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Introduction to Statistics − Day 4 
Lecture 1 

 Probability 
 Random variables, probability densities, etc. 

Lecture 2 
 Brief catalogue of probability densities 
 The Monte Carlo method. 

Lecture 3 
 Statistical tests 
 Fisher discriminants, neural networks, etc  
 Significance and goodness-of-fit tests   

Lecture 4 
 Parameter estimation 
 Maximum likelihood and least squares 
 Interval estimation (setting limits) 

→ 
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Parameter estimation 
The parameters of a pdf are constants that characterize 
 its shape, e.g. 

random variable 

Suppose we have a sample of observed values: 

parameter 

We want to find some function of the data to estimate the  
parameter(s): 

←  estimator written with a hat 

Sometimes we say ‘estimator’ for the function of x1, ..., xn; 
‘estimate’ for the value of the estimator with a particular data set. 
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Properties of estimators 
If we were to repeat the entire measurement, the estimates 
from each would follow a pdf: 

biased large 
variance 

best 

We want small (or zero) bias (systematic error): 
→  average of repeated measurements should tend to true value. 

And we want a small variance (statistical error): 
→  small bias & variance are in general conflicting criteria 
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An estimator for the mean (expectation value) 

Parameter: 

Estimator: 

We find: 

(‘sample mean’) 
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The likelihood function 
Suppose the outcome of an experiment is:  x1, ..., xn,  which 
is modeled as a sample from a joint pdf with parameter(s) θ: 

Now evaluate this with the data sample obtained and regard it as 
a function of the parameter(s).  This is the likelihood function: 

(xi constant) 

If the xi are independent observations of x ~ f(x;θ), then, 
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Maximum likelihood estimators 
If the hypothesized θ is close to the true value, then we expect  
a high probability to get data like that which we actually found. 

So we define the maximum likelihood (ML) estimator(s) to be  
the parameter value(s) for which the likelihood is maximum. 

 ML estimators not guaranteed to have any ‘optimal’ 
 properties, (but in practice they’re very good). 
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ML example:  parameter of exponential pdf 

Consider exponential pdf, 

and suppose we have data, 

The likelihood function is 

The value of τ for which L(τ) is maximum also gives the  
maximum value of its logarithm (the log-likelihood function): 
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ML example:  parameter of exponential pdf (2) 

Find its maximum by setting  

→ 

Monte Carlo test:   
 generate 50  values 
 using τ = 1: 

We find the ML estimate: 
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Variance of estimators:  Monte Carlo method 
Having estimated our parameter we now need to report its 
‘statistical error’, i.e., how widely distributed would estimates 
be if we were to repeat the entire measurement many times. 

One way to do this would be to simulate the entire experiment 
many times with a Monte Carlo program (use ML estimate for MC). 

For exponential example, from  
sample variance of estimates 
we find: 

Note distribution of estimates is roughly 
Gaussian − (almost) always true for  
ML in large sample limit. 
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Variance of estimators from information inequality 
The information inequality (RCF) sets a lower bound on the  
variance of any estimator (not only ML): 

Often the bias b is small, and equality either holds exactly or 
is a good approximation (e.g. large data sample limit).   Then, 

Estimate this using the 2nd derivative of  ln L at its maximum: 
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Variance of estimators: graphical method 
Expand ln L (θ) about its maximum: 

First term is ln Lmax, second term is zero, for third term use  
information inequality (assume equality): 

i.e., 

→  to get , change θ away from until ln L decreases by 1/2. 
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Example of variance by graphical method 

ML example with  
exponential: 

Not quite parabolic ln L  
since finite sample size  
(n = 50). 
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The method of least squares 
Suppose we measure N values, y1, ..., yN,  
assumed to be  independent Gaussian  
r.v.s with  

Assume known values of the control 
variable x1, ..., xN and known variances 

The likelihood function is 

We want to estimate θ, i.e., fit the curve to the data points. 
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The method of least squares (2) 

The log-likelihood function is therefore 

So maximizing the likelihood is equivalent to minimizing 

Minimum of this quantity defines the least squares estimator  

Often minimize χ2 numerically (e.g. program MINUIT). 
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Example of least squares fit 

Fit a polynomial of order p: 
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Variance of LS estimators 
In most cases of interest we obtain the variance in a manner 
similar to ML.  E.g. for data ~ Gaussian we have 

and so 

or for the graphical method we  
take the values of θ where 

1.0 
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Goodness-of-fit with least squares 
The value of the χ2 at its minimum is a measure of the level 
of agreement between the data and fitted curve: 

It can therefore be employed as a goodness-of-fit statistic to 
test the hypothesized functional form λ(x; θ). 

We can show that if the hypothesis is correct, then the statistic  
t = χ2

min follows the chi-square pdf, 

where the number of degrees of freedom is  

       nd  = number of data points - number of fitted parameters 



G. Cowan 2011 CERN Summer Student Lectures on Statistics / Lecture 4 18 

Goodness-of-fit with least squares (2) 
The chi-square pdf has an expectation value equal to the number  
of degrees of freedom, so if χ2

min ≈  nd the fit is ‘good’. 

More generally, find the p-value: 

E.g. for the previous example with 1st order polynomial (line), 

whereas for the 0th order polynomial (horizontal line), 

This is the probability of obtaining a χ2
min as high as the one 

we got, or higher, if the hypothesis is correct. 
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Setting limits 
Consider again the case of finding n = ns + nb events where 

nb events from known processes (background) 
ns events from a new process (signal) 

are Poisson r.v.s with means s, b, and thus n = ns + nb 
is also Poisson with mean = s + b.  Assume b is known. 

Suppose we are searching for evidence of the signal process, 
but the number of events found is roughly equal to the 
expected number of background events, e.g., b = 4.6 and we  
observe nobs = 5 events. 

What values of s can we exclude on the grounds that they 
are incompatible with the data?  (→ set limit on s). 

The evidence for the presence of signal events is not 
statistically significant. 
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Confidence interval from inversion of a test 
Confidence intervals for a parameter θ can be found by  
defining a test of the hypothesized value θ (do this for all θ):  

 Specify values of the data that are ‘disfavoured’ by θ  
 (critical region) such that P(data in critical region) ≤ α  
 for a prespecified α, e.g., 0.05 or 0.1. 

 If data observed in the critical region, reject the value θ . 

Now invert the test to define a confidence interval as: 

 set of θ values that would not be rejected in a test of 
 size α  (confidence level is 1 - α ). 

The interval will cover the true value of θ with probability ≥ 1 ‒ α. 
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Relation between confidence interval and p-value 

Equivalently we can consider a significance test for each 
hypothesized value of θ, resulting in a p-value, pθ..   

 If pθ < α, then reject θ.  

The confidence interval at CL = 1 – α consists of those values of  
θ  that are not rejected. 

E.g. an upper limit on θ is the greatest value for which pθ ≥ α.  

 In practice find by setting pθ = α and solve for θ. 

Still need to choose how to define p-value, e.g., does  
“incompatible with hypothesis” mean data too high?  too low?   
either? some other criterion?   
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Example of an upper limit 
Find the hypothetical value of s such that there is a given small 
probability, say, α = 0.05, to find as few events as we did or less: 

Solve numerically for s = sup, this gives an upper limit on s at a 
confidence level of 1-α. 

Example:  suppose b = 0 and we find nobs = 0.  For 1-α = 0.95, 

→ 

The interval [0, sup] is an example of a confidence interval, 
designed to cover the true value of s with a probability 1 - α. 
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Poisson mean upper limit (cont.) 

To solve for sup, can exploit relation to χ2 distribution: 

Quantile of χ2 distribution 
TMath::ChisquareQuantile 

For low fluctuation of n this 
formula can give negative result 
for sup;  i.e. confidence interval is 
empty! 
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More on limit setting 

Many subtle issues with limits − see e.g. CERN (2000) and  
Fermilab (2001) confidence limit workshops and PHYSTAT 
conference proceedings from www.phystat.org. 

Limit-setter’s phrasebook: 

CLs    (A. Read et al.) Limit based on modified p-value 
  so as to avoid exclusion without sensitivity. 

Feldman-  Confidence intervals from inversion of likelihood- 
Cousins  ratio test (no null intervals, no “flip-flopping”). 

Bayesian  Limits based on Bayesian posterior of e.g. rate  
  parameter (prior:  constant, reference, subjective,...) 

PCL   (Power-Constrained Limit) Method for avoiding 
  exclusion without sensitivity; based on power. 
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Wrapping up lecture 4 
We’ve seen some main ideas about parameter estimation, 

 ML and LS, 
 how to obtain/interpret stat. errors from a fit, 

and what to do if you don’t find the effect you’re looking for, 

 setting limits. 

In four days we’ve only looked at some basic ideas and tools, 
skipping many important topics.  Keep an eye out for new  
methods, especially multivariate, machine learning, Bayesian  
methods, etc. 
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Extra slides 
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An estimator for the variance 

Parameter: 

Estimator: 

(factor of n-1 makes this so) 

(‘sample 
variance’) 

We find: 

where 
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Coverage probability of confidence intervals 
Because of discreteness of Poisson data, probability for interval 
to include true value in general > confidence level (‘over-coverage’) 
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Upper limit versus b 

b 

If n = 0 observed, should upper limit depend on b? 
 Classical:  yes 
 Bayesian:  no 
 FC:  yes 

Feldman & Cousins, PRD 57 (1998) 3873 
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Upper limits for mean of Gaussian 

measurement → 
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Coverage probability for Gaussian problem 


