisher discriminants, neural networks,
support vector machines,...

In the next lecture we will talk about goodness-of-fit tests
and then move on to another main subfield of statistical 
inference:  parameter estimation.


