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Outline

Lecture 1

Probability

Random variables, probability densities, etc.

Lecture 2

Brief catalogue of probability densities

The Monte Carlo method.

Lecture 3

Statistical tests

Fisher discriminants, neural networks, etc 

Significance and goodness-of-fit tests 

Lecture 4

Parameter estimation

Maximum likelihood and least squares

Interval estimation (setting limits)
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Some statistics books, papers, etc. 

G. Cowan, Statistical Data Analysis, Clarendon, Oxford, 1998

see also www.pp.rhul.ac.uk/~cowan/sda

R.J. Barlow, Statistics, A Guide to the Use of Statistical

in the Physical Sciences, Wiley, 1989

see also hepwww.ph.man.ac.uk/~roger/book.html

L. Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986

F. James, Statistical Methods in Experimental Physics, 2nd  ed., 

World Scientific, 2006; (W. Eadie et al., 1971). 

S. Brandt, Statistical and Computational Methods in Data 

Analysis, Springer, New York, 1998 (with program library on CD)

W.-M. Yao et al. (Particle Data Group), Review of Particle Physics, 

J. Physics G 33 (2006) 1; see also pdg.lbl.gov sections on 

probability statistics, Monte Carlo
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Data analysis in particle physics 

Observe events of a certain type

Measure characteristics of each event (particle momenta,

number of muons, energy of jets,...)

Theories (e.g. SM) predict distributions of these properties

up to free parameters, e.g., a, GF, MZ, as, mH, ...

Some tasks of data analysis:

Estimate (measure) the parameters;

Quantify the uncertainty of the parameter estimates;

Test the extent to which the predictions of a theory are 

in agreement with the data (→ presence of New Physics?)
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Dealing with uncertainty 

In particle physics there are various elements of uncertainty:

theory is not deterministic

quantum mechanics

random measurement errors

present even without quantum effects

things we could know in principle but don‟t

e.g. from limitations of cost, time, ...

We can quantify the uncertainty using PROBABILITY
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A definition of probability 

Consider a set S with subsets A, B, ...

Kolmogorov

axioms (1933)

From these axioms we can derive further properties, e.g.
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Conditional probability, independence

Also define conditional probability of A given B (with P(B) ≠ 0):

E.g. rolling dice:

Subsets A, B independent if:

If A, B independent,

N.B. do not confuse with disjoint subsets, i.e.,
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Interpretation of probability

I. Relative frequency

A, B, ... are outcomes of a repeatable experiment 

cf. quantum mechanics, particle scattering, radioactive decay...

II. Subjective probability

A, B, ... are hypotheses (statements that are true or false) 

•   Both interpretations consistent with Kolmogorov axioms.

• In particle physics  frequency interpretation often most useful,

but subjective probability can provide more natural treatment of 

non-repeatable phenomena:  

systematic uncertainties, probability that Higgs boson exists,...
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Bayes‟ theorem

From the definition of conditional probability we have,

and

but , so

Bayes‟ theorem

First published (posthumously) by the

Reverend Thomas Bayes (1702−1761)

An essay towards solving a problem in the

doctrine of chances, Philos. Trans. R. Soc. 53

(1763) 370; reprinted in Biometrika, 45 (1958) 293.
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The law of total probability

Consider a subset B of 

the sample space S,

B ∩ Ai

Ai

B

S

divided into disjoint subsets Ai

such that [i Ai = S,

→

→

→ law of total probability

Bayes‟ theorem becomes
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An example using Bayes‟ theorem

Suppose the probability (for anyone) to have AIDS is:

← prior probabilities, i.e.,

before any test carried out

Consider an AIDS test:  result is + or -

← probabilities to (in)correctly

identify an infected person

← probabilities to (in)correctly

identify an uninfected person

Suppose your result is +.  How worried should you be?
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Bayes‟ theorem example (cont.)

The probability to have AIDS given a + result is

i.e. you‟re probably OK!

Your viewpoint:  my degree of belief that I have AIDS is 3.2%

Your doctor‟s viewpoint:  3.2% of people like this will have AIDS

← posterior probability
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Frequentist Statistics − general philosophy 

In frequentist statistics, probabilities are associated only with

the data, i.e., outcomes of repeatable observations (shorthand:     ).

Probability = limiting frequency

Probabilities such as

P (Higgs boson exists), 

P (0.117 < as < 0.121), 

etc. are either 0 or 1, but we don‟t know which.

The tools of frequentist statistics tell us what to expect, under

the assumption of certain probabilities, about hypothetical

repeated observations.

The preferred theories (models, hypotheses, ...) are those for 

which our observations would be considered „usual‟.
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Bayesian Statistics − general philosophy 

In Bayesian statistics, use subjective probability for hypotheses:

posterior probability, i.e., 

after seeing the data

prior probability, i.e.,

before seeing the data

probability of the data assuming 

hypothesis H (the likelihood)

normalization involves sum 

over all possible hypotheses

Bayes‟ theorem has an “if-then” character:  If your prior

probabilities were p (H), then it says how these probabilities

should change in the light of the data.

No unique prescription for priors (subjective!)
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Random variables and probability density functions

A random variable is a numerical characteristic assigned to an 

element of the sample space; can be discrete or continuous.

Suppose outcome of experiment is continuous value x

→ f(x) = probability density function (pdf)

Or for discrete outcome xi with e.g. i = 1, 2, ... we have

x must be somewhere

probability mass function

x must take on one of its possible values



G. Cowan 2010 CERN Summer Student Lectures on Statistics 16

Cumulative distribution function

Probability to have outcome less than or equal to x is

cumulative distribution function

Alternatively define pdf with
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Histograms

pdf = histogram with

infinite data sample,

zero bin width,

normalized to unit area.
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Other types of probability densities

Outcome of experiment characterized by several values, 

e.g. an n-component vector, (x1, ... xn) 

Sometimes we want only pdf of some (or one) of the components

→ marginal pdf

→ joint pdf

Sometimes we want to consider some components as constant

→ conditional pdf

x1, x2 independent if 
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Expectation values

Consider continuous r.v. x with pdf  f (x).  

Define expectation (mean) value as

Notation (often):                         ~ “centre of gravity” of pdf. 

For a function y(x) with pdf g(y), 

(equivalent)

Variance:

Notation:

Standard deviation:

s ~ width of pdf, same units as x.
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Covariance and correlation

Define covariance cov[x,y] (also use matrix notation Vxy) as  

Correlation coefficient (dimensionless) defined as

If x, y, independent, i.e., ,   then

→ x and  y, „uncorrelated‟

N.B. converse not always true.
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Correlation (cont.) 
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Error propagation 

which quantify the measurement errors in the xi. 

Suppose we measure a set of values 

and we have the covariances

Now consider a function

What is the variance of 

The hard way:  use joint pdf to find the pdf  

then from g(y) find V[y] = E[y2] - (E[y])2. 

Often not practical, may not even be fully known.
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Error propagation (2) 

Suppose we had 

in practice only estimates given by the measured

Expand to 1st order in a Taylor series about 

since

To find V[y] we need E[y2] and E[y].
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Error propagation (3)

Putting the ingredients together gives the variance of
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Error propagation (4)

If the xi are uncorrelated, i.e., then this becomes

Similar for a set of m functions 

or in matrix notation where
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Error propagation (5)

The „error propagation‟ formulae tell us the 

covariances of a set of functions

in terms of 

the covariances of the original variables. 

Limitations:  exact only if linear.

Approximation breaks down if function 

nonlinear over a region comparable

in size to the si.

N.B.  We have said nothing about the exact pdf of the xi,

e.g., it doesn‟t have to be Gaussian.

x

y(x)

sx

sy

x
sx

?

y(x)
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Error propagation − special cases

→

→

That is, if the xi are uncorrelated:

add errors quadratically for the sum (or difference),

add relative errors quadratically for product (or ratio). 

But correlations can change this completely...
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Error propagation − special cases (2)

Consider with

Now suppose r = 1.  Then

i.e. for 100% correlation, error in difference → 0.
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Wrapping up lecture 1

Up to now we‟ve talked some abstract properties of probability:

definition and interpretation,

Bayes‟ theorem,

random variables,

probability density functions,

expectation values,...

Next time we‟ll look at some probability distributions that come 

up in Particle Physics,  and also discuss the Monte Carlo method,

a valuable technique for computing probabilities. 


