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Introduction to Statistics − Day 3 
Lecture 1 

 Probability 
 Random variables, probability densities, etc. 

Lecture 2 
 Brief catalogue of probability densities 
 The Monte Carlo method. 

Lecture 3 
 Statistical tests 
 Fisher discriminants, neural networks, etc  
 Significance and goodness-of-fit tests   

Lecture 4 
 Parameter estimation 
 Maximum likelihood and least squares 
 Interval estimation (setting limits) 

→ 
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A simulated SUSY event 

high pT 
muons 

high pT jets  
of hadrons 

missing transverse energy 

p p 
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Background events 

This event from Standard  
Model ttbar production also 
has high  pT jets and muons, 
and some missing transverse 
energy. 

→ can easily mimic a  
     SUSY event. 
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For each reaction we consider we will have a hypothesis for the 
pdf of     , e.g.,  

Statistical tests (in a particle physics context) 
Suppose the result of a measurement for an individual event  
is a collection of numbers 

 x1 = number of muons, 

 x2 = mean pT of jets, 

 x3 = missing energy, ... 

     follows some n-dimensional joint pdf, which depends on  
the type of event produced, i.e., was it  

etc. 

etc. 
E.g. call H0 the background hypothesis (the event type we  
want to reject); H1 is signal hypothesis (the type we want). 
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Selecting events 
Suppose we have a data sample with two kinds of events, 
corresponding to hypotheses H0 and H1 and we want to select 
those of type H1. 

Each event is a point in     space.  What ‘decision boundary’ 
should we use to accept/reject events as belonging to event 
types H0 or H1? 

accept 
H1 

H0 

Perhaps select events 
with ‘cuts’: 
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Other ways to select events 
Or maybe use some other sort of decision boundary: 

accept 
H1 

H0 

accept 
H1 

H0 

linear or nonlinear 

How can we do this in an ‘optimal’ way? 
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Test statistics 
The decision boundary can be defined by an equation of the form 

We can work out the pdfs 

Decision boundary is now a 
single ‘cut’ on t, which 
divides the space into the 
critical (rejection) region and 
acceptance region.   

This defines a test. If the data 
fall in the critical region, we 
reject H0. 

where t(x1,…, xn) is a scalar test statistic. 
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Significance level and power 
Probability to reject H0 if it is true  
(type-I error): 

(significance level) 

Probability to accept H0 if H1 is  
true (type-II error): 

(1 - β = power) 
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Signal/background efficiency 
Probability to reject background hypothesis for  
background event (background efficiency): 

Probability to accept a signal event 
as signal (signal efficiency): 
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Purity of event selection 
Suppose only one background type b; overall fractions of signal 
and background events are πs and πb (prior probabilities). 

Suppose we select signal events with t > tcut.  What is the 
‘purity’ of our selected sample? 

Here purity means the probability to be signal given that 
the event was accepted.  Using Bayes’ theorem we find: 

So the purity depends on the prior probabilities as well as on the 
signal and background efficiencies. 
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Constructing a test statistic 
How can we choose a test’s critical region in an ‘optimal way’? 

 Neyman-Pearson lemma states: 

To get the highest power for a given significance level in a test 
H0, (background) versus H1, (signal) (highest εs for a given εb) 
choose the critical (rejection) region such that 

inside the region, and  ≤ c outside, where c is a constant which  
determines  the power. 

Equivalently, optimal scalar test statistic is 

N.B. any monotonic function of this is leads to the same test. 
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Why Neyman-Pearson doesn’t always help 
The problem is that we usually don’t have explicit formulae for 
the pdfs 

Instead we may have Monte Carlo models for signal and  
background processes, so we can produce simulated data, 
and enter each event into an n-dimensional histogram. 
Use e.g. M bins for each of the n dimensions, total of Mn cells. 

But n is potentially large, →  prohibitively large number of cells  
to populate with Monte Carlo data. 

Compromise:  make Ansatz for form of test statistic 
with fewer parameters; determine them (e.g. using MC) to  
give best discrimination between signal and background. 
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Linear test statistic 

Ansatz: 

→  Fisher:  maximize 

Choose the parameters a1, ..., an so that the pdfs 
have maximum ‘separation’.  We want: 

σs σb 

t 

g (t) µb 

large distance  between  
mean values, small widths 

µs 
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Fisher discriminant 
Using this definition of separation gives a Fisher discriminant. 

accept 
H1 

H0 

Corresponds to a linear 
decision boundary. 

Equivalent to Neyman-Pearson if the signal and background  
pdfs are multivariate Gaussian with equal covariances; 
otherwise not optimal, but still often a simple, practical solution. 
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Nonlinear test statistics 
The optimal decision boundary may not be a hyperplane, 

 →  nonlinear test statistic 

accept 
H1 

H0 Multivariate statistical methods 
are a Big Industry: 

Neural Networks, 
Support Vector Machines, 
Kernel density estimation, 
Boosted decision trees, ... 

New software for HEP, e.g., 
TMVA , Höcker, Stelzer, Tegenfeldt, Voss, Voss, physics/0703039 
StatPatternRecognition, I. Narsky, physics/0507143  
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Neural network example from LEP II 
Signal:  e+e- → W+W-    (often 4 well separated hadron jets) 
Background:  e+e- → qqgg  (4 less well separated hadron jets) 

←  input variables based on jet 
structure, event shape, ... 
none by itself gives much separation. 

Neural network output does better... 

(Garrido, Juste and Martinez, ALEPH 96-144) 
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Testing significance/goodness-of-fit 
Suppose hypothesis H predicts pdf  
observations 

for a set of 

We observe a single point in this space: 

What can we say about the validity of H in light of the data? 

Decide what part of the  
data space represents less  
compatibility with H than  
does the point       less  

compatible 
with H 

     more  
compatible 
with H 

(Not unique!) 
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p-values 

where π (H) is the prior probability for H. 

Express ‘goodness-of-fit’ by giving the p-value for H: 

p = probability, under assumption of H, to observe data with  
equal or lesser compatibility with H relative to the data we got.  

This is not the probability that H is true! 

In frequentist statistics we don’t talk about P(H) (unless H  
represents a repeatable observation). In Bayesian statistics we do;  
use Bayes’ theorem to obtain 

For now stick with the frequentist approach;  
result is p-value, regrettably easy to misinterpret as P(H). 
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p-value example:  testing whether a coin is ‘fair’ 

i.e. p = 0.0026 is the probability of obtaining such a bizarre 
result (or more so) ‘by chance’, under the assumption of H. 

Probability to observe n heads in N coin tosses is binomial: 

Hypothesis H:  the coin is fair (p = 0.5). 

Suppose we toss the coin N = 20 times and get n = 17 heads. 

Region of data space with equal or lesser compatibility with  
H relative to n = 17 is:  n = 17, 18, 19, 20, 0, 1, 2, 3.  Adding 
up the probabilities for these values gives: 
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The significance of an observed signal 
Suppose we observe n events; these can consist of: 

nb events from known processes (background) 
ns events from a new process (signal) 

If ns, nb are Poisson r.v.s with means s, b, then n = ns + nb 
is also Poisson, mean = s + b: 

Suppose b = 0.5, and we observe nobs = 5.  Should we claim 
evidence for a new discovery?   

    Give p-value for hypothesis s = 0: 
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Significance from p-value 
Often define significance Z as the number of standard deviations 
that a Gaussian variable would fluctuate in one direction 
to give the same p-value. 

1 - TMath::Freq 

TMath::NormQuantile 

E.g. Z = 5 (a ‘5 sigma effect’) means p = 2.9 × 10-7 
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The significance of a peak 

Suppose we measure a value  
x for each event and find: 

Each bin (observed) is a 
Poisson r.v., means are 
given by dashed lines. 

In the two bins with the peak, 11 entries found with b = 3.2. 
The p-value for the s = 0 hypothesis is: 
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The significance of a peak (2) 

But... did we know where to look for the peak?   
How may bins × distributions have wee looked at? 

      → look at a thousand of them, you’ll find a 10-3 effect.  Need 
      correction for “look-elsewhere-effect” (see e.g. arXiv:1005.1891) 

Did we adjust the cuts to ‘enhance’ the peak? 

      → freeze cuts, repeat analysis with new data 

How about the bins to the sides of the peak... (too low!).  Is the 
observed width consistent with the expected x resolution? 

      →  e.g., take x window several times the expected resolution 

Should we publish???? 
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When to publish 
HEP folklore is to claim discovery when p = 2.9 × 10-7, 
corresponding to a significance Z = 5. 

This is very subjective and really should depend on the  
prior probability of the phenomenon in question, e.g., 
          phenomenon        reasonable p-value for discovery 

      D0D0 mixing   ~0.05 
      Higgs   ~ 10-7  (?) 
      Life on Mars   ~10-10  (??)	

	
       Astrology 	
 	
∼10-20  (???) 

In practice there is a point where people stop talking about whether 
an observed effect is a fluctuation, and focus on whether it’s a new  
signal or merely a systematic error.   Also need to consider whether  
the data are compatible with a plausible new signal, not merely  
incompatible with the background-only model. 

p-value is only first step! 
2011 CERN Summer Student Lectures on Statistics / Lecture 3 
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Wrapping up lecture 3 
We looked at statistical tests and related issues: 

 discriminate between event types (hypotheses), 
 determine selection efficiency, sample purity, etc. 

Some modern (and less modern) methods were mentioned: 
 Fisher discriminants, neural networks, 
 support vector machines,... 

We also talked about significance and goodness-of-fit tests: 
 p-value expresses level of agreement between data  
 and hypothesis 

Next we’ll turn to the second main part of statistics: 
 parameter estimation 
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Extra slides 
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Probability Density Estimation (PDE) techniques 

See e.g. K. Cranmer, Kernel Estimation in High Energy Physics, CPC 136 (2001) 198; hep-ex/0011057; 
T. Carli and B. Koblitz, A multi-variate discrimination technique based on range-searching,  
NIM A 501 (2003) 576; hep-ex/0211019  

Construct non-parametric estimators of the pdfs 

and use these to construct the likelihood ratio 

(n-dimensional histogram is a brute force example of this.) 

More clever estimation techniques can get this to work for 
(somewhat) higher dimension. 
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Kernel-based PDE (KDE, Parzen window) 
Consider d dimensions, N training events, x1, ..., xN,  
estimate f (x) with 

Use e.g. Gaussian kernel: 

kernel 
bandwidth  
(smoothing parameter) 

Need to sum N terms to evaluate function (slow);  
faster algorithms only count events in vicinity of x  
(k-nearest neighbor, range search). 
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Product of one-dimensional pdfs 
First rotate to uncorrelated variables, i.e., find matrix A such that  

for we have 

Estimate the d-dimensional joint pdf  as the product of 1-d pdfs, 

(here x decorrelated) 

This does not exploit non-linear features of the joint pdf, but 
simple and may be a good approximation in practical examples.  
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Decision trees 
A training sample of signal and background data is repeatedly 
split by successive cuts on its input variables. 

Order in which variables used based on best separation between 
signal and background. 

Example by Mini-Boone, B. Roe et 
al., NIM A 543 (2005) 577 

Iterate until stop criterion reached, 
based e.g. on purity, minimum 
number of events in a node. 

Resulting set of cuts is a ‘decision tree’. 

Tends to be sensitive to  
fluctuations in training sample. 
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Boosted decision trees 
Boosting combines a number classifiers into a stronger one;  
improves stability with respect to fluctuations in input data. 

To use with decision trees, increase the weights of misclassified 
events and reconstruct the tree.   

Iterate → forest of trees (perhaps > 1000).   For the mth tree,  

Define a score αm based on error rate of mth tree. 

Boosted tree =  weighted sum of the trees: 

Algorithms:  AdaBoost (Freund & Schapire), ε-boost (Friedman). 
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Comparing multivariate methods (TMVA) 

Choose the best one!  
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For all methods, need to check: 

 Sensitivitiy to statistically unimportant variables 
 (best to drop those that don’t provide discrimination); 

 Level of smoothness in decision boundary (sensitivity 
 to over-training) 

Given the test variable, next step is e.g., select n events and 
estimate a cross section of signal: 

Multivariate analysis discussion 

 Now need to estimate systematic error...  

If e.g. training (MC) data ≠ Nature, test variable is not optimal, 
but not necessarily biased.   

But our estimates of background b and efficiencies would then  
be biased if based on MC.  (True also for ‘simple cuts’.) 
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But in a cut-based analysis it may be easier to avoid regions 
where untested features of MC are strongly influencing the 
decision boundary. 

Look at control samples to test joint distributions of inputs. 

Try to estimate backgrounds directly from the data (sidebands). 

Multivariate analysis discussion (2) 

The purpose of the statistical test is often to select objects for  
further study and then measure their properties. 

 Need to avoid input variables that are correlated with the 
 properties of the selected objects that you want to study. 
 (Not always easy; correlations may be poorly known.) 
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Some multivariate analysis references 
Hastie, Tibshirani, Friedman, The Elements of Statistical Learning, 
Springer (2001); 
Webb, Statistical Pattern Recognition, Wiley (2002); 
Kuncheva, Combining Pattern Classifiers, Wiley (2004); 

Specifically on neural networks: 
L. Lönnblad et al., Comp. Phys. Comm., 70 (1992) 167; 
C. Peterson et al., Comp. Phys. Comm., 81 (1994) 185; 
C.M. Bishop, Neural Networks for Pattern Recognition, OUP (1995); 
John Hertz et al., Introduction to the Theory of Neural Computation,  
Addison-Wesley, New York (1991). 
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Bayesian model selection 
The main idea in a Bayesian analysis is to evaluate the probability 
of a hypothesis, where here the probability is interpreted 
as a (subjective) degree of belief: 

no Higgs 

Higgs 

The probability of hypothesis H0 relative to its complementary 
alternative H1 is often given by the posterior odds: 
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Bayes factors 
The posterior odds is 

The Bayes factor is regarded as measuring the weight of  
evidence of the data in support of H0 over H1. 

In its simplest form the Bayes factor is the likelihood ratio. 

Interchangeably use B10 = 1/B01 

Bayes factor B01 
prior odds 
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Bayes factors with undetermined parameters 
If H0, H1 (no Higgs, Higgs) are composite, i.e., they 
contain one or more undetermined parameters λ, then 

π(λ) = prior, could be based on other measurement or could 
be  “purely subjective”, e.g., a theoretical uncertainty. 

So the Bayes Factor is a ratio of “integrated likelihoods” 

(the usual frequentist likelihood ratio uses maximized likelihoods). 
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Assessing Bayes factors 
One can use the Bayes factor much like a p-value (or Z value). 

There is an “established” scale, analogous to our 5s rule: 

B10   Evidence against H0 
-------------------------------------------- 
1 to 3   Not worth more than a bare mention 
3 to 20  Positive 
20 to 150  Strong 
> 150   Very strong 

Kass and Rafferty, Bayes Factors, J. Am Stat. Assoc 90 (1995) 773. 

Not clear how useful this scale is for HEP. 


