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Introduction to Statistics − Day 3

Glen Cowan

Lecture 1
Probability
Random variables, probability densities, etc.
Brief catalogue of probability densities

Lecture 2
The Monte Carlo method
Statistical tests
Fisher discriminants, neural networks, etc.

Lecture 3
Goodness-of-fit tests
Parameter estimation
Maximum likelihood and least squares
Interval estimation (setting limits)

CERN Summer Student Lectures on Statistics
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Testing goodness-of-fit

Glen Cowan CERN Summer Student Lectures on Statistics

Suppose hypothesis H predicts pdf 

observations

for a set of

We observe a single point in this space:

What can we say about the validity of H in light of the data?

Decide what part of the 
data space represents less 
compatibility with H than 
does the point      less 

compatible
with H

     more 
compatible
with H

(Not unique!)
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p-values
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where  (H) is the prior probability for H.

Express ‘goodness-of-fit’ by giving the p-value for H:

p = probability, under assumption of H, to observe data with 
equal or lesser compatibility with H relative to the data we got. 

This is not the probability that H is true!

In frequentist statistics we don’t talk about P(H) (unless H 
represents a repeatable observation). In Bayesian statistics we do; 
use Bayes’ theorem to obtain

For now stick with the frequentist approach; 
result is p-value, regrettably easy to misinterpret as P(H).
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p-value example:  testing whether a coin is ‘fair’
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i.e. p = 0.0026 is the probability of obtaining such a bizarre
result (or more so) ‘by chance’, under the assumption of H.

Probability to observe n heads in N coin tosses is binomial:

Hypothesis H:  the coin is fair (p = 0.5).

Suppose we toss the coin N = 20 times and get n = 17 heads.

Region of data space with equal or lesser compatibility with 
H relative to n = 17 is:  n = 17, 18, 19, 20, 0, 1, 2, 3.  Adding
up the probabilities for these values gives:
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The significance of an observed signal
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Suppose we observe n events; these can consist of:

nb events from known processes (background)
ns events from a new process (signal)

If ns, nb are Poisson r.v.s with means s, b, then n = ns + nb

is also Poisson, mean = s + b:

Suppose b = 0.5, and we observe nobs = 5.  Should we claim
evidence for a new discovery?  

    Give p-value for hypothesis s = 0:
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The significance of a peak
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Suppose we measure a value 
x for each event and find:

Each bin (observed) is a
Poisson r.v., means are
given by dashed lines.

In the two bins with the peak, 11 entries found with b = 3.2.
The p-value for the s = 0 hypothesis is:
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The significance of a peak (2)
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But... did we know where to look for the peak?

→  give P(n ≥ 11) in any 2 adjacent bins

Is the observed width consistent with the expected x resolution?

→  take x window several times the expected resolution

How many bins  distributions have we looked at?

 → look at a thousand of them, you’ll find a 10-3 effect

Did we adjust the cuts to ‘enhance’ the peak?

 → freeze cuts, repeat analysis with new data

How about the bins to the sides of the peak... (too low!)

Should we publish????
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Parameter estimation
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The parameters of a pdf are constants that characterize
 its shape, e.g.

r.v.

Suppose we have a sample of observed values:

parameter

We want to find some function of the data to estimate the 
parameter(s):

←  estimator written with a hat

Sometimes we say ‘estimator’ for the function of x1, ..., xn;
‘estimate’ for the value of the estimator with a particular data set.
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Properties of estimators
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If we were to repeat the entire measurement, the estimates
from each would follow a pdf:

biasedlarge
variance

best

We want small (or zero) bias (systematic error):

→  average of repeated measurements should tend to true value.

And we want a small variance (statistical error):

→  small bias & variance are in general conflicting criteria
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An estimator for the mean (expectation value)
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Parameter:

Estimator:

We find:

(‘sample mean’)
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An estimator for the variance
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Parameter:

Estimator:

(factor of n1 makes this so)

(‘sample
variance’)

We find:

where
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The likelihood function
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Consider n independent observations of x:  x1, ..., xn,  where 

x follows f (x; ).  The joint pdf for the whole data sample is:

Now evaluate this function with the data sample obtained and
regard it as a function of the parameter(s).  This is the 
likelihood function:

(xi constant)
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Maximum likelihood estimators
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If the hypothesized  is close to the true value, then we expect 
a high probability to get data like that which we actually found.

So we define the maximum likelihood (ML) estimator(s) to be 
the parameter value(s) for which the likelihood is maximum.

ML estimators not guaranteed to have any ‘optimal’
properties, (but in practice they’re very good).
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ML example:  parameter of exponential pdf
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Consider exponential pdf,

and suppose we have data,

The likelihood function is

The value of  for which L() is maximum also gives the 
maximum value of its logarithm (the log-likelihood function):
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ML example:  parameter of exponential pdf (2)
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Find its maximum by setting 

→

Monte Carlo test:  
generate 50  values
using  = 1:

We find the ML estimate:
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Variance of estimators:  Monte Carlo method
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Having estimated our parameter we now need to report its
‘statistical error’, i.e., how widely distributed would estimates
be if we were to repeat the entire measurement many times.

One way to do this would be to simulate the entire experiment
many times with a Monte Carlo program (use ML estimate for MC).

For exponential example, from 
sample variance of estimates
we find:

Note distribution of estimates is roughly
Gaussian − (almost) always true for 
ML in large sample limit.
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Variance of estimators from information inequality
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The information inequality (RCF) sets a lower bound on the 
variance of any estimator (not only ML):

Often the bias b is small, and equality either holds exactly or
is a good approximation (e.g. large data sample limit).   Then,

Estimate this using the 2nd derivative of  ln L at its maximum:
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Variance of estimators: graphical method

Glen Cowan CERN Summer Student Lectures on Statistics

Expand ln L () about its maximum:

First term is ln Lmax, second term is zero, for third term use 
information inequality (assume equality):

i.e.,

→  to get , change  away from until ln L decreases by 1/2.
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Example of variance by graphical method
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ML example with exponential:

Not quite parabolic ln L since finite sample size (n = 50).
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The method of least squares
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Suppose we measure N values, y1, ..., yN, 
assumed to be  independent Gaussian 
r.v.s with 

Assume known values of the control
variable x1, ..., xN and known variances

The likelihood function is

We want to estimate , i.e., fit the curve to the data points.
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The method of least squares (2)
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The log-likelihood function is therefore

So maximizing the likelihood is equivalent to minimizing

Minimum of this quantity defines the least squares estimator 

Often minimize 2 numerically (e.g. program MINUIT).
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Example of least squares fit
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Fit a polynomial of order p:
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Variance of LS estimators
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In most cases of interest we obtain the variance in a manner
similar to ML.  E.g. for data ~ Gaussian we have

and so

or for the graphical method we 
take the values of  where

1.0
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Goodness-of-fit with least squares
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The value of the 2 at its minimum is a measure of the level
of agreement between the data and fitted curve:

It can therefore be employed as a goodness-of-fit statistic to
test the hypothesized functional form (x; ).

We can show that if the hypothesis is correct, then the statistic 
t = 2

min follows the chi-square pdf,

where the number of degrees of freedom is 

       nd  = number of data points  number of fitted parameters
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Goodness-of-fit with least squares (2)
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The chi-square pdf has an expectation value equal to the number 
of degrees of freedom, so if 2

min ≈  nd the fit is ‘good’.

More generally, find the p-value:

E.g. for the previous example with 1st order polynomial (line),

whereas for the 0th order polynomial (horizontal line),

This is the probability of obtaining a 2
min as high as the one

we got, or higher, if the hypothesis is correct.
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Setting limits
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Consider again the case of finding n = ns + nb events where

nb events from known processes (background)
ns events from a new process (signal)

are Poisson r.v.s with means s, b, and thus n = ns + nb

is also Poisson with mean = s + b.  Assume b is known.

Suppose we are searching for evidence of the signal process,
but the number of events found is roughly equal to the
expected number of background events, e.g., b = 4.6 and we 
observe nobs = 5 events.

→  set upper limit on the parameter s.

The evidence for the presence of signal events is not
statistically significant,
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Example of an upper limit
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Find the hypothetical value of s such that there is a given small
probability, say,  = 0.05, to find as few events as we did or less:

Solve numerically for s = sup, this gives an upper limit on s at a

confidence level of 1.

Many subtle issues here − see e.g. CERN (2000) and Fermilab
(2001) workshops on confidence limits.

Example:  suppose b = 0 and we find nobs = 0.  For 1 = 0.95,

→
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Wrapping up lecture 3
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We’ve seen how to quantify goodness-of-fit with

p-values,

and we’ve seen some main ideas about parameter estimation,

ML and LS,
how to obtain/interpret stat. errors from a fit,

and what to do if you don’t find the effect you’re looking for,

setting limits.

In three days we’ve only looked at some basic ideas and tools,
skipping entirely many important topics.  Keep an eye out for
new methods, especially multivariate, machine learning, etc.


