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Abstract

These lectures concern two topics that are becoming inagigsmportant

in the analysis of High Energy Physics (HEP) data: Bayesiatisics and

multivariate methods. In the Bayesian approach we extemohtbrpretation of
probability to cover not only the frequency of repeatablécomes but also to
include a degree of belief. In this way we are able to assegiaibability with

a hypothesis and thus to answer directly questions thatotdreaddressed
easily with traditional frequentist methods. In multieg analysis we try
to exploit as much information as possible from the charaties that we

measure for each event to distinguish between event typeparticular we

will look at a method that has gained popularity in HEP in récgears: the
boosted decision tree (BDT).

1 Introduction

When an HEP experiment enters the phase of data collectibaraalysis, the daily tasks of its postgrad-
uate students are often centred not around the particldqayseories one is trying to test but rather on
statistical methods. These methods are the tools needamhipare data with theory and quantify the
extent to which one stands in agreement with the other. Ofseoone must understand the physical basis
of the models being tested and so the theoretical emphagissigraduate education is no doubt well
founded. But with the increasing cost of HEP experimentsadt llecome important to exploit as much of
the information as possible in the hard-won data, and toftifyaas accurately as possible the inferences
one draws when confronting the data with model predictions.

Despite efforts to make the lectures self contained, somdiéaity with basic ideas of statistical
data analysis is assumed. Introductions to the subject edaumd, for example, in the reviews of the
Particle Data Group [1] or in the texts [2, 3, 4, 5, 6].

In these two lectures we will discuss two topics that are b@ng increasingly important: Bayesian
statistics and multivariate methods. In Sec. 2 we will reviiefly the concept of probability and see
how this is used differently in the frequentist and Bayesigproaches. Then in Sec. 2.2 we will dis-
cuss a simple example, the fitting of a straight line to a seheésurements, in both the frequentist
and Bayesian approaches and compare different aspects oivth This will include in Sec. 2.2.3 a
brief description of Markov Chain Monte Carlo (MCMC), onetbE most important tools in Bayesian
computation. We generalize the treatment in Sec. 2.3 todeckystematic errors.

In Sec. 3 we take up the general problem of how to distingustiveéen two classes of events,
say, signal and background, on the basis of a set of chasiiemMmeasured for each event. We first
describe how to quantify the performance of a classificati@thod in the framework of a statistical
test. Although the Neyman—Pearson lemma indicates thaptioblem has an optimal solution using
the likelihood ratio, this usually cannot be used in pracaod one is forced to seek other methods. In
Sec. 3.1 we look at a specific example of such a method, thddzbdscision tree. Using this example
we describe several issues common to many classificationatgt such as overtraining. Finally, some
conclusions are mentioned in Sec. 4.

2 Bayesian statistical methods for HEP

In this section we look at the basic ideas of Bayesian staiaind explore how these can be applied in
particle physics. We will contrast these with the corresfing notions in frequentist statistics, and to



make the treatment largely self contained, the main ide#tsedfequentist approach will be summarized
as well.

2.1 The role of probability in data analysis

We begin by defining probability with the axioms written doly Kolmogorov [7] using the language
of set theory. Consider a s8tcontaining subsetd, B, . ... We define the probability’ as a real-valued
function with the following properties:

1. Forevery subset in S, P(A) > 0;
2. For disjoint subsets (i.,eAN B = (), P(AU B) = P(A) + P(B);
3. P(S)=1.

In addition, we define the conditional probabiliB( A|B) (read P of A given B) as

P(ANB)

P(AIB) = =

1)
From this definition and using the fact thath B and B N A are the same, we obtaBayes’ theorem

P(B|A)P(A)

PAIB) = =5

(@)

From the three axioms of probability and the definition ofditional probability, we can derive tHaw
of total probability,

P(B) = ZP(B|AZ’)P(A2') ; 3)

for any subseB and for disjointA; with U; A; = S. This can be combined with Bayes’ theorem (2) to
give
P(B|A)P(A)

PAIB) = = Py Pay) )

where the subset could, for example, be one of thé,.

The most commonly used interpretation of the subsets of dingpke space are outcomes of a
repeatable experiment. The probabili}(A) is assigned a value equal to the limiting frequency of
occurrence ofd. This interpretation forms the basis fofquentist statistics

The subsets of the sample space can also be interpretegpathesesi.e., statements that are
either true or false, such as ‘The mass of Wiedboson lies between 80.3 and 80.5 GeV. In the frequency
interpretation, such statements are either always or rieveri.e., the corresponding probabilities would
be 0 or 1. Usingsubjective probability however, P(A) is interpreted as the degree of belief that the
hypothesisA is true.

Subjective probability is used iBayesian(as opposed to frequentist) statistics. Bayes’ theorem
can be written

P(theoryldatg ~ P(datdtheory) P(theory) , (5)

where ‘theory’ represents some hypothesis and ‘data’ i@theome of the experiment. Hef&theory)
is theprior probability for the theory, which reflects the experimeistelegree of belief before carrying



out the measurement, are( datdtheory) is the probability to have gotten the data actually obtained
given the theory, which is also called thieelihood

Bayesian statistics provides no fundamental rule for olrtgi the prior probability; this is neces-
sarily subjective and may depend on previous measurembetsietical prejudices, etc. Once this has
been specified, however, Eq. (5) tells how the probabilitytiie theory must be modified in the light of
the new data to give thgosterior probability, P(theorydatg. As Eq. (5) is stated as a proportionality,
the probability must be normalized by summing (or integigiover all possible hypotheses.

The difficult and subjective nature of encoding personaiiedge into priors has led to what
is calledobjective Bayesian statisticsvhere prior probabilities are based not on an actual degfee
belief but rather derived from formal rules. These give, éaample, priors which are invariant under
a transformation of parameters or which result in a maximuwim gn information for a given set of
measurements. For an extensive review see, e.g., Ref. [8].

2.2 Anexample: fitting a straight line

In Section 2.2 we look at the example of a simple fit in both tiegdentist and Bayesian frameworks.
Suppose we have independent data valyes = 1, ..., n, that are each made at a given valyeof a
control variablez. Suppose we model thg as following a Gaussian distribution with given standard
deviationso; and mean valueg; given by a function that we evaluate at the corresponding

w(x;6p,601) =6y + 012 . (6)

We would like to determine values of the parametysndd; such that the model best describes the
data. The ingredients of the analysis are illustrated in Ka).
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Fig. 1: (a) lllustration of fitting a straight line to data (see textp) Thex? as a function of the parameté,
illustrating the method to determine the estimatgeand its standard deviaticn‘bo.

Now suppose the real goal of the analysis is only to estinh@@arametef,. The slope parameter
#, must also be included in the model to obtain a good descnifdhe data, but we are not interested
in its value as such. We refer ty as the parameter of interest, afidas anuisance parametern the
following sections we treat this problem using both the fientist and Bayesian approaches.

2.2.1 The frequentist approach

Our model states that the measurements are Gaussianwtistkib.e., the probability density function
(pdf) for theith measuremeny; is
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wheref = (90,91).
Thelikelihood functionis the joint pdf for all of they;, evaluated with thg; obtained and regarded

as a function of the parameters. Since we are assuming than#dasurements are independent, the
likelihood function is in this case given by the product

n n

L) =[] rw:0) =]

i=1 =1

— o~ Wi—n(xi:0))? /207 (8)

In the frequentist approach we construct estimaofer the parameter8, usually by finding the values
that maximize the likelihood function. (We will write estators for parameters with hats.) In this case
one can see from (8) that this is equivalent to minimizingghantity

x%’)ziM =—2InL(0)+C, (9)

i=1 i

where C represents terms that do not depend on the parameters. ®htisef case of independent
Gaussian measurements, the maximum likelihood (ML) estirmaor the parameters coincide with
those of the method of least squares (LS).

Suppose first that the slope parameieis known exactly, and so it is not adjusted to maximize
the likelihood (or minimize the?) but rather held fixed. The quantity’ versus the single adjustable
parametef, would be as shown in Fig. 1(b), where the minimum indicatesvédue of the estimatalk,.

Methods for obtaining the standard deviations of estinsaterthe statistical errors of our mea-
sured values — are described in many references such as31425, 6]. Here in the case of a single
fitted parameter the rule boils down to moving the parametetysfrom the estimate unti{? increases
by one unit (i.e.Jn L decreases from its maximum hy?2) as indicated in the figure.

It may be, however, that we do not know the value of the sloparpaterd,, and so even though
we do not care about its value in the final result, we are requio treat it as an adjustable parameter in
the fit. Minimizing x2(8) results in the estimato® = (dy, 6,), as indicated schematically in Fig. 2(a).
Now the recipe to obtain the statistical errors, howevenassimply a matter of moving the parameter
away from its estimated value until the goes up by one unit. Here the standard deviations must be
found from the tangent lines (or in higher-dimensional peafs, the tangent hyperplanes) to the contour
defined byx?(8) = x2,;, + 1, as shown in the figure.

The tilt of the contour in Fig. 2(a) reflects of the correlatibetween the estimatofs and 6.
A useful estimate for the inverse of the matrix of covariantg = cov[V;, V] can be found from the
second derivative of the log-likelihood evaluated at itscimmaum,

~ 9?InL

-1
Vol=— . 10
K 00,005 | g_p (10)

More information on how to extract the full covariance mafrom the contour can be found, for exam-
ple, in Refs. [1, 2, 3, 4, 5, 6]. The point to note here is thatdbrrelation between the estimators for the
parameter of interest the nuisance parameter has the odgoftating the standard deviations of both.
That is, if6; were known exactly, then the distance one would have to rigesvay from its estimated
value to make the? increase by one unit would be less, as one can see from the fi§oralthough we
can improve the ability of a model to describe the data byuidiclg additional nuisance parameters, this
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Fig. 2: Contour ofx?(0) = x2,, + 1 centred about the estimat@%, 9]) (a) with no prior measurement 6f and
(b) when a prior measurement &f is included.

comes at the price of increasing the statistical errorss iBan important theme which we will encounter
often in data analysis.

Now consider the case where we have a prior measuremeht dfor example, we could have
a measuremerty which we model as following a Gaussian distribution cen@bdutf, and having a
given standard deviation;,. If this measurement is independent of the othevalues, then the full
likelihood function is obtained simply by multiplying theiginal one by a Gaussian, and so when we
find the newy? from —21n L there is an additional term, namely,

x'(0) = i v~ pl@i6) | (01 —t)" (11)
i=1 0j o?

As shown in Fig. 2(b), the new (solid) contourgf = x2. + 1 is compressed relative to the old
(dashed) one in th&, direction, and this compression has the effect of decrgabkim error ind, as well.
The lesson is: by better constraining nuisance parameiaesjmproves the statistical accuracy of the
parameters of interest.

2.2.2 The Bayesian approach
To treat the example above in the Bayesian framework, weeB#yes’ theorem (2) as
L(y|0)m(6)

POY) = L0y 0)d8 (12)

Here® = (60, 0,) symbolizes the hypothesis whose probability we want tordetee. The likelihood
L(y|0) is the probability to obtain the daga = (y1,...,y,) given the hypothesis, and the prior prob-
ability 7(6|y) represents our degree of belief about the parameters bséamiag the outcome of the
experiment. The posterior probabilip(@) encapsulates all of our knowledge ab@uivhen the dats
is combined with our prior beliefs. The denominator in (1@)v&s to normalize the posterior pdf to unit
area.

The likelihood L(y|0) is the same as the(0) that we used in the frequentist approach above.
The slightly different notation here simply emphasizesate as the conditional probability for the data
given the parameter.



To proceed we need to write down a prior probability densitg, 61). This phase of a Bayesian
analysis, sometimes called tlécitation of expert opinionis in many ways the most problematic, as
there are no universally accepted rules to follow. Here wikexplore some of the important issues that
come up.

In general, prior knowledge about one parameter might taffeowledge about the other, and
if so this must be built intar(6y, 6,). Often, however, one may regard the prior knowledge abait th
parameters as independent, in which case the density ifeeta@s

7'('(00,91) = 7T0(90)7T1(91) . (13)

For purposes of the present example we will assume that ¢his h

For the parameter of intere§g, it may be that we have essentially no prior information, s® t
densitym(6y) should be very broad. Often one takes the limiting case obaddistribution simply to
be a constant, i.e.,

mo(fp) = const.. (14)

Now one apparent problem with Eq. (14) is that it is not noraadile to unit area, and so does not appear
to be a valid probability density. It is said to be @mproper prior. The prior always appears in Bayes’
theorem multiplied by the likelihood, however, and as losdtas falls off quickly enough as a function
of the parameters, then the resulting posterior probghiinsity can be normalized to unit area.

A further problem with uniform priors is that if the prior pd flat in 8, then it is not flat for a
nonlinear function o, and so a different parametrization of the problem wouldl lgageneral to a
non-equivalent posterior pdf.

For the special case of a constant prior, one can see fromsBinygrem (12) that the posterior is
proportional to the likelihood, and therefore the mode kyeasition) of the posterior is equal to the ML
estimator. The posterior mode, however, will change in gangon a transformation of parameter. A
summary statistic other than the mode may be used as theiBayssimator, such as the median, which
is invariant under parameter transformation. But this wilt in general coincide with the ML estimator.

For the priorm(6;), let us assume that our prior knowledge about this paranietkrdes the
earlier measuremertt, which we modelled as a Gaussian distributed variable edraboutd; with
standard deviation;, . If we had taken, even prior to that measurement, a constamtfpr 6,, then the
“intermediate-state” prior that we have before lookingraty; is simply this flat prior times the Gaussian
likelihood, i.e., a Gaussian prior #:

1 —(01—t1)% /202
m(01) = e V1T b, 15
100 = oo 15)
Putting all of these ingredients into Bayes’ theorem gives
- 1 2 /6.2 1 2792
00, 0 x e~ Wi—n(zi;00,01))% /207 e (01—t1)% /207, ’ 16
(00 0rfy) o [ " Joror, (16)

wherem, represents the constant priordp and the equation has been written as a proportionality with
the understanding that the final posterior pdf should be abeed to unit area.

What Bayes’ theorem gives us is the full joint paiy, 6 |y) for both the parameter of interest
0y as well as the nuisance parameier To find the pdf for the parameter of interest only, we simply
integrate (marginalize) the joint pdf, i.e.,



p(6oly) = / p(60, 01ly) d6; . 17)

In this example, it turns out that we can do the integral isetbform. We find a Gaussian posterior,

1 —(00—00)2 /252
p(boly) = \/2_7096 (00—00)" /205, ’ (18)
0

whered, is in fact the same as the ML (or LS) estimator found above thighfrequentist approach, and
oy, is the same as the standard deviation of that estimgtor

So we find something that looks just like the frequentist arsaithough here the interpretation
of the result is different. The posterior pgffy|y) gives our degree of belief about the location of the
parameter in the light of the data. We will see below how thgd8&n approach can, however, lead to
results that differ both in interpretation as well as in nuiced value from what would be obtained in a
frequentist calculation. First, however, we need to paasa ghort digression on Bayesian computation.

2.2.3 Bayesian computation and MCMC

In most real Bayesian calculations, the marginalizatidegrals cannot be carried out in closed form,
and if the number of nuisance parameters is too large thgndae also be difficult to compute with

standard Monte Carlo methods. Howevdiarkov Chain Monte CarlfMCMC) has become the most
important tool for computing integrals of this type and hasgofutionized Bayesian computation. In
depth treatments of MCMC can be found, e.g., in the texts dyeRand Casella [9], Liu [10], and the

review by Neal [11].

The basic idea behind using MCMC to marginalize the joint pdk, 61 |y) is to sample points
0 = (0y,0y) according to the posterior pdf but then only to look at theritigtion of the component of
interestdy. A simple and widely applicable MCMC method is the MetropéHastings algorithm, which
allows one to generate multidimensional poi@distributed according to a target pdf that is proportional
to a given functiorp(8), which here will represent our posterior pdf. It is not nexzeyg to havep(0)
normalized to unit area, which is useful in Bayesian stassts posterior probability densities are often
determined only up to an unknown normalization constanis #& case in our example.

To generate points that folloy(@), one first needs a proposal pd®; 6,), which can be (almost)
any pdf from which independent random val#kesan be generated, and which contains as a parameter
another point in the same spag For example, a multivariate Gaussian centred aBgwan be used.
Beginning at an arbitrary starting poiél, the Hastings algorithm iterates the following steps:

. Generate a valug using the proposal density6; 6,);

; PR p(0)q(60:0) | .
. Form the Hastings test ratia,= min [1, p(oo)q(o;eo)] ;

1
2
3. Generate a value uniformly distributed in[0, 1];
4. If u < o, takef; = 6. Otherwise, repeat the old point, i.6;, = 6.

If one takes the proposal density to be symmetridiand 6y, then this is theMetropolis-Hastings
algorithm, and the test ratio becomes= min|[1, p(0)/p(8o)]. That s, if the proposea is at a value of
probability higher thar@,, the step is taken. If the proposed step is rejected, homitepl

Methods for assessing and optimizing the performance ofatperithm are discussed in, e.g.,
[9, 10, 11]. One can, for example, examine the autocormla#is a function of the lag, i.e., the
correlation of a sampled point with ortesteps removed. This should decrease as quickly as possible f
increasingk. Generally one chooses the proposal density so as to optisoime quality measure such
as the autocorrelation. For certain problems it has beewrshioat one achieves optimal performance



when the acceptance fraction, that is, the fraction of gointh « < «, is around 40%. This can be
adjusted by varying the width of the proposal density. F@megle, one can use for the proposal pdf a
multivariate Gaussian with the same covariance matrix aisahthe target pdf, but scaled by a constant.

For our example above, MCMC was used to generate pointsdiogdo the posterior pdi(6y, 61)
by using a Gaussian proposal density. The result is showigirBF
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Fig. 3: MCMC marginalization of the posterior p@f6,, 6 |y): (a) scatter-plot of points i(¥,, 6,) plane and the
marginal distribution of (a) the parameter of inter@éstind (b) the nuisance paramefer

From the(6y, 61) points in the scatter plot in Fig. 3(a) we simply look at thetdbution of the
parameter of interesty (Fig. 3(b)). The standard deviation of this distributiorwibat we would report
as the statistical error in our measuremen#g@f The distribution of the nuisance paramefigrfrom
Fig. 3(c) is not directly needed, although it may be of indére some other context where that parameter
is deemed interesting.

In fact one can go beyond simply summarizing the width of tis¢ridutions with the a statistic
such as the standard deviation. The full form of the postatistribution of 6, contains useful infor-
mation about where the parameter’s true value is likely to Ipethis example the distributions will in
fact turn out to be Gaussian, but in a more complex analysietbould be non-Gaussian tails and this
information can be relevant in drawing conclusions fromrésult.

2.2.4 Sensitivity analysis

The posterior distribution of|; obtained above encapsulates all of the analyst’s knowlathgeit the
parameter in the light of the data, given that the prior ligheere reflected by the density(6y,6;). A
different analyst with different prior beliefs would in geral obtain a different posterior pdf. We would
like the result of a Bayesian analysis to be of value to thadeo scientific community, not only to those
that share the prior beliefs of the analyst. And thereforgiiportant in a Bayesian analysis to show by
how much the posterior probabilities would change upon smasonable variation in the prior. This is
sometimes called theensitivity analysiand is an important part of any Bayesian calculation.

In the example above, we can imagine a situation where thaseww prior measuremeny of the
parameteid,, but rather a theorist had told us that, based on considesatf symmetry, consistency,
aesthetics, etc., th&{ was “almost certainly” positive, and had a magnitude “plaipdess than 0.1 or
s0”. When pressed to be precise, the theorist sketches a mughly resembling an exponential with a
mean of 0.1. So we can express this prior as

1
m1(61) = ;6—91/7 (61 >0), (19)

with 7 = 0.1. We can substitute this prior into Bayes’ theorem (16) taobthe joint pdf ford, andé,
and then marginalize to find the pdf fé. Doing this numerically with MCMC results in the posterior

8



distributions shown in Fig. 4(a).
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Fig. 4: Posterior probability densities for the paramékgobtained using (a) an exponential prior #grof different
widths and (b) several different functional forms for théopr

Now the theorist who proposed this prior fér may feel reluctant to be pinned down, and it so it
is important to recall (and to reassure the theorist abbwet)if-then” nature of a Bayesian analysis. One
does not have to be absolutely certain about the prior in E9). (Rather, Bayes’ theorem simply says
thatif one were to have these prior belieisenwe obtain certain posterior beliefs in the light of the data.

One simple way to vary the prior here is to try different vawé the mearr, as shown in Fig. 4(a).
We see here the same basic feature as shown already in theritesy analysis, namely, that when one
increases the precision about the nuisance parantgtethen the knowledge about the parameter of
interest,dy, is improved.

Alternatively (or in addition) we may try different functial forms for the prior, as shown in
Fig. 4(b). In this case using a uniform distribution for(6;) with 0 < 6; < 0.5 or Gaussian with
o = 0.1 truncated for¥; < 0 both give results similar to the exponential with a mean.af So one
concludes that the result is relatively insensitive to tetaded nature of the tails of; (6).

2.3 Afitwith systematic errors

We can now generalize the example of Sec. 2.2 to explore sortieef aspects of a Bayesian analysis.
Let us suppose that we are given a set oieasurements as above, but now in addition to the statistica
errors we also are given systematic errors. That is, we &ngi + o5**' + 03" fori = 1,...,n where

the measurements as before are each carried out for a sgegifiee of a control variable.

More generally, instead of having + 0" + ¢7”* it may be that the set of measurements comes
with ann x n covariance matrix/ st corresponding to the statistical errors and another mattx for
the systematic ones. Here the square roots of the diagamakels give the errors for each measurement,
and the off-diagonal elements provide information on hoeytare correlated.

As before we assume some functional foutr; @) for the expectation values of thg. This
could be the linear model of Eq. (6) or something more genbtdlin any case it depends on a vector of
unknown parameter8. In this example, however, we will allow that the model is petfect, but rather
could have a systematic bias. That is, we write the true d&fien value of theéth measurement can be
written

Ely] = w(v4;0) + b , (20)



whereb; represents the bias. Tldgcan be viewed as the systematic errors of the model, present e
when the paramete® are adjusted to give the best description of the data. We td&nmv the values
of the b;. If we did, we would account for them in the model and they wloub longer be biases. We
do not in fact know that their values are nonzero, but we dosvalg for the possibility that they could
be. The reported systematic errors are intended as a catargtitneasure of how large the we expect the
biases to be.

As before, the goal is to make inferences about the paras@tsome of these may be of direct
interest and others may be nuisance parameters. In Setwa3will try to do this using the frequentist
approach, and in Sec. 2.3.2 we will use the Bayesian method.

2.3.1 Afrequentist fit with systematic errors

If we adopt the frequentist approach, we need to write dovikedithood function such as Eq. 8, but here
we know in advance that the mode({z; 0) is not expected to be fully accurate. Furthermore it is not
clear how to insert the systematic errors. Often, perhapisowt a clear justification, one simply adds
the statistical and systematic errors in quadrature, dnéncase where one has the covariance matrices
Vstat and Vsvs, they are summed to give a sort of “full” covariance matrix:

Vij = Vi Vi (21)

One might then use this in a multivariate Gaussian likelthfnction, or equivalently it could be used
to construct the?,

XA(0) = (y — u(0)"V !y — u(8)), (22)
which is then minimized to find the LS estimators #r In Eq. (22) the vectoy = (y1,...,Yn)
should be understood as a column vectdi®) = (u(z1;0),. .., u(zy,; 0)) is the corresponding vector

of model values, and the superscriptrepresents the transpose (row) vector. Minimizing tisgives
the generalized LS estimatafis and the usual procedures can be applied to find their covaa$a which
now in some sense include the systematics.

But in what sense is there any formal justification for addimg covariance matrices in Eq. (21)?
Next we will treat this problem in the Bayesian framework @@ that there is indeed some reason
behind this recipe, but with limitations, and further welgie how to get around these limitations.

2.3.2 The equivalent Bayesian fit

In the corresponding Bayesian analysis, one treats thistital errors as given by st as reflecting the
distribution of the data in the likelihood. The systematic errors, throughs, reflect the width of the
prior probabilities for the bias parametédrs That is, we take

L(y|6,b) o« exp[—i(y —u(0) —b) Vi i(y — u(@6) —b)] , (23)
m(b) o exp[—3bTVib] ,  m(#) = const, (24)
p(gvbb’) X L(y|07b)776'(0)77b(b) ’ (25)

where in (25), Bayes’ theorem is used to obtain the joint ability for the parameters of interest, and
also the biaseb. To obtain the probability fof we integrate (marginalize) ovér,

p(6ly) = / p(8, bly) db (26)

10



One finds that the mode pf0|y) is at the same position as the least-squares estimatess aodariance
will be the same as obtained from the frequentist analysisrgvthe full covariance matrix was given by
the sumV = Vstat 4 sys_ So this can be taken in effect as the formal justificationtfier addition in
guadrature of statistical and systematic errors in a Legsafs fit.

2.3.3 The error on the error

If one stays with the prior probabilities used above, thed¥ign and least-squares approaches deliver
essentially the same result. An advantage of the Bayesianefivork, however, is that it allows one to
refine the assessment of the systematic uncertainties esssep through the prior probabilities.

For example, the least-squares fit including systematmreis equivalent to the assumption of
a Gaussian prior for the biases. A more realistic prior wdake into account the experimenters own
uncertainty in assigning the systematic error, i.e., tmefeon the error’. Suppose, for example, that the
ith measurement is characterized by a reported systematértaintys;”" and an unreported factay,
such that the prior for the bids is

2

1 1
my(b;) = / WGXP [—§W] ms(si) ds; - (27)
Here the ‘error on the error’ is encapsulated in the priortfe factors, 74(s). For this we can take
whatever function is deemed appropriate. For some typegstematic error it could be close to the
ideal case of a delta function centred about unity. Many ntegosystematics are, however, at best rough
guesses, and one could easily imagine a functigis) with a mean of unity but a standard deviation
of, say,0.5 or more. Here we show examples using a Gamma distributior for), which results in
substantially longer tails for the prior,(b) than those of the Gaussian. This can be seen in Fig. 5(a),
which showsln 7,(b) for different values of the standard deviationmf(s), os. Related studies using

an inverse Gamma distribution can be found in [12, 13], whiate the advantage that the posterior pdf
can be written down in closed form.

N
o

In T(b)

Fig. 5: The log of the prior pdf for a bias
parameteb for different values of the stan-
dard deviation ofr(s).
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Using a prior for the biases with tails longer than those obaissian results in a reduced sensitivity
to outliers, which arise when an experimenter overlooksnaporrtant source of systematic uncertainty
in the estimated error of a measurement. As a simple testigf ¢bnsider the sample data shown in
Fig. 6(a). Suppose these represent four independent nesasnts of the same quantity, here a parameter
called ., and the goal is to combine the measurements to provide esistimate of:. That is, we are
effectively fitting a horizontal line to the set of measuredalues, where the control variabteis just a
label for the measurements.
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In this example, suppose that each measuremgnt = 1,...4, is modelled as Gaussian dis-
tributed abouiy, having a a standard deviatien.,; = 0.1, and furthermore each measurement has a
systematic uncertainty.,s = 0.1, which here is taken to refer to the standard deviation ofGhessian
component of the prioft,(b;). This is then folded together with;(s;) to get the full prior forb; using
Eq. (27), and the joint prior for the vector of bias parametersimply the product of the correspond-
ing terms, as the systematic errors here are treated as belagendent. These ingredients are then
assembled according to the recipe of Egs. (23)—(26) to methe posterior pdf for, p(u|y).

Results of the exercise are shown in Fig. 6. In Fig. 6(a), the easurementg are reasonably
consistent with each other. Figure 6(b) shows the corredipgrposteriorp(u|y) for two values ofoy,
which reflect differing degrees of non-Gaussian tails in phier for the bias parameters,(b;). For
os = 0, the prior for the bias is exactly Gaussian, whereasofor= 0.5, the non-Gaussian tails are
considerably longer, as can be seen from the correspondingxin Fig. 5(a). The posterior pdfs for
both cases are almost identical, as can be see in Fig. 6(&rmiring the mean and standard deviation
of the posterior for each gives = 1.000 + 0.71 for the case ob; = 0, andji = 1.000 + 0.72 for
os = 0.5. So assuming a 50% “error on the error” here has only inflatestror of the averaged result
by a small amount.

—0s=00 - o,=05 —0s=00 - o,=05
(@) 15+ 15+ ! (b)
1 } 1 t E 1 } T i
05 f 05 f
0 1 2 3 2 0 1 2 3 ]
S 8 S 8
= —0,=00 no outlier = —0,=00 with outlier
gl -0s=05 6l -0s=05
(©) (d)
4 4
2 2
ol ‘ 0 L e
0.6 08 1 12 14 0.6 08
H H

Fig. 6: (a) Data values which are relatively consistent and (b) a dat with an outlier; the horizontal lines
indicate the posterior mean for two different values of thegpneter ;. (c) and (d) show the posterior distributions
corresponding to (a) and (b), respectively. (The dashedsald curves in (a) and (c) overlap.)

Now consider the case where one of the measured values isstialy different from the other
three, as shown in Fig. 6(c). Here using the same priors fobths parameters results in the posteriors
shown in Fig. 6(d). The posterior means and standard dexmmre, = 1.125 + 0.71 for the case of
os = 0, andj = 1.093 4+ 0.089 for o5, = 0.5.

When we assume a purely Gaussian prior for the bigs=£ 0.0), the presence of the outlier
has in fact no effect on the width of the posterior. This iheatcounter-intuitive and results from our
assumption of a Gaussian likelihood for the data and a Gawgsior for the bias parameters. The
posterior mean is however pulled substantially higher ttrenthree other measurements, which are
clustered around.0. If the priorsm,(b;) have longer tails, as occurs when we take= 0.5, then the
posterior is broader, and furthermore it is pulled less fathie outlier, as can be seen in Fig. 6(d).
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The fact that the width of the posterior distribution, whieffiectively tells us the uncertainty on
the parameter of interegt, becomes coupled to the internal consistency of the datecomtrast, in
the (frequentist) Least-Squares method, or in the Bayegignoach using a Gaussian prior for the bias
parameters, the final uncertainty on the parameter of isttéseunaffected by the presence of outliers.
And in many cases of practical interest, it would be in fagirapriate to conclude that the presence of
outliers should indeed increase one’s uncertainty abeuirtial parameter estimates. The example shown
here can be generalized to cover a wide variety of model taiogies by including prior probabilities
for an enlarged set of model parameters.

2.4 Summary on Bayesian methods

In these lectures we have seen how Bayesian methods cand@ysgameter estimation, and this has
also given us the opportunity to discuss some aspects ofsBayeomputation, including the important
tool of Markov Chain Monte Carlo. Although Bayesian and tregtist methods may often deliver results
that agree numerically, there is an important differencéhiir interpretation. Furthermore, Bayesian
methods allow one to incorporate prior information that nb@ybased not on other measurements but
rather on theoretical arguments or purely subjective amrations. And as these considerations may
not find universal agreement, it is important to investigates the results of a Bayesian analysis would
change for a reasonable variation of the prior probabdlitie

It is important to keep in mind that in the Bayesian approadifinformation about the parameters
is encapsulated in the posterior probabilities. So if thedysi also wants to set upper limits or determine
intervals that cover the parameter with a specified proligbthen this is a straightforward matter of
finding the parameter limits such that the integrated pmstedf has the desired probability content. A
discussion of Bayesian methods to the important problenettihg upper limits on a Poisson parameter
are covered in [1] and references therein; we will not haweetin these lectures to go into that question
here.

We will also unfortunately not have time to explore Bayesiaodel selection. This allows one
to quantify the degree to which the the data prefer one modsl the other using a quantity called the
Bayes factor. These have not yet been widely used in pagitysics but should be kept in mind as
providing important complementary information to the esponding outputs of Frequentist hypothesis
testing such ag-values. A brief description of Bayes factors can be foundef. [1] and a more in-depth
treatment is given in Ref. [14].

3 Topics in multivariate analysis

In the second part of these lectures we will take a look atrtigortant topic of multivariate analysis. In
depth information on this topic can be found in the textbodks 16, 17, 18]. In a particle physics con-
text, multivariate methods are often used when selectiregtevof a certain type using some potentially
large number of measurable characteristics for each eVt basic framework we will use to examine
these methods is that of a frequentist hypothesis test.

The fundamental unit of data in a particle physics experinmethe “event”, which in most cases
corresponds to a single particle collision. In some casesuld be instead a decay, and the picture does
not change much if we look, say, at individual particles acks. But to be concrete let us suppose
that we want to search for events from proton-proton callisi at the LHC that correspond to some
interesting “signal” process, such as supersymmetry.

When running at full intensity, the LHC should produce clasa billion events per second. After
a quick sifting, the data from around 200 per second are decbfor further study, resulting in more
than a billion events per year. But only a tiny fraction ofgbeare of potential interest. If one of the
speculative theories such as supersymmetry turns out teddeed in Nature, then this will result in a
subset of events having characteristic features, and ti&YStvents will simply be mixed in randomly
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with a much larger number of Standard Model events. The aeledistinguishing features depend on
what new physics Nature chooses to reveal, but one mightaesxample, highp jets, leptons, missing
energy, etc.

Unfortunately, background processes (e.g., Standard lnegdrts) can often mimic these features
and one will not be able to say with certainty that a given eghiows a clear evidence for something
new such as supersymmetry. For example, even Standard Mdeelgis can contain neutrinos which also
escape undetected. The typical amount and pattern of myissiergy in these events differs on average,
however, from what a SUSY event would give, and so a stagisticalysis can be applied to test whether
something besides Standard Model events are present.

In a typical analysis there is a class of event we are intedest finding (signal), and these, if
they exist at all, are mixed in with the rest of the events Kgaaund). The data for each event is some
collection of numberx = (z1,...,z,) representing particle energies, momenta, etc. We wilrrefe
these as thiput variablesof the problem. And the probabilities are joint densitiesstaiven the signal
(s) or background (b) hypotheses(x|s) and f (x|b).

To illustrate the general problem, consider the scattésgbown in Fig. 7. These show the distri-
bution of two variablesg; andzs, which represent two out of a potentially large number ofrdities
measured for each event. The blue circles could representdhght after signal events, and the red
triangles the background. In each of the three figures tisea@ecision boundary representing a possible
way of classifying the events.

Fig. 7: Scatter plots of two variables corresponding to two hypsése signal and background. Event selection
could be based, e.g., on (a) cuts, (b) a linear boundary,rfopénear boundary.

Figure 7(a) represents what is commonly called the “cuebaspproach. One selects signal
events by requiringe; < ¢; andzs < ¢y for some suitably chosen cut valuesandc,. If x; and
o represent quantities for which one has some intuitive wstdeding, then this can help guide one’s
choice of the cut values.

Another possible decision boundary is made with a diagoaghs shown in Fig. 7(b). One can
show that for certain problems a linear boundary has optpr@erties, but in the example here, because
of the curved nature of the distributions, neither the cgdal nor the linear solution is as good as the
nonlinear boundary shown in Fig. 7(c).

The decision boundary is a surface in thaimensional space of input variables, which can be
represented by an equation of the foutx) = y.ut, Wherey.,; is some constant. We accept events as
corresponding to the signal hypothesis if they are on one sfdhe boundary, e.gy(x) < y.u could
represent the acceptance region g(xl) > y.,+ could be the rejection region.

Equivalently we can use the functigiix) as a scalatest statistic Once its functional form is
specified, we can determine the pdfsygk) under both the signal and background hypotheségs)
andp(y|b). The decision boundary is now effectively a single cut ondtaar variabley, as illustrated
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in Fig. 8.
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0 ‘ : ground hypotheses.

To quantify how good the event selection is, we can defineetfigencywith which one selects
events of a given type as the probability that an event wilifidhe acceptance region. That is, the signal
and background efficiencies are

Yeut

es = P(accept everT|$):/Af(x|s) dx:/ p(yls) dy , (28)

e, = P(accepteverni) = /fx|b / p(ylb) dy , (29)
Ycut

where the region of integration A represents the accepteagion.

Dividing the space of input variables into two regions where accepts or rejects the signal
hypothesis is essentially the language of a frequentisisstal test. If we regard background as the
“null hypothesis”, then the background efficiency is the eaam what in a statistical context would be
called the significance level of the test, or the rate of “tygmrors”. Viewing the signal process as
the alternative, the signal efficiency is then what a siai#st would call the power of the test; it is the
probability to reject the background hypothesis if in fadat signal hypothesis is true. Equivalently, this
is one minus the rate of “type-Il error”.

The use of a statistical test to distinguish between twasekm®f events (signal and background),
comes up in different ways. Sometimes both event classdsaven to exist, and the goal is to select one
class (signal) for further study. For example, proton-prnotollisions leading to the production of top
quarks are a well-established process. By selecting thes#gseone can carry out precise measurements
of the top quark’s properties such as its mass. In other cdlsessignal process could represent an
extension to the Standard Model, say, supersymmetry, wlxiséence is not yet established, and the
goal of the analysis is to see if one can do this. RejectingStiaadard Model with a sufficiently high
significance level amounts to discovering something ned/adicourse one hopes that the newly revealed
phenomena will provide important insights into how Natueléves.

What the physicist would like to have is a test with maximalvpowith respect to a broad class
of alternative hypotheses. For two specific signal and backgl hypotheses, it turns out that there is a
well defined optimal solution to our problem. Theyman—Pearsolemma states that one obtains the
maximum power relative for the signal hypothesis for a giggmificance level (background efficiency)
by defining the acceptance region such thatxfamside the region, thiékelihood ratig, i.e., the ratio of
pdfs for signal and background,

A(x) = (30)




is greater than or equal to a given constant, and it is less thia constant everywhere outside the
acceptance region. This is equivalent to the statementhbattio (30) represents the test statistic with
which one obtains the highest signal efficiency for a giveckigeound efficiency, or equivalently, for a
given signal purity.

In principle the signal and background theories shouldaatis to work out the required functions
f(x|s) and f(x|b), but in practice the calculations are too difficult and we dolmave explicit formulae
for these. What we have instead fifx|s) and f (x|b) are complicated Monte Carlo programs, that is, we
can samplex to produce simulated signal and background events. Beaduke multivariate nature of
the data, whera may contain at least several or perhaps even hundreds ofaants, it is a nontrivial
problem to construct a test with a power approaching thatefikelihood ratio.

In the usual case where the likelihood ratio (30) cannot teel @xplicitly, there exists a variety
of other multivariate classifiers that effectively separdifferent types of events. Methods often used
in HEP includeneural networksor Fisher discriminants Recently, further classification methods from
machine-learning have been applied in HEP analyses; thelsgleprobability density estimation (PDE)
techniqueskernel-based PDEKDE or Parzen window support vector machinesnddecision trees
Techniques such as “boosting” and “bagging” can be apptiedotmbine a number of classifiers into
a stronger one with greater stability with respect to flugare in the training data. Descriptions of
these methods can be found in, e.g., the textbooks [15, 18,81 and in Proceedings of the PHYSTAT
conference series [19]. Software for HEP includesTheA [20] andStatPatternRecognition [21]
packages, although support for the latter has unfortupdiegn discontinued.

As we will not have the time to examine all of the methods nwrdd above, in the following
section we look at a specific example of a classifier to ilatstsome of the main ideas of a multivariate
analysis: the boosted decision tree (BDT).

3.1 Boosted decision trees

Boosted decision trees exploit relatively recent develepis in machine learning and have gained sig-
nificant popularity in HEP. First in Sec. 3.1.1 we describe llasic idea of a decision tree, and then in
Sec. 3.1.2 we will say how the the technique of “boosting” barused to improve its performance.

3.1.1 Decision trees

A decision tree is defined by a collection of successive catthe set of input variables. To determine
the appropriate cuts, one begins with a samplé&/dfaining events which are known to be either signal
or background., e.g., from Monte Carlo. The sehohput variables measured for each event constitutes
avectorx = (z1,...x,). Thus we havéeV instances ok, x1,...xy, as well as the correspondinyg

true class labelg,, ..., yy. Itis convenient to assigh numerical values to the labelhap e.g.y = 1
corresponds to signal and= —1 for background.
In addition we will assume that each event can be assignedghtyve);, withi = 1,..., N. For
any subset of the events and for a set of weights, the sigaetidn (purity) is taken to be
Dics Wi

p= ; (31)

D iesWi + 2 ieh Wi
where s and b refer to the signal and background event typas. weights are not strictly speaking
necessary for a decision tree, but will be used in conneattth boosting in Section 3.1.2. For a
decision tree without boosting we can simply take all theglvts to be equal.

To quantify the degree of separation achieved by a claséifiea selected subset of the events
one can use, for example, tl@&ni coefficient[23], which historically has been used as a measure of
dispersion in economics and is defined as
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G=p(l-p). (32)

The Gini coefficient is zero if the selected sample is eithgesignal or background. Another measure
is simply the misclassification rate,

e=1—maxp,1—p). (33)

The idea behind a decision tree is illustrated in Fig. 9, feomanalysis by the MiniBooNE neutrino
oscillation experiment at Fermilab [22].

Fig. 9: lllustration of a decision tree used
by the MiniBoone experiment [22] (see
text).

One starts with the entire sample of training events in tlee n@de, shown in the figure with 52
signal and 48 background events. Out of all of the possilpatimariables in the vectat, one finds the
component that provides the best separation between sigdddackground by use of a single cut. This
requires a definition of what constitutes “best separatiand there are a number of reasonable choices.
For example, for a cut that splits a set of evaniato two subset$ andc, one can define the degree of
separation through the weighted change in the Gini coeffisje

A = WGy — WyGp — WG . (34)

where
Wa = Z w’i 5 (35)

and similarly foriW, and W,.. Alternatively one may use a quantity similar to (34) buthyie.g., the
misclassification rate (33) instead of the Gini coefficidviare possibilities can be found in Ref. [20].

For whatever chosen measure of degree of separatipane finds the cut on the variable amongst
the components af that maximizes it. In the example of the MiniBooNE experitngimown in Fig. 9,
this happened to be a cut on the number of PMT hits with a veld®@. This splits the training sample
into the two daughter nodes shown in the figure, one of whigkntzanced in signal and the other in
background events.

The algorithm requires a stopping rule based, e.g., on timbeu of events in a node or the
misclassification rate. If, for example, the number of egeamtthe misclassification rate in a given node
falls below a certain threshold, then this defined as a teahminde or “leaf”. It is classified as a signal
or background leaf based on its predominant event type.gn%;ifor example, the node after the cut on
PMT hits with 4 signal and 37 background events is classifeed ®rminal background node.
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For nodes that have not yet reached the stopping criterimmjterates the procedure and finds, as
before, the variable that provides the best separation avtimgle cut. In Fig. 9 this is an energy cut of
0.2 GeV. The steps are continued until all nodes reach the sigppiterion.

The resulting set of cuts effectively divides tkespace into two regions: signal and background.
To provide a numerical output for the classifier we can define

1 x in signal region

fx) = { (36)

-1 x in background region

Equation (36) defines a decision tree classifier. In this falmse tend to be very sensitive to
statistical fluctuations in the training data. One can gasgle why this is, for example, if two of the
components ok have similar discriminating power between signal and beakgd. For a given training
sample, one variable may be found to give the best degreepafatton and is chosen to make the cut,
and this affects the entire further structure of the tree.a ldifferent statistically independent sample
of training events, the other variable may be found to beehe#ind the resulting tree could look very
different. Boosting is a technique that can decrease thatiséty of a classifier to such fluctuations, and
we describe this in the following section.

3.1.2 Boosting

Boosting is a general method of creating a set of classifieistwcan be combined to give a new classifier
that is more stable and has a smaller misclassification haie any individual one. It is often applied
to decision trees, precisely because they suffer from sehsito statistical fluctuations in the training
sample, but the technique can be applied to any classifier.

Let us suppose as above that we have a sampl¥ training events, i.e./N instances of the
data vectorxy,...,xy, and N true class labelg,...,yn, with y = 1 for signal andy = —1 for
background. Also as above assume we WaivweightSwgl), e ,w§§>, where the superscrigt ) refers
to the fact that this is the first training set. We initiallyt §ee weights equal and normalized such that

N

Sw =1, (37)

=1

The idea behind boosting is to create from the initial samplseries of further training samples
which differ from the initial one in that the weights will bananged according to a specific rule. A
number of boosting algorithms have been developed, and tliefer primarily in the rule used to update
the weights. We will describe the AdaBoost algorithm of Fre@and Schapire [24], as it was one of the
first such algorithms and its properties have been well studi

One begins with the initial training sample and from it degva classifier. We have in mind here
a decision tree, but it could be any type of classifier for vehidae training employs the event weights.
The resulting functionf; (x) will have a certain misclassification rate. In general for thesth classifier
(i.e., based on thkth training sample), we can write the error rate as

N
er = w1y fu(x:) <0) (38)
i=1
whereI(X) = 1 if the Boolean expressioX is true, and is zero otherwise. We then assign a score to
the classifier based on its error rate. For the AdaBoost algorthis is
1-— Ek

ap = 1In e (39)
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which is positive as long as the error rate is lower than 5086, the classifier does better than random
guessing.

Having carried out these steps for the initial training seanwe define the second training sample
by updating the weights. More generally, the weights fop te- 1 are found from those for stépby

—ag fr(xi)yi /2
w(k'i'l) _ w(k) €

where the factorZ,, is chosen so that the sum of the updated weights is equal tg udbte that if
an event is incorrectly classified, then the true class Igpahd the valuef;(x;) have opposite signs,
and thus the new weights are greater than the old ones. @grodassified events have their weights
decreased. This means that the updated training set willqmag attention in the next iteration to those
events that were not correctly classified, the idea beingitishould try harder to get it right the next
time around.

After K iterations of this procedure one has classififi), . . ., fx(x), each with a certain error
rate and score based on Egs. (38) and (39). In the case ofatetrises, the set of new trees is called a
forest From these one defines an averaged classifier as

K
y(x) =Y apfu(x) . (41)
k=1

Equation (41) defines a boosted decision tree (or more génerdoosted version of whatever classifier
was used).

One of the important questions to be addressed is how marstibgaterations to use. One can
show that for a sufficiently large number of iterations, adied decision tree will eventually classify all
of the events in the training sample correctly. Similar hédiar is found with any classification method
where one can control to an arbitrary degree the flexibilitshe decision boundary. The user can arrange
so that the boundary twists and turns so as to get all of thetgwaa the right side.

In the case of a neural network, for example, one can incrées@umber of hidden layers, or
the number of nodes in the hidden layers; for a support ventarhine, one can adjust the width of the
kernel function and the regularization parameter to ineegthe flexibility of the boundary. An example
is shown in Fig. 10(a), where an extremely flexible classifi@s managed to enclose all of the signal
events and exclude all of the background.

Of course if we were now to take the decision boundary showhign 10(a) and apply it to a
statistically independent data sample, there is no reastmelteve that the contortions that led to such
good performance on the training sample will still work. §ban be seen in Fig. 10(b), which shows the
same boundary with a new data sample. In this case the oagsifiaid to bevertrained Its error rate
calculated from the same set of events used to train thefa@ssderestimates the rate on a statistically
independent sample.

To deal with overtraining, one estimates the misclassifioatate not only with the training data
sample but also with a statistically independent test samiple can then plot these rates as a function
of the parameters that regulate the flexibility of the desisboundary, e.g., the number of boosting
iterations used to form the BDT. For a small number of itemradi one will find in general that the error
rates for both samples drop. The error rate based on théngesample will continue to drop, eventually
reaching zero. But at some point the error rate from the tsipée will cease to decrease and in general
will increase. One chooses the architecture of the clasgifiember of boosting iterations, number of
nodes or layers in a neural network, etc.) to minimize thereate on the test sample.

As the test sample is used to choose between a number of dompethitectures based on the
minimum observed error rate, this in fact gives biased esdgnof the true error rate. In principle one
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Fig. 10: Scatter plot of events of two types and the decision boundietgrmined by a particularly flexible classi-
fier. Plot (a) shows the events used to train the classifier(lanshows an independent sample of test data.

should use a third validation sample to obtain an unbiastcha® of the error rate. In many cases the
bias is small and this last step is omitted, but one shouldiageaof its potential existence.

In some applications, the training data is relatively irengive; one simply generates more events
with Monte Carlo. But often event generation can take a fititaely long time and one may be reluctant
to use only a fraction of the events for training and the otiadf for testing. In such cases, procedures
such ascross validation(see, e.g., [15, 16]) can be used where the available evenfsagtitioned in a
number of different ways into training and test samples &edésults averaged.

Boosted decision trees have become increasingly popufzariicle physics in recent years. One
of their advantages is that they are relatively insensitovéhe number of input variables used in the
data vectox. Components that provide little or no separation betwegnadiand background are rarely
chosen as for the cut that provides separation, i.e., tothglitree, and thus they are effectively ignored.
Decision trees have no difficulty in dealing with differegpés of data; these can be real, integer, or
they can simply be labels for which there is no natural ordg(categorical data). Furthermore, boosted
decision trees are surprisingly insensitive to overtrani That is, although the error rate on the test
sample will not decrease to zero as one increases the nurhbeosting iterations (as is the case for the
training sample), it tends not to increase. Further disoassf this point can be found in Ref. [25].

3.2 Summary on multivariate methods

The boosted decision tree is an example of a relatively ntodevelopment in Machine Learning that
has attracted substantial attention in HEP. Support Védawhines (SVMSs) represent another such de-
velopment and will no doubt also find further application article physics; further discussion on SVMs
can be found in [15, 16] and references therein. Linear iflassand neural networks will no doubt con-
tinue to play an important role, as will probability denségtimation methods used to approximate the
likelihood ratio.

Multivariate methods have the advantage of exploiting ashmnformation as possible out of all
of the quantities measured for each event. In an environmiecdmpetition between experiments, this
can be a natural motivation to use them. Some caution shaugkdrcised, however, before placing too
much faith in the performance of a complicated classifiesapnothing of a combination of complicated
classifiers. These may have decision boundaries that inebggldit nonlinear features of the training
data, often based on Monte Carlo. But if these features haverrbeen verified experimentally, then
they may or may not be present in the real data. There is tluggk of, say, underestimating the rate
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of background events present in a region where one looksidgorak which could lead to a spurious
discovery. Simpler classifiers are not immune to such dangjéner, but in such cases the problems may
be easier to control and mitigate.

One should therefore keep in mind the following quote, ofteard in the multivariate analysis
community:

Keep it simple. As simple as possible. Not any simpler.
— A. Einstein

To this we can add the more modern variant,

If you believe in something you don'’t understand, you suffer
—Stevie Wonder

Having made the requisite warnings, however, it seems ttedirmultivariate methods will play
an important role in the discoveries we hope to make at the LGB can easily imagine, for example,
that 5-sigma evidence for New Physics from a highly perfarthand complicated, classifier would be
regarded by the community with some scepticism. But if thibacked up by, say, 4-sigma significance
from a simpler, more transparent analysis, then the coimiusould be more easily accepted, and the
team that pursues both approaches may well win the race.

4 Summary and conclusions

In these lectures we have looked at two topics in statisBegesian methods and multivariate analysis,
which will play an important role in particle physics in therming years. Bayesian methods provide
important tools for analyzing systematic uncertaintiefiere prior information may be available that
does not necessarily stem solely from other measuremeuntsather from theoretical arguments or
other indirect means. The Bayesian framework allows onavestigate how the posterior probabilities
change upon variation of the prior probabilities. Throubls type of sensitivity analysis, a Bayesian
result becomes valuable to the broader scientific community

As experiments become more expensive and the competitior imtense, one will always be
looking for ways to exploit as much information as possilotef the data. Multivariate methods provide
a means to achieve this, and advanced tools such as boosisibidérees have in recent years become
widely used. And while their use will no doubt increase aslthkC experiments mature, one should
keep in mind that a simple analysis also has its advantagesonA studies the advanced multivariate
techniques, however, their properties become more appaneithe community will surely find ways of
using them so as to maximize the benefits without excessle ri
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