Introduction to Statistics – Day 2

Lecture 1 Probability Random variables, probability densities, etc.

 \rightarrow Lecture 2

Brief catalogue of probability densities The Monte Carlo method.

Lecture 3

Statistical tests Fisher discriminants, neural networks, etc Significance and goodness-of-fit tests

Lecture 4

Parameter estimation Maximum likelihood and least squares Interval estimation (setting limits) 2011 CERN Summer Student Lectures on Statistics / Lecture 2

G. Cowan

Some distributions

Distribution/pdf Example use in HEP **Binomial Branching ratio** Multinomial Histogram with fixed NPoisson Number of events found Uniform Monte Carlo method Exponential Decay time Gaussian Measurement error Goodness-of-fit Chi-square Mass of resonance Cauchy Landau Ionization energy loss

Binomial distribution

Consider *N* independent experiments (Bernoulli trials): outcome of each is 'success' or 'failure', probability of success on any given trial is *p*.

Define discrete r.v. n = number of successes ($0 \le n \le N$).

Probability of a specific outcome (in order), e.g. 'ssfsf' is $m(1, m) = m^{n}(1, m)^{N-n}$

$$pp(1-p)p(1-p) = p^n(1-p)^{N-n}$$

But order not important; there are

$$\overline{n!(N-n)!}$$

N!

ways (permutations) to get *n* successes in *N* trials, total probability for *n* is sum of probabilities for each permutation.

Binomial distribution (2)

The binomial distribution is therefore

$$f(n; N, p) = \frac{N!}{n!(N-n)!}p^n(1-p)^{N-n}$$
random parameters
variable

For the expectation value and variance we find:

$$E[n] = \sum_{n=0}^{N} nf(n; N, p) = Np$$
$$V[n] = E[n^2] - (E[n])^2 = Np(1-p)$$

G. Cowan

Binomial distribution (3)

Binomial distribution for several values of the parameters:

Example: observe *N* decays of W^{\pm} , the number *n* of which are $W \rightarrow \mu \nu$ is a binomial r.v., *p* = branching ratio.

Multinomial distribution

Like binomial but now *m* outcomes instead of two, probabilities are

$$\vec{p} = (p_1, \dots, p_m)$$
, with $\sum_{i=1}^m p_i = 1$

For *N* trials we want the probability to obtain:

 n_1 of outcome 1, n_2 of outcome 2, ... n_m of outcome *m*.

This is the multinomial distribution for $\vec{n} = (n_1, \dots, n_m)$

$$f(\vec{n}; N, \vec{p}) = \frac{N!}{n_1! n_2! \cdots n_m!} p_1^{n_1} p_2^{n_2} \cdots p_m^{n_m}$$

G. Cowan

Multinomial distribution (2)

Now consider outcome *i* as 'success', all others as 'failure'.

 \rightarrow all n_i individually binomial with parameters N, p_i

$$E[n_i] = Np_i, \quad V[n_i] = Np_i(1-p_i) \quad \text{for all } i$$

One can also find the covariance to be

$$V_{ij} = Np_i(\delta_{ij} - p_j)$$

Example: $\vec{n} = (n_1, \dots, n_m)$ represents a histogram with *m* bins, *N* total entries, all entries independent.

Poisson distribution

Consider binomial n in the limit

$$N \to \infty, \qquad p \to 0, \qquad E[n] = Np \to \nu.$$

 \rightarrow *n* follows the Poisson distribution:

$$f(n;\nu) = \frac{\nu^n}{n!} e^{-\nu} \quad (n \ge 0)$$

$$E[n] = \nu$$
, $V[n] = \nu$.

Example: number of scattering events *n* with cross section σ found for a fixed integrated luminosity, with $\nu = \sigma \int L dt$.

Uniform distribution

Consider a continuous r.v. x with $-\infty < x < \infty$. Uniform pdf is:

N.B. For any r.v. *x* with cumulative distribution F(x), y = F(x) is uniform in [0,1].

Example: for $\pi^0 \to \gamma\gamma$, E_{γ} is uniform in $[E_{\min}, E_{\max}]$, with $E_{\min} = \frac{1}{2} E_{\pi} (1 - \beta)$, $E_{\max} = \frac{1}{2} E_{\pi} (1 + \beta)$

G. Cowan

Exponential distribution

The exponential pdf for the continuous r.v. *x* is defined by:

Example: proper decay time t of an unstable particle

$$f(t; \tau) = \frac{1}{\tau} e^{-t/\tau}$$
 (τ = mean lifetime)

Lack of memory (unique to exponential): $f(t - t_0 | t \ge t_0) = f(t)$

G. Cowan

Gaussian distribution

The Gaussian (normal) pdf for a continuous r.v. *x* is defined by:

$$f(x;\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2}$$

$$E[x] = \mu$$
 (N.B. often μ , σ^2 denote
mean, variance of any
 $V[x] = \sigma^2$ r.v., not only Gaussian.)

Special case: $\mu = 0$, $\sigma^2 = 1$ ('standard Gaussian'):

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} , \quad \Phi(x) = \int_{-\infty}^x \varphi(x') \, dx'$$

If $y \sim \text{Gaussian}$ with μ , σ^2 , then $x = (y - \mu) / \sigma$ follows $\varphi(x)$.

G. Cowan

Gaussian pdf and the Central Limit Theorem

The Gaussian pdf is so useful because almost any random variable that is a sum of a large number of small contributions follows it. This follows from the Central Limit Theorem:

For *n* independent r.v.s x_i with finite variances σ_i^2 , otherwise arbitrary pdfs, consider the sum

$$y = \sum_{i=1}^{n} x_i$$

In the limit $n \to \infty$, y is a Gaussian r.v. with

$$E[y] = \sum_{i=1}^{n} \mu_i \qquad V[y] = \sum_{i=1}^{n} \sigma_i^2$$

Measurement errors are often the sum of many contributions, so frequently measured values can be treated as Gaussian r.v.s.

G. Cowan

Central Limit Theorem (2)

The CLT can be proved using characteristic functions (Fourier transforms), see, e.g., SDA Chapter 10.

For finite *n*, the theorem is approximately valid to the extent that the fluctuation of the sum is not dominated by one (or few) terms.

Beware of measurement errors with non-Gaussian tails.

Good example: velocity component v_x of air molecules.

OK example: total deflection due to multiple Coulomb scattering. (Rare large angle deflections give non-Gaussian tail.)

Bad example: energy loss of charged particle traversing thin gas layer. (Rare collisions make up large fraction of energy loss, cf. Landau pdf.)

Multivariate Gaussian distribution

Multivariate Gaussian pdf for the vector $\vec{x} = (x_1, \dots, x_n)$:

$$f(\vec{x};\vec{\mu},V) = \frac{1}{(2\pi)^{n/2}|V|^{1/2}} \exp\left[-\frac{1}{2}(\vec{x}-\vec{\mu})^T V^{-1}(\vec{x}-\vec{\mu})\right]$$

 $\vec{x}, \vec{\mu}$ are column vectors, $\vec{x}^T, \vec{\mu}^T$ are transpose (row) vectors,

$$E[x_i] = \mu_i, , \quad \text{cov}[x_i, x_j] = V_{ij}.$$

For n = 2 this is

$$f(x_1, x_2; \mu_1, \mu_2, \sigma_1, \sigma_2, \rho) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \\ \times \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\left(\frac{x_1-\mu_1}{\sigma_1}\right)^2 + \left(\frac{x_2-\mu_2}{\sigma_2}\right)^2 - 2\rho\left(\frac{x_1-\mu_1}{\sigma_1}\right)\left(\frac{x_2-\mu_2}{\sigma_2}\right) \right] \right\}$$

where $\rho = \operatorname{cov}[x_1, x_2]/(\sigma_1 \sigma_2)$ is the correlation coefficient.

G. Cowan

Chi-square (χ^2) distribution

The chi-square pdf for the continuous r.v. $z \ (z \ge 0)$ is defined by

$$f(z;n) = \frac{1}{2^{n/2} \Gamma(n/2)} z^{n/2-1} e^{-z/2}$$

$$i = 1, 2, ... = \text{number of 'degrees of}$$

$$freedom' (dof)$$

$$E[z] = n, \quad V[z] = 2n.$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n \text{ (dof)}$$

$$i = 1, 2, ... = n$$

For independent Gaussian x_i , i = 1, ..., n, means μ_i , variances σ_i^2 ,

$$z = \sum_{i=1}^{n} \frac{(x_i - \mu_i)^2}{\sigma_i^2} \quad \text{follows } \chi^2 \text{ pdf with } n \text{ dof.}$$

Example: goodness-of-fit test variable especially in conjunction with method of least squares.

G. Cowan

Cauchy (Breit-Wigner) distribution

The Breit-Wigner pdf for the continuous r.v. x is defined by

$$f(x; \Gamma, x_0) = \frac{1}{\pi} \frac{\Gamma/2}{\Gamma^2/4 + (x - x_0)^2}$$

(\Gamma = 2, x_0 = 0 is the Cauchy pdf.)
$$E[x] \text{ not well defined, } V[x] \to \infty.$$

x_0 = mode (most probable value)
\Gamma = full width at half maximum

Example: mass of resonance particle, e.g. ρ , K^{*}, ϕ^0 , ... Γ = decay rate (inverse of mean lifetime)

G. Cowan

Landau distribution

For a charged particle with $\beta = v/c$ traversing a layer of matter of thickness *d*, the energy loss Δ follows the Landau pdf:

L. Landau, J. Phys. USSR **8** (1944) 201; see also W. Allison and J. Cobb, Ann. Rev. Nucl. Part. Sci. **30** (1980) 253.

G. Cowan

Landau distribution (2)

4 (keV ⁻¹) (a)B=0.4 3 Long 'Landau tail' β=0.6 $f(\Delta;\beta)$ β=0.95 2 \rightarrow all moments ∞ B=0.999 1 0 3 0 2 Δ (keV) Δ_{mp} (keV) 4 (b) Mode (most probable 3 value) sensitive to β , 2 \rightarrow particle i.d. 1 0 10⁻¹ 10³ 10² 104 10 1

βγ

The Monte Carlo method

What it is: a numerical technique for calculating probabilities and related quantities using sequences of random numbers.

The usual steps:

- (1) Generate sequence $r_1, r_2, ..., r_m$ uniform in [0, 1].
- Use this to produce another sequence x₁, x₂, ..., x_n distributed according to some pdf f(x) in which we're interested (x can be a vector).
- (3) Use the x values to estimate some property of f(x), e.g., fraction of x values with a < x < b gives $\int_a^b f(x) dx$.

 \rightarrow MC calculation = integration (at least formally)

MC generated values = 'simulated data'

 \rightarrow use for testing statistical procedures

r

q(r)

0

1

Random number generators

Goal: generate uniformly distributed values in [0, 1]. Toss coin for e.g. 32 bit number... (too tiring).

 \rightarrow 'random number generator'

= computer algorithm to generate $r_1, r_2, ..., r_n$.

Example: multiplicative linear congruential generator (MLCG)

 $n_{i+1} = (a \ n_i) \mod m$, where $n_i = \text{integer}$ a = multiplier m = modulus $n_0 = \text{seed (initial value)}$

N.B. mod = modulus (remainder), e.g. 27 mod 5 = 2. This rule produces a sequence of numbers $n_0, n_1, ...$

G. Cowan

Random number generators (2)

The sequence is (unfortunately) periodic! Example (see Brandt Ch 4): $a = 3, m = 7, n_0 = 1$

$$n_1 = (3 \cdot 1) \mod 7 = 3$$

$$n_2 = (3 \cdot 3) \mod 7 = 2$$

$$n_3 = (3 \cdot 2) \mod 7 = 6$$

$$n_4 = (3 \cdot 6) \mod 7 = 4$$

$$n_5 = (3 \cdot 4) \mod 7 = 5$$

$$n_6 = (3 \cdot 5) \mod 7 = 1 \quad \leftarrow \text{ sequence repeats}$$

Choose *a*, *m* to obtain long period (maximum = m - 1); *m* usually close to the largest integer that can represented in the computer. Only use a subset of a single period of the sequence. Random number generators (3) $r_i = n_i/m$ are in [0, 1] but are they 'random'? Choose *a*, *m* so that the r_i pass various tests of randomness: uniform distribution in [0, 1], all values independent (no correlations between pairs), e.g. L'Ecuyer, Commun. ACM **31** (1988) 742 suggests

÷. N(F) 250 a = 406920.8 200 m = 21474833990.6 150 0.4 100 0.2 50 D 0.2 0.6 0.8 0.8

Far better algorithms available, e.g. **TRandom3**, period $2^{19937} - 1$

See F. James, Comp. Phys. Comm. 60 (1990) 111; Brandt Ch. 4

The transformation method

Given $r_1, r_2, ..., r_n$ uniform in [0, 1], find $x_1, x_2, ..., x_n$ that follow f(x) by finding a suitable transformation x(r).

Example of the transformation method

Exponential pdf: $f(x;\xi) = \frac{1}{\xi}e^{-x/\xi}$ $(x \ge 0)$

Set
$$\int_0^x \frac{1}{\xi} e^{-x'/\xi} dx' = r$$
 and solve for $x(r)$.

$$\rightarrow x(r) = -\xi \ln(1-r) \quad (x(r) = -\xi \ln r \text{ works too.})$$

G. Cowan

The acceptance-rejection method

- (1) Generate a random number x, uniform in $[x_{\min}, x_{\max}]$, i.e. $x = x_{\min} + r_1(x_{\max} - x_{\min})$, r_1 is uniform in [0,1].
- (2) Generate a 2nd independent random number *u* uniformly distributed between 0 and f_{max} , i.e. $u = r_2 f_{\text{max}}$.
- (3) If u < f(x), then accept x. If not, reject x and repeat.

G. Cowan

Example with acceptance-rejection method

$$f(x) = \frac{3}{8}(1+x^2)$$

$$(-1 \le x \le 1)$$

If dot below curve, use *x* value in histogram.

х

Monte Carlo event generators

Simple example: $e^+e^- \rightarrow \mu^+\mu^-$

Generate $\cos\theta$ and ϕ :

$$f(\cos\theta; A_{\mathsf{FB}}) \propto \left(1 + \frac{8}{3}A_{\mathsf{FB}}\cos\theta + \cos^2\theta\right),$$
$$g(\phi) = \frac{1}{2\pi} \quad (0 \le \phi \le 2\pi)$$

Less simple: 'event generators' for a variety of reactions: $e^+e^- \rightarrow \mu^+\mu^-$, hadrons, ...

 $pp \rightarrow hadrons, D-Y, SUSY,...$

e.g. PYTHIA, HERWIG, ISAJET...

Output = 'events', i.e., for each event we get a list of generated particles and their momentum vectors, types, etc.

G. Cowan

X~		
Event listing (summary)		A simulated event
I particle/jet KS KF orig p_x p_y p_z	E m	
1 !p+! 21 2212 0 0.000 0.000 7000.000 7000 2 !p+! 21 2212 0 0.000 0.000-7000.000 7000	0,000 0,938	
3 !9! 21 21 1 0.863 -0.323 1739.862 1739	.862 0,000	
4 (uban) 21 -2 2 -0,621 -0,165 -777,415 777 5 !9! 21 21 3 -2,427 5,486 1487,857 1487	.415 0,000	
6 [9] 21 21 4 -62,910 63,357 -463,274 471	297 pit	
7 ! 9! 21 1000021 0 514,565 544,845 498,897 979 8 !~g! 21 1000021 0 -379,700 -476,000 525,686 980) 398 gamma	1 22 211 0.407 0.087-1695.458 1695.458 0.000
9 !"chi_1-! 21-1000024 7 130.058 112.247 129.860 263	3. 399 gamma	1 22 211 0.113 -0.029 -314.822 314.822 0.000
10 [sban] 21 -3 7 259,400 187,468 83,100 330) 400 (pi0) 401 (pi0)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
12 !"chi 20! 21 1000023 8 -326.241 -80.971 113.712 385	402 (pi0)	11 111 212 0.267 -0.052 -144.673 144.674 0.135
13 lb! 21 5 8 -51,841 -294,077 389,853 491	403 gamma	1 22 215 -1.581 2.473 3.306 4.421 0.000
14 [bban] 21 -5 8 -0,597 -99,577 21,299 101	, 404 gamma 405 pi-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
15 (*Ch1_10) 21 1000022 9 105,552 81,516 85,457 175 16 (*) 21 3 9 5,451 38 374 52 302 65	405 pi+	1 -211 -216 -0.024 -0.293 -0.486 -0.585 -0.140
17 !cbar! 21 -4 9 20,839 -7,250 -5,938 22	407 K+	1 321 218 4,382 -1,412 -1,799 4,968 0,494
18 !"chi_10! 21 1000022 12 -136,266 -72,961 53,246 181	408 pi-	1 -211 218 1.183 -0.894 -0.176 1.500 0.140
19 [nu_mu] 21 14 12 -78,263 -24,757 21,719 84	409 (p10) 410 (p10)	11 111 218 0,355 -0,459 -0,590 1,221 0,135 11 111 218 2 349 -1 105 -1 181 2 855 0 135
20 (nu_mubar) 21 -14 12 -107,001 10,501 50,220 115	410 (Kbar0)	11 -311 219 1.441 -0.247 -0.472 1.615 0.498
21 gamma 1 22 4 2,636 1,357 0,125 2	2 412 pi-	1 -211 219 2,232 -0,400 -0,249 2,285 0,140
22 ("chi_1-) 11-1000024 9 129.643 112.440 129.820 262	2 413 K+	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
23 ("chi_20) 11 1000023 12 -322,330 -80,817 113,191 382 24 "chi 10 1 1000022 15 97 944 77 819 80 917 169	414 (p10) 415 (K S0)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
25 "chi_10 1 1000022 18 -136,266 -72,961 53,246 181	416 K+	1 321 223 0,307 0,107 0,252 0,642 0,494
26 nu_mu 1 14 19 -78,263 -24,757 21,719 84	417 pi-	1 -211 223 0.266 0.316 -0.201 0.480 0.140
27 nu_mubar 1 -14 20 -107,801 16,901 38,226 115	5, 418 nbar0 419 (pi0)	1 -2112 226 1.335 1.641 2.078 3.111 0.940
28 (Delta++) 11 2224 2 0,222 0,012-2754,287 2754	420 pi+	1 211 227 0.217 1.407 1.356 1.971 0.140
*	421 (pi0)	11 111 227 1,207 2,336 2,767 3,820 0,135
	422 n0	1 2112 228 3,475 5,324 5,702 8,592 0,940
	425 p1- 424 pamma	1 -211 228 1,896 2,606 2,808 4,299 0,140 1 - 22 229 -0.012 0.247 0.421 0.489 0.000
•	425 gamma	1 22 229 0.025 0.034 0.009 0.043 0.000
	426 pi+	1 211 230 2,718 5,229 6,403 8,703 0,140
	427 (pi0) 428 pin	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
PYTHIA Monte Carlo	420 p1 429 (pi0)	11 111 231 0,645 1,141 0,922 1,608 0,135
	430 gamma	1 22 232 -0.383 1.169 1.208 1.724 0.000
$pp \rightarrow gluino-gluino$	431 gamma :	1 22 232 -0,201 0,070 0,060 0,221 0,000

Monte Carlo detector simulation

Takes as input the particle list and momenta from generator.

Simulates detector response:

multiple Coulomb scattering (generate scattering angle), particle decays (generate lifetime), ionization energy loss (generate Δ), electromagnetic, hadronic showers, production of signals, electronics response, ...

Output = simulated raw data \rightarrow input to reconstruction software: track finding, fitting, etc.

Predict what you should see at 'detector level' given a certain hypothesis for 'generator level'. Compare with the real data. Estimate 'efficiencies' = #events found / # events generated. Programming package: GEANT

G. Cowan

Wrapping up lecture 2

We've looked at a number of important distributions: Binomial, Multinomial, Poisson, Uniform, Exponential Gaussian, Chi-square, Cauchy, Landau,

and we've seen the Monte Carlo method:

calculations based on sequences of random numbers, used to simulate particle collisions, detector response.

So far, we've mainly been talking about probability.

But suppose now we are faced with experimental data. We want to infer something about the (probabilistic) processes that produced the data.

This is statistics, the main subject of the next two lectures.

G. Cowan