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Introduction to Statistics − Day 4
Lecture 1

Probability
Random variables, probability densities, etc.

Lecture 2
Brief catalogue of probability densities
The Monte Carlo method.

Lecture 3
Statistical tests
Fisher discriminants, neural networks, etc
Significance and goodness-of-fit tests

Lecture 4
Parameter estimation
Maximum likelihood and least squares
Interval estimation (setting limits)

→
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Parameter estimation
The parameters of a pdf are constants that characterize
its shape, e.g.

r.v.

Suppose we have a sample of observed values:

parameter

We want to find some function of the data to estimate the 
parameter(s):

← estimator written with a hat

Sometimes we say ‘estimator’ for the function of x1, ..., xn;
‘estimate’ for the value of the estimator with a particular data set.



G. Cowan 2009 CERN Summer Student Lectures on Statistics 3

Properties of estimators
If we were to repeat the entire measurement, the estimates
from each would follow a pdf:

biasedlarge
variance

best

We want small (or zero) bias (systematic error):

→ average of repeated measurements should tend to true value.

And we want a small variance (statistical error):
→ small bias & variance are in general conflicting criteria
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An estimator for the mean (expectation value)

Parameter:

Estimator:

We find:

(‘sample mean’)
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An estimator for the variance

Parameter:

Estimator:

(factor of n−1 makes this so)

(‘sample
variance’)

We find:

where
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The likelihood function
Suppose the outcome of an experiment is:  x1, ..., xn,  which
is modeled as a sample from a joint pdf with parameter(s) θ:

Now evaluate this with the data sample obtained and regard it as 
a function of the parameter(s).  This is the likelihood function:

(xi constant)

If the xi are independent observations of x ~ f(x;θ), then,
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Maximum likelihood estimators
If the hypothesized θ is close to the true value, then we expect 
a high probability to get data like that which we actually found.

So we define the maximum likelihood (ML) estimator(s) to be 
the parameter value(s) for which the likelihood is maximum.

ML estimators not guaranteed to have any ‘optimal’
properties, (but in practice they’re very good).
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ML example:  parameter of exponential pdf

Consider exponential pdf,

and suppose we have data,

The likelihood function is

The value of τ for which L(τ) is maximum also gives the 
maximum value of its logarithm (the log-likelihood function):
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ML example:  parameter of exponential pdf (2)

Find its maximum by setting 

→

Monte Carlo test:  
generate 50  values
using τ = 1:

We find the ML estimate:
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Variance of estimators:  Monte Carlo method
Having estimated our parameter we now need to report its
‘statistical error’, i.e., how widely distributed would estimates
be if we were to repeat the entire measurement many times.

One way to do this would be to simulate the entire experiment
many times with a Monte Carlo program (use ML estimate for MC).

For exponential example, from 
sample variance of estimates
we find:

Note distribution of estimates is roughly
Gaussian − (almost) always true for 
ML in large sample limit.
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Variance of estimators from information inequality
The information inequality (RCF) sets a lower bound on the 
variance of any estimator (not only ML):

Often the bias b is small, and equality either holds exactly or
is a good approximation (e.g. large data sample limit).   Then,

Estimate this using the 2nd derivative of  ln L at its maximum:
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Variance of estimators: graphical method
Expand ln L (θ) about its maximum:

First term is ln Lmax, second term is zero, for third term use 
information inequality (assume equality):

i.e.,

→ to get , change θ away from until ln L decreases by 1/2.
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Example of variance by graphical method

ML example with exponential:

Not quite parabolic ln L since finite sample size (n = 50).
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The method of least squares
Suppose we measure N values, y1, ..., yN, 
assumed to be  independent Gaussian 
r.v.s with 

Assume known values of the control
variable x1, ..., xN and known variances

The likelihood function is

We want to estimate θ, i.e., fit the curve to the data points.
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The method of least squares (2)

The log-likelihood function is therefore

So maximizing the likelihood is equivalent to minimizing

Minimum of this quantity defines the least squares estimator 

Often minimize χ2 numerically (e.g. program MINUIT).



G. Cowan 2009 CERN Summer Student Lectures on Statistics 16

Example of least squares fit

Fit a polynomial of order p:
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Variance of LS estimators
In most cases of interest we obtain the variance in a manner
similar to ML.  E.g. for data ~ Gaussian we have

and so

or for the graphical method we 
take the values of θ where

1.0
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Goodness-of-fit with least squares
The value of the χ2 at its minimum is a measure of the level
of agreement between the data and fitted curve:

It can therefore be employed as a goodness-of-fit statistic to
test the hypothesized functional form λ(x; θ).

We can show that if the hypothesis is correct, then the statistic 
t = χ2

min follows the chi-square pdf,

where the number of degrees of freedom is 

nd = number of data points − number of fitted parameters
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Goodness-of-fit with least squares (2)
The chi-square pdf has an expectation value equal to the number 
of degrees of freedom, so if χ2

min ≈  nd the fit is ‘good’.

More generally, find the p-value:

E.g. for the previous example with 1st order polynomial (line),

whereas for the 0th order polynomial (horizontal line),

This is the probability of obtaining a χ2
min as high as the one

we got, or higher, if the hypothesis is correct.
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Setting limits
Consider again the case of finding n = ns + nb events where

nb events from known processes (background)
ns events from a new process (signal)

are Poisson r.v.s with means s, b, and thus n = ns + nb
is also Poisson with mean = s + b.  Assume b is known.

Suppose we are searching for evidence of the signal process,
but the number of events found is roughly equal to the
expected number of background events, e.g., b = 4.6 and we 
observe nobs = 5 events.

→ set upper limit on the parameter s.

The evidence for the presence of signal events is not
statistically significant,
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Example of an upper limit
Find the hypothetical value of s such that there is a given small
probability, say, γ = 0.05, to find as few events as we did or less:

Solve numerically for s = sup, this gives an upper limit on s at a
confidence level of 1−γ.

Example:  suppose b = 0 and we find nobs = 0.  For 1−γ = 0.95,

→

The interval [0, sup] is an example of a confidence interval,
designed to cover the true value of s with a probability 1 − γ.
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Calculating Poisson parameter limits
To solve for slo, sup, can exploit relation to χ2 distribution:

Quantile of χ2 distribution
TMath::ChisquareQuantile

For low fluctuation of n this 
can give negative result for sup; 
i.e. confidence interval is empty.

Many subtle issues here − see e.g. CERN (2000) and Fermilab
(2001) confidence limit workshops and PHYSTAT conferences.
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Wrapping up lecture 4

We’ve seen some main ideas about parameter estimation,

ML and LS,
how to obtain/interpret stat. errors from a fit,

and what to do if you don’t find the effect you’re looking for,

setting limits.

In four days we’ve only looked at some basic ideas and tools,
skipping entirely many important topics.  Keep an eye out for
new methods, especially multivariate, machine learning, 
Bayesian methods, etc.
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Extra slides
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Setting limits
Frequentist intervals (limits) for a parameter s can be found by 
defining a test of the hypothesized value s (do this for all s): 

Specify values of the data n that are ‘disfavoured’ by s
(critical region) such that P(n in critical region) ≤ γ
for a prespecified γ, e.g., 0.05 or 0.1.

(Because of discrete data, need inequality here.)

If n is observed in the critical region, reject the value s.

Now invert the test to define a confidence interval as:

set of s values that would not be rejected in a test of
size γ (confidence level is 1 − γ ).

The interval will cover the true value of s with probability ≥ 1 − γ.
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Setting limits:  ‘classical method’
E.g. for upper limit on s, take critical region to be low values of n, 
limit sup at confidence level 1 − β  thus found from

Similarly for lower limit at confidence level 1 − α,  

Sometimes choose α = β = γ /2 → central confidence interval.
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Likelihood ratio limits (Feldman-Cousins)
Define likelihood ratio for hypothesized parameter value s:

Here       is the ML estimator, note 

Critical region defined by low values of likelihood ratio.

Resulting intervals can be one- or two-sided (depending on n).

(Re)discovered for HEP by Feldman and Cousins, 
Phys. Rev. D 57 (1998) 3873.
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Coverage probability of confidence intervals
Because of discreteness of Poisson data, probability for interval
to include true value in general > confidence level (‘over-coverage’)
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More on intervals from LR test (Feldman-Cousins)
Caveat with coverage: suppose we find  n >> b.
Usually one then quotes a measurement:

If, however, n isn’t large enough to claim discovery, one
sets a limit on s.

FC pointed out that if this decision is made based on n, then
the actual coverage probability of the interval can be less than
the stated confidence level (‘flip-flopping’).

FC intervals remove this, providing a smooth transition from
1- to 2-sided intervals, depending on  n.

But, suppose FC gives e.g. 0.1 < s < 5 at 90% CL, 
p-value of s=0 still substantial.  Part of upper-limit ‘wasted’?
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Properties of upper limits

Upper limit sup vs. n Mean upper limit vs. s

Example:  take b = 5.0, 1 - γ = 0.95
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Upper limit versus b

b

If n = 0 observed, should upper limit depend on b?
Classical:  yes
Bayesian:  no
FC:  yes

Feldman & Cousins, PRD 57 (1998) 3873


