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Introduction to Statistics − Day 2

Lecture 1

Probability

Random variables, probability densities, etc.

Lecture 2

Brief catalogue of probability densities

The Monte Carlo method.

Lecture 3

Statistical tests

Fisher discriminants, neural networks, etc

Significance and goodness-of-fit tests

Lecture 4

Parameter estimation

Maximum likelihood and least squares

Interval estimation (setting limits)

→
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Some distributions

Distribution/pdf Example use in HEP

Binomial Branching ratio

Multinomial Histogram with fixed N

Poisson Number of events found

Uniform Monte Carlo method

Exponential Decay time

Gaussian Measurement error

Chi-square Goodness-of-fit

Cauchy Mass of resonance

Landau Ionization energy loss
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Binomial distribution

Consider N independent experiments (Bernoulli trials):

outcome of each is ‘success’ or ‘failure’,

probability of success on any given trial is p.

Define discrete r.v. n = number of successes (0 ≤ n ≤  N).

Probability of a specific outcome (in order), e.g. ‘ssfsf’ is

But order not important; there are

ways (permutations) to get n successes in N trials, total 

probability for n is sum of probabilities for each permutation.
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Binomial distribution  (2)

The binomial distribution is therefore

random

variable

parameters

For the expectation value and variance we find:
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Binomial distribution  (3)

Binomial distribution for several values of the parameters:

Example:  observe N decays of W±,  the number n of which are 

W→mn is a binomial r.v., p = branching ratio.
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Multinomial distribution

Like binomial but now m outcomes instead of two, probabilities are

For N trials we want the probability to obtain:

n1 of outcome 1,

n2 of outcome 2,



nm of outcome m.

This is the multinomial distribution for
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Multinomial distribution (2)

Now consider outcome i as ‘success’, all others as ‘failure’.

→ all ni individually binomial with parameters N, pi

for all i

One can also find the covariance to be

Example:  represents a histogram

with m bins, N total entries, all entries independent.
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Poisson distribution

Consider binomial n in the limit

→ n follows the Poisson distribution:

Example:  number of scattering events

n with cross section s found for a fixed

integrated luminosity, with
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Uniform distribution

Consider a continuous r.v. x with -∞ < x < ∞ .  Uniform pdf is:

N.B.  For any r.v. x with cumulative distribution F(x),

y = F(x) is uniform in [0,1].

Example:  for p0 → gg, Eg is uniform in [Emin, Emax], with

2
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Exponential distribution

The exponential pdf for the continuous r.v. x is defined by:

Example:  proper decay time t of an unstable particle

(t = mean lifetime)

Lack of memory (unique to exponential):
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Gaussian distribution

The Gaussian (normal) pdf for a continuous r.v. x is defined by:

Special case: m = 0, s2 = 1   (‘standard Gaussian’):

(N.B. often m, s2 denote

mean, variance of any

r.v., not only Gaussian.)

If y ~ Gaussian with m, s2, then  x = (y - m) /s follows  (x).
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Gaussian pdf and the Central Limit Theorem

The Gaussian pdf is so useful because almost any random

variable that is a sum of a large number of small contributions

follows it.  This follows from the Central Limit Theorem:

For n independent r.v.s xi with finite variances si
2, otherwise

arbitrary pdfs, consider the sum

Measurement errors are often the sum of many contributions, so 

frequently measured values can be treated as Gaussian r.v.s.

In the limit n → ∞, y is a Gaussian r.v. with
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Central Limit Theorem (2)

The CLT can be proved using characteristic functions (Fourier

transforms), see, e.g., SDA Chapter 10.

Good example:  velocity component vx of air molecules.

OK example:  total deflection due to multiple Coulomb scattering.

(Rare large angle deflections give non-Gaussian tail.)

Bad example:  energy loss of charged particle traversing thin

gas layer.  (Rare collisions make up large fraction of energy loss,

cf. Landau pdf.)

For finite n, the theorem is approximately valid to the

extent that the fluctuation of  the sum is not dominated by

one (or few) terms. 

Beware of measurement errors with non-Gaussian tails.
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Multivariate Gaussian distribution

Multivariate Gaussian pdf for the vector 

are column vectors, are transpose (row) vectors, 

For n = 2 this is

where r = cov[x1, x2]/(s1s2) is the correlation coefficient.
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Chi-square (c2) distribution

The chi-square pdf for the continuous r.v. z (z ≥ 0) is defined by

n = 1, 2, ... =  number of ‘degrees of

freedom’ (dof)

For independent Gaussian xi, i = 1, ..., n, means mi, variances si
2,

follows c2 pdf with n dof.

Example:  goodness-of-fit test variable especially in conjunction

with method of least squares.
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Cauchy (Breit-Wigner) distribution

The Breit-Wigner pdf for the continuous r.v. x is defined by

(G = 2, x0 = 0 is the Cauchy pdf.)

E[x] not well defined,   V[x] →∞.

x0 = mode (most probable value)

G = full width at half maximum

Example:  mass of resonance particle, e.g. r, K*, f0, ...

G = decay rate (inverse of mean lifetime)
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Landau distribution

For a charged particle with b = v /c traversing a layer of matter

of thickness d, the energy loss D follows the Landau pdf:

L. Landau, J. Phys. USSR 8 (1944) 201; see also

W. Allison and J. Cobb, Ann. Rev. Nucl. Part. Sci. 30 (1980) 253.

+ - + -

- + - +
b

d

D
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Landau distribution  (2)

Long ‘Landau tail’

→ all moments ∞

Mode (most probable 

value) sensitive to b ,

→ particle i.d.
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What it is:  a numerical technique for calculating probabilities

and related quantities using sequences of random numbers.

The usual steps:

(1) Generate sequence r1, r2, ..., rm uniform in [0, 1].

(2) Use this to produce another sequence x1, x2, ..., xn

distributed according to some pdf  f (x)  in which

we’re interested (x can be a vector).

(3) Use the x values to estimate some property of  f (x), e.g.,

fraction of x values with a < x < b gives

→ MC calculation = integration (at least formally)

MC generated values = ‘simulated data’

→ use for testing statistical procedures

The Monte Carlo method
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Random number generators

Goal:  generate uniformly distributed values in [0, 1].

Toss coin for e.g. 32 bit number... (too tiring).

→ ‘random number generator’ 

= computer algorithm to generate r1, r2, ..., rn.

Example:  multiplicative linear congruential generator (MLCG)

ni+1 = (a ni) mod m ,    where

ni = integer

a = multiplier

m = modulus

n0 = seed (initial value)

N.B.  mod = modulus (remainder), e.g. 27 mod 5 = 2.

This rule produces a sequence of numbers n0, n1, ...
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Random number generators  (2)

The sequence is (unfortunately) periodic!

Example (see Brandt Ch 4):  a = 3, m = 7, n0 = 1

← sequence repeats

Choose a, m to obtain long period (maximum = m - 1); m usually 

close to the largest integer that can represented in the computer.

Only use a subset of a single period of the sequence.
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Random number generators  (3)
are in [0, 1] but are they ‘random’?

Choose a, m so that the ri pass various tests of randomness:

uniform distribution in [0, 1],

all values independent (no correlations between pairs),

e.g. L’Ecuyer, Commun. ACM 31 (1988) 742 suggests

a = 40692

m = 2147483399

Far better algorithms available, e.g. TRandom3, period

See F. James, Comp. Phys. Comm. 60 (1990) 111; Brandt Ch. 4
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The transformation method

Given r1, r2,..., rn uniform in [0, 1], find x1, x2,..., xn

that follow  f (x) by finding a suitable transformation  x (r).

Require:

i.e.

That is,       set and solve for  x (r).
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Example of the transformation method

Exponential pdf:

Set and solve for  x (r).

→ works too.)
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The acceptance-rejection method

Enclose the pdf in a box:

(1) Generate a random number x, uniform in [xmin, xmax], i.e.

r1 is uniform in [0,1].

(2) Generate a 2nd independent random number u uniformly

distributed between 0 and  fmax, i.e.

(3) If u <  f (x), then accept x.  If not, reject x and repeat.
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Example with acceptance-rejection method

If dot below curve, use 

x value in histogram.
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Monte Carlo event generators

Simple example:  e+e- → m+m-

Generate cosq and f:

Less simple:  ‘event generators’ for a variety of reactions: 

e+e- → m+m-, hadrons, ...

pp → hadrons, D-Y, SUSY,...

e.g. PYTHIA, HERWIG, ISAJET...

Output = ‘events’, i.e., for each event we get a list of

generated particles and their momentum vectors, types, etc.
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A simulated event

PYTHIA Monte Carlo

pp → gluino-gluino
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Monte Carlo detector simulation

Takes as input the particle list and momenta from generator.

Simulates detector response:

multiple Coulomb scattering (generate scattering angle),

particle decays (generate lifetime),

ionization energy loss (generate D),

electromagnetic, hadronic showers,

production of signals, electronics response, ...

Output = simulated raw data → input to reconstruction software:

track finding, fitting, etc. 

Predict what you should see at ‘detector level’ given a certain 

hypothesis for ‘generator level’.  Compare with the real data.

Estimate ‘efficiencies’ = #events found / # events generated.

Programming package:  GEANT
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Wrapping up lecture 2

We’ve looked at a number of important distributions:

Binomial, Multinomial, Poisson, Uniform, Exponential

Gaussian, Chi-square, Cauchy, Landau,

and we’ve seen the Monte Carlo method:

calculations based on sequences of random numbers,

used to simulate particle collisions, detector response.

So far, we’ve mainly been talking about probability.

But suppose now we are faced with experimental data.  

We want to infer something about the (probabilistic) processes 

that produced the data.

This is statistics, the main subject of the next two lectures. 


