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Abstract
These lectures concern two topics that are becoming increasingly important
in the analysis of High Energy Physics (HEP) data: Bayesian statistics and
multivariate methods. In the Bayesian approach we extend the interpretation of
probability to cover not only the frequency of repeatable outcomes but also to
include a degree of belief. In this way we are able to associate probability with
a hypothesis and thus to answer directly questions that cannot be addressed
easily with traditional frequentist methods. In multivariate analysis we try
to exploit as much information as possible from the characteristics that we
measure for each event to distinguish between event types. In particular we
will look at a method that has gained popularity in HEP in recent years: the
boosted decision tree (BDT).

1 Introduction

When an HEP experiment enters the phase of data collection and analysis, the daily tasks of its postgrad-
uate students are often centred not around the particle physics theories one is trying to test but rather on
statistical methods. These methods are the tools needed to compare data with theory and quantify the
extent to which one stands in agreement with the other. Of course one must understand the physical basis
of the models being tested and so the theoretical emphasis inpostgraduate education is no doubt well
founded. But with the increasing cost of HEP experiments it has become important to exploit as much of
the information as possible in the hard-won data, and to quantify as accurately as possible the inferences
one draws when confronting the data with model predictions.

Despite efforts to make the lectures self contained, some familiarity with basic ideas of statistical
data analysis is assumed. Introductions to the subject can be found, for example, in the reviews of the
Particle Data Group [1] or in the texts [2, 3, 4, 5, 6].

In these two lectures we will discuss two topics that are becoming increasingly important: Bayesian
statistics and multivariate methods. In Sec. 2 we will review briefly the concept of probability and see
how this is used differently in the frequentist and Bayesianapproaches. Then in Sec. 2.2 we will dis-
cuss a simple example, the fitting of a straight line to a set ofmeasurements, in both the frequentist
and Bayesian approaches and compare different aspects of the two. This will include in Sec. 2.2.3 a
brief description of Markov Chain Monte Carlo (MCMC), one ofthe most important tools in Bayesian
computation. We generalize the treatment in Sec. 2.3 to include systematic errors.

In Sec. 3 we take up the general problem of how to distinguish between two classes of events,
say, signal and background, on the basis of a set of characteristics measured for each event. We first
describe how to quantify the performance of a classificationmethod in the framework of a statistical
test. Although the Neyman–Pearson lemma indicates that this problem has an optimal solution using
the likelihood ratio, this usually cannot be used in practice and one is forced to seek other methods. In
Sec. 3.1 we look at a specific example of such a method, the boosted decision tree. Using this example
we describe several issues common to many classification methods, such as overtraining. Finally, some
conclusions are mentioned in Sec. 4.

2 Bayesian statistical methods for HEP

In this section we look at the basic ideas of Bayesian statistics and explore how these can be applied in
particle physics. We will contrast these with the corresponding notions in frequentist statistics, and to



make the treatment largely self contained, the main ideas ofthe frequentist approach will be summarized
as well.

2.1 The role of probability in data analysis

We begin by defining probability with the axioms written downby Kolmogorov [7] using the language
of set theory. Consider a setS containing subsetsA,B, . . .. We define the probabilityP as a real-valued
function with the following properties:

1. For every subsetA in S, P (A) ≥ 0;

2. For disjoint subsets (i.e.,A ∩ B = ∅), P (A ∪ B) = P (A) + P (B);

3. P (S) = 1.

In addition, we define the conditional probabilityP (A|B) (readP of A givenB) as

P (A|B) =
P (A ∩ B)

P (B)
. (1)

From this definition and using the fact thatA ∩ B andB ∩ A are the same, we obtainBayes’ theorem,

P (A|B) =
P (B|A)P (A)

P (B)
. (2)

From the three axioms of probability and the definition of conditional probability, we can derive thelaw
of total probability,

P (B) =
∑

i

P (B|Ai)P (Ai) , (3)

for any subsetB and for disjointAi with ∪iAi = S. This can be combined with Bayes’ theorem (2) to
give

P (A|B) =
P (B|A)P (A)∑
i P (B|Ai)P (Ai)

, (4)

where the subsetA could, for example, be one of theAi.

The most commonly used interpretation of the subsets of the sample space are outcomes of a
repeatable experiment. The probabilityP (A) is assigned a value equal to the limiting frequency of
occurrence ofA. This interpretation forms the basis offrequentist statistics.

The subsets of the sample space can also be interpreted ashypotheses, i.e., statements that are
either true or false, such as ‘The mass of theW boson lies between 80.3 and 80.5 GeV.’ In the frequency
interpretation, such statements are either always or nevertrue, i.e., the corresponding probabilities would
be 0 or 1. Usingsubjective probability, however,P (A) is interpreted as the degree of belief that the
hypothesisA is true.

Subjective probability is used inBayesian(as opposed to frequentist) statistics. Bayes’ theorem
can be written

P (theory|data) ∝ P (data|theory)P (theory) , (5)

where ‘theory’ represents some hypothesis and ‘data’ is theoutcome of the experiment. HereP (theory)
is theprior probability for the theory, which reflects the experimenter’s degree of belief before carrying
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out the measurement, andP (data|theory) is the probability to have gotten the data actually obtained,
given the theory, which is also called thelikelihood.

Bayesian statistics provides no fundamental rule for obtaining the prior probability; this is neces-
sarily subjective and may depend on previous measurements,theoretical prejudices, etc. Once this has
been specified, however, Eq. (5) tells how the probability for the theory must be modified in the light of
the new data to give theposteriorprobability,P (theory|data). As Eq. (5) is stated as a proportionality,
the probability must be normalized by summing (or integrating) over all possible hypotheses.

The difficult and subjective nature of encoding personal knowledge into priors has led to what
is calledobjective Bayesian statistics, where prior probabilities are based not on an actual degreeof
belief but rather derived from formal rules. These give, forexample, priors which are invariant under
a transformation of parameters or which result in a maximum gain in information for a given set of
measurements. For an extensive review see, e.g., Ref. [8].

2.2 An example: fitting a straight line

In Section 2.2 we look at the example of a simple fit in both the frequentist and Bayesian frameworks.
Suppose we have independent data valuesyi, i = 1, ..., n, that are each made at a given valuexi of a
control variablex. Suppose we model theyi as following a Gaussian distribution with given standard
deviationsσi and mean valuesµi given by a function that we evaluate at the correspondingxi,

µ(x; θ0, θ1) = θ0 + θ1x . (6)

We would like to determine values of the parametersθ0 andθ1 such that the model best describes the
data. The ingredients of the analysis are illustrated in Fig. 1(a).
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Fig. 1: (a) Illustration of fitting a straight line to data (see text). (b) Theχ2 as a function of the parameterθ0,
illustrating the method to determine the estimatorθ̂0 and its standard deviationσ

θ̂0
.

Now suppose the real goal of the analysis is only to estimate the parameterθ0. The slope parameter
θ1 must also be included in the model to obtain a good description of the data, but we are not interested
in its value as such. We refer toθ0 as the parameter of interest, andθ1 as anuisance parameter. In the
following sections we treat this problem using both the frequentist and Bayesian approaches.

2.2.1 The frequentist approach

Our model states that the measurements are Gaussian distributed, i.e., the probability density function
(pdf) for theith measurementyi is
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f(yi;θ) =
1√
2πσi

e−(yi−µ(xi;θ))2/2σ2

i , (7)

whereθ = (θ0, θ1).

Thelikelihood functionis the joint pdf for all of theyi, evaluated with theyi obtained and regarded
as a function of the parameters. Since we are assuming that the measurements are independent, the
likelihood function is in this case given by the product

L(θ) =

n∏

i=1

f(yi;θ) =

n∏

i=1

1√
2πσi

e−(yi−µ(xi;θ))2/2σ2

i . (8)

In the frequentist approach we construct estimatorsθ̂ for the parametersθ, usually by finding the values
that maximize the likelihood function. (We will write estimators for parameters with hats.) In this case
one can see from (8) that this is equivalent to minimizing thequantity

χ2(θ) =
n∑

i=1

(yi − µ(xi;θ))2

σ2
i

= −2 ln L(θ) + C , (9)

whereC represents terms that do not depend on the parameters. Thus for the case of independent
Gaussian measurements, the maximum likelihood (ML) estimators for the parameters coincide with
those of the method of least squares (LS).

Suppose first that the slope parameterθ1 is known exactly, and so it is not adjusted to maximize
the likelihood (or minimize theχ2) but rather held fixed. The quantityχ2 versus the single adjustable
parameterθ0 would be as shown in Fig. 1(b), where the minimum indicates the value of the estimator̂θ0.

Methods for obtaining the standard deviations of estimators — the statistical errors of our mea-
sured values — are described in many references such as [1, 2,3, 4, 5, 6]. Here in the case of a single
fitted parameter the rule boils down to moving the parameter away from the estimate untilχ2 increases
by one unit (i.e.,ln L decreases from its maximum by1/2) as indicated in the figure.

It may be, however, that we do not know the value of the slope parameterθ1, and so even though
we do not care about its value in the final result, we are required to treat it as an adjustable parameter in
the fit. Minimizingχ2(θ) results in the estimatorŝθ = (θ̂0, θ̂1), as indicated schematically in Fig. 2(a).
Now the recipe to obtain the statistical errors, however, isnot simply a matter of moving the parameter
away from its estimated value until theχ2 goes up by one unit. Here the standard deviations must be
found from the tangent lines (or in higher-dimensional problems, the tangent hyperplanes) to the contour
defined byχ2(θ) = χ2

min + 1, as shown in the figure.

The tilt of the contour in Fig. 2(a) reflects of the correlation between the estimatorŝθ0 and θ̂1.
A useful estimate for the inverse of the matrix of covariances Vij = cov[Vi, Vj ] can be found from the
second derivative of the log-likelihood evaluated at its maximum,

V̂ −1
ij = − ∂2 ln L

∂θi∂θj

∣∣∣∣
θ=θ̂

. (10)

More information on how to extract the full covariance matrix from the contour can be found, for exam-
ple, in Refs. [1, 2, 3, 4, 5, 6]. The point to note here is that the correlation between the estimators for the
parameter of interest the nuisance parameter has the resultof inflating the standard deviations of both.
That is, ifθ1 were known exactly, then the distance one would have to moveθ0 away from its estimated
value to make theχ2 increase by one unit would be less, as one can see from the figure. So although we
can improve the ability of a model to describe the data by including additional nuisance parameters, this
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Fig. 2: Contour ofχ2(θ) = χ2

min
+ 1 centred about the estimates(θ̂0, θ̂1) (a) with no prior measurement ofθ1 and

(b) when a prior measurement ofθ1 is included.

comes at the price of increasing the statistical errors. This is an important theme which we will encounter
often in data analysis.

Now consider the case where we have a prior measurement ofθ1. For example, we could have
a measurementt1 which we model as following a Gaussian distribution centredaboutθ1 and having a
given standard deviationσt1 . If this measurement is independent of the otheryi values, then the full
likelihood function is obtained simply by multiplying the original one by a Gaussian, and so when we
find the newχ2 from −2 ln L there is an additional term, namely,

χ2(θ) =

n∑

i=1

(yi − µ(xi;θ))2

σ2
i

+
(θ1 − t1)

2

σ2
t1

. (11)

As shown in Fig. 2(b), the new (solid) contour ofχ2 = χ2
min + 1 is compressed relative to the old

(dashed) one in theθ1 direction, and this compression has the effect of decreasing the error inθ0 as well.
The lesson is: by better constraining nuisance parameters,one improves the statistical accuracy of the
parameters of interest.

2.2.2 The Bayesian approach

To treat the example above in the Bayesian framework, we write Bayes’ theorem (2) as

p(θ|y) =
L(y|θ)π(θ)∫
L(y|θ)π(θ) dθ

. (12)

Hereθ = (θ0, θ1) symbolizes the hypothesis whose probability we want to determine. The likelihood
L(y|θ) is the probability to obtain the datay = (y1, . . . , yn) given the hypothesis, and the prior prob-
ability π(θ|y) represents our degree of belief about the parameters beforeseeing the outcome of the
experiment. The posterior probabilityp(θ) encapsulates all of our knowledge aboutθ when the datay
is combined with our prior beliefs. The denominator in (12) serves to normalize the posterior pdf to unit
area.

The likelihoodL(y|θ) is the same as theL(θ) that we used in the frequentist approach above.
The slightly different notation here simply emphasizes itsrole as the conditional probability for the data
given the parameter.
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To proceed we need to write down a prior probability densityπ(θ0, θ1). This phase of a Bayesian
analysis, sometimes called theelicitation of expert opinion, is in many ways the most problematic, as
there are no universally accepted rules to follow. Here we will explore some of the important issues that
come up.

In general, prior knowledge about one parameter might affect knowledge about the other, and
if so this must be built intoπ(θ0, θ1). Often, however, one may regard the prior knowledge about the
parameters as independent, in which case the density factorizes as

π(θ0, θ1) = π0(θ0)π1(θ1) . (13)

For purposes of the present example we will assume that this holds.

For the parameter of interestθ0, it may be that we have essentially no prior information, so the
densityπ0(θ0) should be very broad. Often one takes the limiting case of a broad distribution simply to
be a constant, i.e.,

π0(θ0) = const.. (14)

Now one apparent problem with Eq. (14) is that it is not normalizable to unit area, and so does not appear
to be a valid probability density. It is said to be animproper prior. The prior always appears in Bayes’
theorem multiplied by the likelihood, however, and as long as this falls off quickly enough as a function
of the parameters, then the resulting posterior probability density can be normalized to unit area.

A further problem with uniform priors is that if the prior pdfis flat in θ, then it is not flat for a
nonlinear function ofθ, and so a different parametrization of the problem would lead in general to a
non-equivalent posterior pdf.

For the special case of a constant prior, one can see from Bayes’ theorem (12) that the posterior is
proportional to the likelihood, and therefore the mode (peak position) of the posterior is equal to the ML
estimator. The posterior mode, however, will change in general upon a transformation of parameter. A
summary statistic other than the mode may be used as the Bayesian estimator, such as the median, which
is invariant under parameter transformation. But this willnot in general coincide with the ML estimator.

For the priorπ1(θ1), let us assume that our prior knowledge about this parameterincludes the
earlier measurementt1, which we modelled as a Gaussian distributed variable centred aboutθ1 with
standard deviationσt1 . If we had taken, even prior to that measurement, a constant prior for θ1, then the
“intermediate-state” prior that we have before looking at theyi is simply this flat prior times the Gaussian
likelihood, i.e., a Gaussian prior inθ1:

π1(θ1) =
1√

2πσt1

e−(θ1−t1)2/2σ2
t1 . (15)

Putting all of these ingredients into Bayes’ theorem gives

p(θ0, θ1|y) ∝
n∏

i=1

1√
2πσi

e−(yi−µ(xi;θ0,θ1))2/2σ2

i π0
1√

2πσt1

e−(θ1−t1)2/2σ2
t1 , (16)

whereπ0 represents the constant prior inθ0 and the equation has been written as a proportionality with
the understanding that the final posterior pdf should be normalized to unit area.

What Bayes’ theorem gives us is the full joint pdfp(θ0, θ1|y) for both the parameter of interest
θ0 as well as the nuisance parameterθ1. To find the pdf for the parameter of interest only, we simply
integrate (marginalize) the joint pdf, i.e.,
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p(θ0|y) =

∫
p(θ0, θ1|y) dθ1 . (17)

In this example, it turns out that we can do the integral in closed form. We find a Gaussian posterior,

p(θ0|y) =
1√

2πσθ0

e
−(θ0−θ̂0)2/2σ2

θ0 , (18)

whereθ̂0 is in fact the same as the ML (or LS) estimator found above withthe frequentist approach, and
σθ0

is the same as the standard deviation of that estimatorσθ̂0
.

So we find something that looks just like the frequentist answer, although here the interpretation
of the result is different. The posterior pdfp(θ0|y) gives our degree of belief about the location of the
parameter in the light of the data. We will see below how the Bayesian approach can, however, lead to
results that differ both in interpretation as well as in numerical value from what would be obtained in a
frequentist calculation. First, however, we need to pause for a short digression on Bayesian computation.

2.2.3 Bayesian computation and MCMC

In most real Bayesian calculations, the marginalization integrals cannot be carried out in closed form,
and if the number of nuisance parameters is too large then they can also be difficult to compute with
standard Monte Carlo methods. However,Markov Chain Monte Carlo(MCMC) has become the most
important tool for computing integrals of this type and has revolutionized Bayesian computation. In
depth treatments of MCMC can be found, e.g., in the texts by Robert and Casella [9], Liu [10], and the
review by Neal [11].

The basic idea behind using MCMC to marginalize the joint pdfp(θ0, θ1|y) is to sample points
θ = (θ0, θ0) according to the posterior pdf but then only to look at the distribution of the component of
interest,θ0. A simple and widely applicable MCMC method is the Metropolis-Hastings algorithm, which
allows one to generate multidimensional pointsθ distributed according to a target pdf that is proportional
to a given functionp(θ), which here will represent our posterior pdf. It is not necessary to havep(θ)
normalized to unit area, which is useful in Bayesian statistics, as posterior probability densities are often
determined only up to an unknown normalization constant, asis the case in our example.

To generate points that followp(θ), one first needs a proposal pdfq(θ;θ0), which can be (almost)
any pdf from which independent random valuesθ can be generated, and which contains as a parameter
another point in the same spaceθ0. For example, a multivariate Gaussian centred aboutθ0 can be used.
Beginning at an arbitrary starting pointθ0, the Hastings algorithm iterates the following steps:

1. Generate a valueθ using the proposal densityq(θ;θ0);

2. Form the Hastings test ratio,α = min
[
1, p(θ)q(θ0;θ)

p(θ0)q(θ;θ0)

]
;

3. Generate a valueu uniformly distributed in[0, 1];

4. If u ≤ α, takeθ1 = θ. Otherwise, repeat the old point, i.e.,θ1 = θ0.

If one takes the proposal density to be symmetric inθ and θ0, then this is theMetropolis-Hastings
algorithm, and the test ratio becomesα = min[1, p(θ)/p(θ0)]. That is, if the proposedθ is at a value of
probability higher thanθ0, the step is taken. If the proposed step is rejected, hop in place.

Methods for assessing and optimizing the performance of thealgorithm are discussed in, e.g.,
[9, 10, 11]. One can, for example, examine the autocorrelation as a function of the lagk, i.e., the
correlation of a sampled point with onek steps removed. This should decrease as quickly as possible for
increasingk. Generally one chooses the proposal density so as to optimize some quality measure such
as the autocorrelation. For certain problems it has been shown that one achieves optimal performance
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when the acceptance fraction, that is, the fraction of points with u ≤ α, is around 40%. This can be
adjusted by varying the width of the proposal density. For example, one can use for the proposal pdf a
multivariate Gaussian with the same covariance matrix as that of the target pdf, but scaled by a constant.

For our example above, MCMC was used to generate points according to the posterior pdfp(θ0, θ1)
by using a Gaussian proposal density. The result is shown in Fig. 3.
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Fig. 3: MCMC marginalization of the posterior pdfp(θ0, θ1|y): (a) scatter-plot of points in(θ0, θ1) plane and the
marginal distribution of (a) the parameter of interestθ0 and (b) the nuisance parameterθ1.

From the(θ0, θ1) points in the scatter plot in Fig. 3(a) we simply look at the distribution of the
parameter of interest,θ0 (Fig. 3(b)). The standard deviation of this distribution iswhat we would report
as the statistical error in our measurement ofθ0. The distribution of the nuisance parameterθ1 from
Fig. 3(c) is not directly needed, although it may be of interest in some other context where that parameter
is deemed interesting.

In fact one can go beyond simply summarizing the width of the distributions with the a statistic
such as the standard deviation. The full form of the posterior distribution ofθ0 contains useful infor-
mation about where the parameter’s true value is likely to be. In this example the distributions will in
fact turn out to be Gaussian, but in a more complex analysis there could be non-Gaussian tails and this
information can be relevant in drawing conclusions from theresult.

2.2.4 Sensitivity analysis

The posterior distribution ofθ0 obtained above encapsulates all of the analyst’s knowledgeabout the
parameter in the light of the data, given that the prior beliefs were reflected by the densityπ(θ0, θ1). A
different analyst with different prior beliefs would in general obtain a different posterior pdf. We would
like the result of a Bayesian analysis to be of value to the broader scientific community, not only to those
that share the prior beliefs of the analyst. And therefore itis important in a Bayesian analysis to show by
how much the posterior probabilities would change upon somereasonable variation in the prior. This is
sometimes called thesensitivity analysisand is an important part of any Bayesian calculation.

In the example above, we can imagine a situation where there was no prior measurementt1 of the
parameterθ1, but rather a theorist had told us that, based on considerations of symmetry, consistency,
aesthetics, etc., thatθ1 was “almost certainly” positive, and had a magnitude “probably less than 0.1 or
so”. When pressed to be precise, the theorist sketches a curve roughly resembling an exponential with a
mean of 0.1. So we can express this prior as

π1(θ1) =
1

τ
e−θ1/τ (θ1 ≥ 0) , (19)

with τ ≈ 0.1. We can substitute this prior into Bayes’ theorem (16) to obtain the joint pdf forθ0 andθ1,
and then marginalize to find the pdf forθ0. Doing this numerically with MCMC results in the posterior
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distributions shown in Fig. 4(a).
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Fig. 4: Posterior probability densities for the parameterθ0 obtained using (a) an exponential prior forθ0 of different
widths and (b) several different functional forms for the prior.

Now the theorist who proposed this prior forθ1 may feel reluctant to be pinned down, and it so it
is important to recall (and to reassure the theorist about) the “if-then” nature of a Bayesian analysis. One
does not have to be absolutely certain about the prior in Eq. (19). Rather, Bayes’ theorem simply says
that if one were to have these prior beliefs,thenwe obtain certain posterior beliefs in the light of the data.

One simple way to vary the prior here is to try different values of the meanτ , as shown in Fig. 4(a).
We see here the same basic feature as shown already in the frequentist analysis, namely, that when one
increases the precision about the nuisance parameter,θ1, then the knowledge about the parameter of
interest,θ0, is improved.

Alternatively (or in addition) we may try different functional forms for the prior, as shown in
Fig. 4(b). In this case using a uniform distribution forπ1(θ1) with 0 ≤ θ1 ≤ 0.5 or Gaussian with
σ = 0.1 truncated forθ1 < 0 both give results similar to the exponential with a mean of0.1. So one
concludes that the result is relatively insensitive to the detailed nature of the tails ofπ1(θ1).

2.3 A fit with systematic errors

We can now generalize the example of Sec. 2.2 to explore some further aspects of a Bayesian analysis.
Let us suppose that we are given a set ofn measurements as above, but now in addition to the statistical
errors we also are given systematic errors. That is, we are givenyi ±σstat

i ± σsys
i for i = 1, . . . , n where

the measurements as before are each carried out for a specified value of a control variablex.

More generally, instead of havingyi ± σstat
i ± σsys

i it may be that the set of measurements comes
with ann×n covariance matrixV stat corresponding to the statistical errors and another matrixV sys for
the systematic ones. Here the square roots of the diagonal elements give the errors for each measurement,
and the off-diagonal elements provide information on how they are correlated.

As before we assume some functional formµ(x;θ) for the expectation values of theyi. This
could be the linear model of Eq. (6) or something more general, but in any case it depends on a vector of
unknown parametersθ. In this example, however, we will allow that the model is notperfect, but rather
could have a systematic bias. That is, we write the true expectation value of theith measurement can be
written

E[yi] = µ(xi;θ) + bi , (20)
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wherebi represents the bias. Thebi can be viewed as the systematic errors of the model, present even
when the parametersθ are adjusted to give the best description of the data. We do not know the values
of the bi. If we did, we would account for them in the model and they would no longer be biases. We
do not in fact know that their values are nonzero, but we are allowing for the possibility that they could
be. The reported systematic errors are intended as a quantitative measure of how large the we expect the
biases to be.

As before, the goal is to make inferences about the parameters θ; some of these may be of direct
interest and others may be nuisance parameters. In Sec. 2.3.1 we will try to do this using the frequentist
approach, and in Sec. 2.3.2 we will use the Bayesian method.

2.3.1 A frequentist fit with systematic errors

If we adopt the frequentist approach, we need to write down a likelihood function such as Eq. 8, but here
we know in advance that the modelµ(x;θ) is not expected to be fully accurate. Furthermore it is not
clear how to insert the systematic errors. Often, perhaps without a clear justification, one simply adds
the statistical and systematic errors in quadrature, or in the case where one has the covariance matrices
V stat andV sys, they are summed to give a sort of “full” covariance matrix:

Vij = V stat
ij + V sys

ij . (21)

One might then use this in a multivariate Gaussian likelihood function, or equivalently it could be used
to construct theχ2,

χ2(θ) = (y − µ(θ))T V −1(y − µ(θ)) , (22)

which is then minimized to find the LS estimators forθ. In Eq. (22) the vectory = (y1, . . . , yn)
should be understood as a column vector,µ(θ) = (µ(x1;θ), . . . , µ(xn;θ)) is the corresponding vector
of model values, and the superscriptT represents the transpose (row) vector. Minimizing thisχ2 gives
the generalized LS estimatorsθ̂, and the usual procedures can be applied to find their covariances, which
now in some sense include the systematics.

But in what sense is there any formal justification for addingthe covariance matrices in Eq. (21)?
Next we will treat this problem in the Bayesian framework andsee that there is indeed some reason
behind this recipe, but with limitations, and further we will see how to get around these limitations.

2.3.2 The equivalent Bayesian fit

In the corresponding Bayesian analysis, one treats the statistical errors as given byV stat as reflecting the
distribution of the datay in the likelihood. The systematic errors, throughV sys, reflect the width of the
prior probabilities for the bias parametersbi. That is, we take

L(y|θ,b) ∝ exp
[
−1

2(y − µ(θ) − b)T V −1
stat(y − µ(θ) − b)

]
, (23)

πb(b) ∝ exp
[
−1

2b
T V −1

sys b
]

, πθ(θ) = const., (24)

p(θ,b|y) ∝ L(y|θ,b)πθ(θ)πb(b) , (25)

where in (25), Bayes’ theorem is used to obtain the joint probability for the parameters of interest,θ, and
also the biasesb. To obtain the probability forθ we integrate (marginalize) overb,

p(θ|y) =

∫
p(θ,b|y) db . (26)
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One finds that the mode ofp(θ|y) is at the same position as the least-squares estimates, and its covariance
will be the same as obtained from the frequentist analysis where the full covariance matrix was given by
the sumV = V stat + V sys. So this can be taken in effect as the formal justification forthe addition in
quadrature of statistical and systematic errors in a Least Squares fit.

2.3.3 The error on the error

If one stays with the prior probabilities used above, the Bayesian and least-squares approaches deliver
essentially the same result. An advantage of the Bayesian framework, however, is that it allows one to
refine the assessment of the systematic uncertainties as expressed through the prior probabilities.

For example, the least-squares fit including systematic errors is equivalent to the assumption of
a Gaussian prior for the biases. A more realistic prior wouldtake into account the experimenters own
uncertainty in assigning the systematic error, i.e., the ‘error on the error’. Suppose, for example, that the
ith measurement is characterized by a reported systematic uncertaintyσsys

i and an unreported factorsi,
such that the prior for the biasbi is

πb(bi) =

∫
1√

2πσsys
i

exp

[
−1

2

b2
i

(siσ
sys
i )2

]
πs(si) dsi . (27)

Here the ‘error on the error’ is encapsulated in the prior forthe factors, πs(s). For this we can take
whatever function is deemed appropriate. For some types of systematic error it could be close to the
ideal case of a delta function centred about unity. Many reported systematics are, however, at best rough
guesses, and one could easily imagine a functionπs(s) with a mean of unity but a standard deviation
of, say,0.5 or more. Here we show examples using a Gamma distribution forπs(s), which results in
substantially longer tails for the priorπb(b) than those of the Gaussian. This can be seen in Fig. 5(a),
which showsln πb(b) for different values of the standard deviation ofπs(s), σs. Related studies using
an inverse Gamma distribution can be found in [12, 13], whichhave the advantage that the posterior pdf
can be written down in closed form.
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Fig. 5: The log of the prior pdf for a bias
parameterb for different values of the stan-
dard deviation ofπs(s).

Using a prior for the biases with tails longer than those of a Gaussian results in a reduced sensitivity
to outliers, which arise when an experimenter overlooks an important source of systematic uncertainty
in the estimated error of a measurement. As a simple test of this, consider the sample data shown in
Fig. 6(a). Suppose these represent four independent measurements of the same quantity, here a parameter
calledµ, and the goal is to combine the measurements to provide a single estimate ofµ. That is, we are
effectively fitting a horizontal line to the set of measuredy values, where the control variablex is just a
label for the measurements.
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In this example, suppose that each measurementyi, i = 1, . . . 4, is modelled as Gaussian dis-
tributed aboutµ, having a a standard deviationσstat = 0.1, and furthermore each measurement has a
systematic uncertaintyσsys = 0.1, which here is taken to refer to the standard deviation of theGaussian
component of the priorπb(bi). This is then folded together withπs(si) to get the full prior forbi using
Eq. (27), and the joint prior for the vector of bias parameters is simply the product of the correspond-
ing terms, as the systematic errors here are treated as beingindependent. These ingredients are then
assembled according to the recipe of Eqs. (23)–(26) to produce the posterior pdf forµ, p(µ|y).

Results of the exercise are shown in Fig. 6. In Fig. 6(a), the four measurementsyi are reasonably
consistent with each other. Figure 6(b) shows the corresponding posteriorp(µ|y) for two values ofσs,
which reflect differing degrees of non-Gaussian tails in theprior for the bias parameters,πb(bi). For
σs = 0, the prior for the bias is exactly Gaussian, whereas forσs = 0.5, the non-Gaussian tails are
considerably longer, as can be seen from the corresponding curves in Fig. 5(a). The posterior pdfs for
both cases are almost identical, as can be see in Fig. 6(a). Determining the mean and standard deviation
of the posterior for each giveŝµ = 1.000 ± 0.71 for the case ofσs = 0, andµ̂ = 1.000 ± 0.72 for
σs = 0.5. So assuming a 50% “error on the error” here has only inflates the error of the averaged result
by a small amount.
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Fig. 6: (a) Data values which are relatively consistent and (b) a data set with an outlier; the horizontal lines
indicate the posterior mean for two different values of the parameterσs. (c) and (d) show the posterior distributions
corresponding to (a) and (b), respectively. (The dashed andsolid curves in (a) and (c) overlap.)

Now consider the case where one of the measured values is substantially different from the other
three, as shown in Fig. 6(c). Here using the same priors for the bias parameters results in the posteriors
shown in Fig. 6(d). The posterior means and standard deviations areµ̂ = 1.125 ± 0.71 for the case of
σs = 0, andµ̂ = 1.093 ± 0.089 for σs = 0.5.

When we assume a purely Gaussian prior for the bias (σs = 0.0), the presence of the outlier
has in fact no effect on the width of the posterior. This is rather counter-intuitive and results from our
assumption of a Gaussian likelihood for the data and a Gaussian prior for the bias parameters. The
posterior mean is however pulled substantially higher thanthe three other measurements, which are
clustered around1.0. If the priorsπb(bi) have longer tails, as occurs when we takeσs = 0.5, then the
posterior is broader, and furthermore it is pulled less far by the outlier, as can be seen in Fig. 6(d).
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The fact that the width of the posterior distribution, whicheffectively tells us the uncertainty on
the parameter of interestµ, becomes coupled to the internal consistency of the data. Incontrast, in
the (frequentist) Least-Squares method, or in the Bayesianapproach using a Gaussian prior for the bias
parameters, the final uncertainty on the parameter of interest is unaffected by the presence of outliers.
And in many cases of practical interest, it would be in fact appropriate to conclude that the presence of
outliers should indeed increase one’s uncertainty about the final parameter estimates. The example shown
here can be generalized to cover a wide variety of model uncertainties by including prior probabilities
for an enlarged set of model parameters.

2.4 Summary on Bayesian methods

In these lectures we have seen how Bayesian methods can be used in parameter estimation, and this has
also given us the opportunity to discuss some aspects of Bayesian computation, including the important
tool of Markov Chain Monte Carlo. Although Bayesian and frequentist methods may often deliver results
that agree numerically, there is an important difference intheir interpretation. Furthermore, Bayesian
methods allow one to incorporate prior information that maybe based not on other measurements but
rather on theoretical arguments or purely subjective considerations. And as these considerations may
not find universal agreement, it is important to investigatehow the results of a Bayesian analysis would
change for a reasonable variation of the prior probabilities.

It is important to keep in mind that in the Bayesian approach,all information about the parameters
is encapsulated in the posterior probabilities. So if the analyst also wants to set upper limits or determine
intervals that cover the parameter with a specified probability, then this is a straightforward matter of
finding the parameter limits such that the integrated posterior pdf has the desired probability content. A
discussion of Bayesian methods to the important problem of setting upper limits on a Poisson parameter
are covered in [1] and references therein; we will not have time in these lectures to go into that question
here.

We will also unfortunately not have time to explore Bayesianmodel selection. This allows one
to quantify the degree to which the the data prefer one model over the other using a quantity called the
Bayes factor. These have not yet been widely used in particlephysics but should be kept in mind as
providing important complementary information to the corresponding outputs of Frequentist hypothesis
testing such asp-values. A brief description of Bayes factors can be found inRef. [1] and a more in-depth
treatment is given in Ref. [14].

3 Topics in multivariate analysis

In the second part of these lectures we will take a look at the important topic of multivariate analysis. In
depth information on this topic can be found in the textbooks[15, 16, 17, 18]. In a particle physics con-
text, multivariate methods are often used when selecting events of a certain type using some potentially
large number of measurable characteristics for each event.The basic framework we will use to examine
these methods is that of a frequentist hypothesis test.

The fundamental unit of data in a particle physics experiment is the “event”, which in most cases
corresponds to a single particle collision. In some cases itcould be instead a decay, and the picture does
not change much if we look, say, at individual particles or tracks. But to be concrete let us suppose
that we want to search for events from proton-proton collisions at the LHC that correspond to some
interesting “signal” process, such as supersymmetry.

When running at full intensity, the LHC should produce closeto a billion events per second. After
a quick sifting, the data from around 200 per second are recorded for further study, resulting in more
than a billion events per year. But only a tiny fraction of these are of potential interest. If one of the
speculative theories such as supersymmetry turns out to be realized in Nature, then this will result in a
subset of events having characteristic features, and the SUSY events will simply be mixed in randomly
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with a much larger number of Standard Model events. The relevant distinguishing features depend on
what new physics Nature chooses to reveal, but one might see,for example, highpT jets, leptons, missing
energy, etc.

Unfortunately, background processes (e.g., Standard model events) can often mimic these features
and one will not be able to say with certainty that a given event shows a clear evidence for something
new such as supersymmetry. For example, even Standard Modelevents can contain neutrinos which also
escape undetected. The typical amount and pattern of missing energy in these events differs on average,
however, from what a SUSY event would give, and so a statistical analysis can be applied to test whether
something besides Standard Model events are present.

In a typical analysis there is a class of event we are interested in finding (signal), and these, if
they exist at all, are mixed in with the rest of the events (background). The data for each event is some
collection of numbersx = (x1, . . . , xn) representing particle energies, momenta, etc. We will refer to
these as theinput variablesof the problem. And the probabilities are joint densities for x given the signal
(s) or background (b) hypotheses:f(x|s) andf(x|b).

To illustrate the general problem, consider the scatterplots shown in Fig. 7. These show the distri-
bution of two variables,x1 andx2, which represent two out of a potentially large number of quantities
measured for each event. The blue circles could represent the sought after signal events, and the red
triangles the background. In each of the three figures there is a decision boundary representing a possible
way of classifying the events.
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Fig. 7: Scatter plots of two variables corresponding to two hypotheses: signal and background. Event selection
could be based, e.g., on (a) cuts, (b) a linear boundary, (c) anonlinear boundary.

Figure 7(a) represents what is commonly called the “cut-based” approach. One selects signal
events by requiringx1 < c1 andx2 < c2 for some suitably chosen cut valuesc1 and c2. If x1 and
x2 represent quantities for which one has some intuitive understanding, then this can help guide one’s
choice of the cut values.

Another possible decision boundary is made with a diagonal cut as shown in Fig. 7(b). One can
show that for certain problems a linear boundary has optimalproperties, but in the example here, because
of the curved nature of the distributions, neither the cut-based nor the linear solution is as good as the
nonlinear boundary shown in Fig. 7(c).

The decision boundary is a surface in then-dimensional space of input variables, which can be
represented by an equation of the formy(x) = ycut, whereycut is some constant. We accept events as
corresponding to the signal hypothesis if they are on one side of the boundary, e.g.,y(x) ≤ ycut could
represent the acceptance region andy(x) > ycut could be the rejection region.

Equivalently we can use the functiony(x) as a scalartest statistic. Once its functional form is
specified, we can determine the pdfs ofy(x) under both the signal and background hypotheses,p(y|s)
andp(y|b). The decision boundary is now effectively a single cut on thescalar variabley, as illustrated

14



in Fig. 8.
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Fig. 8: Distributions of the scalar test
statistic y(x) under the signal and back-
ground hypotheses.

To quantify how good the event selection is, we can define theefficiencywith which one selects
events of a given type as the probability that an event will fall in the acceptance region. That is, the signal
and background efficiencies are

εs = P (accept event|s) =

∫

A
f(x|s) dx =

∫ ycut

−∞

p(y|s) dy , (28)

εb = P (accept event|b) =

∫

A
f(x|b) dx =

∫
∞

ycut

p(y|b) dy , (29)

where the region of integration A represents the acceptance-region.

Dividing the space of input variables into two regions whereone accepts or rejects the signal
hypothesis is essentially the language of a frequentist statistical test. If we regard background as the
“null hypothesis”, then the background efficiency is the same as what in a statistical context would be
called the significance level of the test, or the rate of “type-I errors”. Viewing the signal process as
the alternative, the signal efficiency is then what a statistician would call the power of the test; it is the
probability to reject the background hypothesis if in fact the signal hypothesis is true. Equivalently, this
is one minus the rate of “type-II error”.

The use of a statistical test to distinguish between two classes of events (signal and background),
comes up in different ways. Sometimes both event classes areknown to exist, and the goal is to select one
class (signal) for further study. For example, proton-proton collisions leading to the production of top
quarks are a well-established process. By selecting these events one can carry out precise measurements
of the top quark’s properties such as its mass. In other cases, the signal process could represent an
extension to the Standard Model, say, supersymmetry, whoseexistence is not yet established, and the
goal of the analysis is to see if one can do this. Rejecting theStandard Model with a sufficiently high
significance level amounts to discovering something new, and of course one hopes that the newly revealed
phenomena will provide important insights into how Nature behaves.

What the physicist would like to have is a test with maximal power with respect to a broad class
of alternative hypotheses. For two specific signal and background hypotheses, it turns out that there is a
well defined optimal solution to our problem. TheNeyman–Pearsonlemma states that one obtains the
maximum power relative for the signal hypothesis for a givensignificance level (background efficiency)
by defining the acceptance region such that, forx inside the region, thelikelihood ratio, i.e., the ratio of
pdfs for signal and background,

λ(x) =
f(x|s)
f(x|b)

, (30)
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is greater than or equal to a given constant, and it is less than this constant everywhere outside the
acceptance region. This is equivalent to the statement thatthe ratio (30) represents the test statistic with
which one obtains the highest signal efficiency for a given background efficiency, or equivalently, for a
given signal purity.

In principle the signal and background theories should allow us to work out the required functions
f(x|s) andf(x|b), but in practice the calculations are too difficult and we do not have explicit formulae
for these. What we have instead off(x|s) andf(x|b) are complicated Monte Carlo programs, that is, we
can samplex to produce simulated signal and background events. Becauseof the multivariate nature of
the data, wherex may contain at least several or perhaps even hundreds of components, it is a nontrivial
problem to construct a test with a power approaching that of the likelihood ratio.

In the usual case where the likelihood ratio (30) cannot be used explicitly, there exists a variety
of other multivariate classifiers that effectively separate different types of events. Methods often used
in HEP includeneural networksor Fisher discriminants. Recently, further classification methods from
machine-learning have been applied in HEP analyses; these includeprobability density estimation (PDE)
techniques,kernel-based PDE(KDE or Parzen window), support vector machines, anddecision trees.
Techniques such as “boosting” and “bagging” can be applied to combine a number of classifiers into
a stronger one with greater stability with respect to fluctuations in the training data. Descriptions of
these methods can be found in, e.g., the textbooks [15, 16, 17, 18] and in Proceedings of the PHYSTAT
conference series [19]. Software for HEP includes theTMVA [20] andStatPatternRecognition [21]
packages, although support for the latter has unfortunately been discontinued.

As we will not have the time to examine all of the methods mentioned above, in the following
section we look at a specific example of a classifier to illustrate some of the main ideas of a multivariate
analysis: the boosted decision tree (BDT).

3.1 Boosted decision trees

Boosted decision trees exploit relatively recent developments in machine learning and have gained sig-
nificant popularity in HEP. First in Sec. 3.1.1 we describe the basic idea of a decision tree, and then in
Sec. 3.1.2 we will say how the the technique of “boosting” canbe used to improve its performance.

3.1.1 Decision trees

A decision tree is defined by a collection of successive cuts on the set of input variables. To determine
the appropriate cuts, one begins with a sample ofN training events which are known to be either signal
or background., e.g., from Monte Carlo. The set ofn input variables measured for each event constitutes
a vectorx = (x1, . . . xn). Thus we haveN instances ofx, x1, . . .xN , as well as the correspondingN
true class labelsy1, . . . , yN . It is convenient to assign numerical values to the labels sothat, e.g.,y = 1
corresponds to signal andy = −1 for background.

In addition we will assume that each event can be assigned a weight, wi, with i = 1, . . . ,N . For
any subset of the events and for a set of weights, the signal fraction (purity) is taken to be

p =

∑
i∈swi∑

i∈swi +
∑

i∈b wi
, (31)

where s and b refer to the signal and background event types. The weights are not strictly speaking
necessary for a decision tree, but will be used in connectionwith boosting in Section 3.1.2. For a
decision tree without boosting we can simply take all the weights to be equal.

To quantify the degree of separation achieved by a classifierfor a selected subset of the events
one can use, for example, theGini coefficient[23], which historically has been used as a measure of
dispersion in economics and is defined as
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G = p(1 − p) . (32)

The Gini coefficient is zero if the selected sample is either pure signal or background. Another measure
is simply the misclassification rate,

ε = 1 − max(p, 1 − p) . (33)

The idea behind a decision tree is illustrated in Fig. 9, froman analysis by the MiniBooNE neutrino
oscillation experiment at Fermilab [22].
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< 500 cm ≥ 500 cm Fig. 9: Illustration of a decision tree used

by the MiniBoone experiment [22] (see
text).

One starts with the entire sample of training events in the root node, shown in the figure with 52
signal and 48 background events. Out of all of the possible input variables in the vectorx, one finds the
component that provides the best separation between signaland background by use of a single cut. This
requires a definition of what constitutes “best separation”, and there are a number of reasonable choices.
For example, for a cut that splits a set of eventsa into two subsetsb andc, one can define the degree of
separation through the weighted change in the Gini coefficients,

∆ = WaGa − WbGb − WcGc . (34)

where

Wa =
∑

i∈a

wi , (35)

and similarly forWb andWc. Alternatively one may use a quantity similar to (34) but with, e.g., the
misclassification rate (33) instead of the Gini coefficient.More possibilities can be found in Ref. [20].

For whatever chosen measure of degree of separation,∆, one finds the cut on the variable amongst
the components ofx that maximizes it. In the example of the MiniBooNE experiment shown in Fig. 9,
this happened to be a cut on the number of PMT hits with a value of 100. This splits the training sample
into the two daughter nodes shown in the figure, one of which isenhanced in signal and the other in
background events.

The algorithm requires a stopping rule based, e.g., on the number of events in a node or the
misclassification rate. If, for example, the number of events or the misclassification rate in a given node
falls below a certain threshold, then this defined as a terminal node or “leaf”. It is classified as a signal
or background leaf based on its predominant event type. In Fig. 9, for example, the node after the cut on
PMT hits with 4 signal and 37 background events is classified as a terminal background node.
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For nodes that have not yet reached the stopping criterion, one iterates the procedure and finds, as
before, the variable that provides the best separation witha single cut. In Fig. 9 this is an energy cut of
0.2 GeV. The steps are continued until all nodes reach the stopping criterion.

The resulting set of cuts effectively divides thex space into two regions: signal and background.
To provide a numerical output for the classifier we can define

f(x) =

{
1 x in signal region,

−1 x in background region.
(36)

Equation (36) defines a decision tree classifier. In this form, these tend to be very sensitive to
statistical fluctuations in the training data. One can easily see why this is, for example, if two of the
components ofx have similar discriminating power between signal and background. For a given training
sample, one variable may be found to give the best degree of separation and is chosen to make the cut,
and this affects the entire further structure of the tree. Ina different statistically independent sample
of training events, the other variable may be found to be better, and the resulting tree could look very
different. Boosting is a technique that can decrease the sensitivity of a classifier to such fluctuations, and
we describe this in the following section.

3.1.2 Boosting

Boosting is a general method of creating a set of classifiers which can be combined to give a new classifier
that is more stable and has a smaller misclassification rate than any individual one. It is often applied
to decision trees, precisely because they suffer from sensitivity to statistical fluctuations in the training
sample, but the technique can be applied to any classifier.

Let us suppose as above that we have a sample ofN training events, i.e.,N instances of the
data vector,x1, . . . ,xN , andN true class labelsy1, . . . , yN , with y = 1 for signal andy = −1 for
background. Also as above assume we haveN weightsw

(1)
1 , . . . , w

(1)
N , where the superscript(1) refers

to the fact that this is the first training set. We initially set the weights equal and normalized such that

N∑

i=1

w
(1)
i = 1 . (37)

The idea behind boosting is to create from the initial sample, a series of further training samples
which differ from the initial one in that the weights will be changed according to a specific rule. A
number of boosting algorithms have been developed, and these differ primarily in the rule used to update
the weights. We will describe the AdaBoost algorithm of Freund and Schapire [24], as it was one of the
first such algorithms and its properties have been well studied.

One begins with the initial training sample and from it derives a classifier. We have in mind here
a decision tree, but it could be any type of classifier for where the training employs the event weights.
The resulting function,f1(x) will have a certain misclassification rateε1. In general for thekth classifier
(i.e., based on thekth training sample), we can write the error rate as

εk =

N∑

i=1

w
(k)
i I(yifk(xi) ≤ 0) , (38)

whereI(X) = 1 if the Boolean expressionX is true, and is zero otherwise. We then assign a score to
the classifier based on its error rate. For the AdaBoost algorithm this is

αk = ln
1 − εk

εk
, (39)
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which is positive as long as the error rate is lower than 50%, i.e,. the classifier does better than random
guessing.

Having carried out these steps for the initial training sample, we define the second training sample
by updating the weights. More generally, the weights for step k + 1 are found from those for stepk by

w
(k+1)
i = w

(k)
i

e−αkfk(xi)yi/2

Zk
, (40)

where the factorZk is chosen so that the sum of the updated weights is equal to unity. Note that if
an event is incorrectly classified, then the true class labelyi and the valuefk(xi) have opposite signs,
and thus the new weights are greater than the old ones. Correctly classified events have their weights
decreased. This means that the updated training set will paymore attention in the next iteration to those
events that were not correctly classified, the idea being that it should try harder to get it right the next
time around.

After K iterations of this procedure one has classifiersf1(x), . . . , fK(x), each with a certain error
rate and score based on Eqs. (38) and (39). In the case of decision trees, the set of new trees is called a
forest. From these one defines an averaged classifier as

y(x) =

K∑

k=1

αkfk(x) . (41)

Equation (41) defines a boosted decision tree (or more generally, a boosted version of whatever classifier
was used).

One of the important questions to be addressed is how many boosting iterations to use. One can
show that for a sufficiently large number of iterations, a boosted decision tree will eventually classify all
of the events in the training sample correctly. Similar behaviour is found with any classification method
where one can control to an arbitrary degree the flexibility of the decision boundary. The user can arrange
so that the boundary twists and turns so as to get all of the events on the right side.

In the case of a neural network, for example, one can increasethe number of hidden layers, or
the number of nodes in the hidden layers; for a support vectormachine, one can adjust the width of the
kernel function and the regularization parameter to increase the flexibility of the boundary. An example
is shown in Fig. 10(a), where an extremely flexible classifierhas managed to enclose all of the signal
events and exclude all of the background.

Of course if we were now to take the decision boundary shown inFig. 10(a) and apply it to a
statistically independent data sample, there is no reason to believe that the contortions that led to such
good performance on the training sample will still work. This can be seen in Fig. 10(b), which shows the
same boundary with a new data sample. In this case the classifier is said to beovertrained. Its error rate
calculated from the same set of events used to train the classifier underestimates the rate on a statistically
independent sample.

To deal with overtraining, one estimates the misclassification rate not only with the training data
sample but also with a statistically independent test sample. We can then plot these rates as a function
of the parameters that regulate the flexibility of the decision boundary, e.g., the number of boosting
iterations used to form the BDT. For a small number of iterations, one will find in general that the error
rates for both samples drop. The error rate based on the training sample will continue to drop, eventually
reaching zero. But at some point the error rate from the test sample will cease to decrease and in general
will increase. One chooses the architecture of the classifier (number of boosting iterations, number of
nodes or layers in a neural network, etc.) to minimize the error rate on the test sample.

As the test sample is used to choose between a number of competing architectures based on the
minimum observed error rate, this in fact gives biased estimate of the true error rate. In principle one
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Fig. 10: Scatter plot of events of two types and the decision boundarydetermined by a particularly flexible classi-
fier. Plot (a) shows the events used to train the classifier, and (b) shows an independent sample of test data.

should use a third validation sample to obtain an unbiased estimate of the error rate. In many cases the
bias is small and this last step is omitted, but one should be aware of its potential existence.

In some applications, the training data is relatively inexpensive; one simply generates more events
with Monte Carlo. But often event generation can take a prohibitively long time and one may be reluctant
to use only a fraction of the events for training and the otherhalf for testing. In such cases, procedures
such ascross validation(see, e.g., [15, 16]) can be used where the available events are partitioned in a
number of different ways into training and test samples and the results averaged.

Boosted decision trees have become increasingly popular inparticle physics in recent years. One
of their advantages is that they are relatively insensitiveto the number of input variables used in the
data vectorx. Components that provide little or no separation between signal and background are rarely
chosen as for the cut that provides separation, i.e., to split the tree, and thus they are effectively ignored.
Decision trees have no difficulty in dealing with different types of data; these can be real, integer, or
they can simply be labels for which there is no natural ordering (categorical data). Furthermore, boosted
decision trees are surprisingly insensitive to overtraining. That is, although the error rate on the test
sample will not decrease to zero as one increases the number of boosting iterations (as is the case for the
training sample), it tends not to increase. Further discussion of this point can be found in Ref. [25].

3.2 Summary on multivariate methods

The boosted decision tree is an example of a relatively modern development in Machine Learning that
has attracted substantial attention in HEP. Support VectorMachines (SVMs) represent another such de-
velopment and will no doubt also find further application in particle physics; further discussion on SVMs
can be found in [15, 16] and references therein. Linear classifiers and neural networks will no doubt con-
tinue to play an important role, as will probability densityestimation methods used to approximate the
likelihood ratio.

Multivariate methods have the advantage of exploiting as much information as possible out of all
of the quantities measured for each event. In an environmentof competition between experiments, this
can be a natural motivation to use them. Some caution should be exercised, however, before placing too
much faith in the performance of a complicated classifier, tosay nothing of a combination of complicated
classifiers. These may have decision boundaries that indeedexploit nonlinear features of the training
data, often based on Monte Carlo. But if these features have never been verified experimentally, then
they may or may not be present in the real data. There is thus the risk of, say, underestimating the rate
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of background events present in a region where one looks for signal, which could lead to a spurious
discovery. Simpler classifiers are not immune to such dangers either, but in such cases the problems may
be easier to control and mitigate.

One should therefore keep in mind the following quote, oftenheard in the multivariate analysis
community:

Keep it simple. As simple as possible. Not any simpler.
— A. Einstein

To this we can add the more modern variant,

If you believe in something you don’t understand, you suffer, . . .
—Stevie Wonder

Having made the requisite warnings, however, it seems clearthat multivariate methods will play
an important role in the discoveries we hope to make at the LHC. One can easily imagine, for example,
that 5-sigma evidence for New Physics from a highly performant, and complicated, classifier would be
regarded by the community with some scepticism. But if this is backed up by, say, 4-sigma significance
from a simpler, more transparent analysis, then the conclusion would be more easily accepted, and the
team that pursues both approaches may well win the race.

4 Summary and conclusions

In these lectures we have looked at two topics in statistics,Bayesian methods and multivariate analysis,
which will play an important role in particle physics in the coming years. Bayesian methods provide
important tools for analyzing systematic uncertainties, where prior information may be available that
does not necessarily stem solely from other measurements, but rather from theoretical arguments or
other indirect means. The Bayesian framework allows one to investigate how the posterior probabilities
change upon variation of the prior probabilities. Through this type of sensitivity analysis, a Bayesian
result becomes valuable to the broader scientific community.

As experiments become more expensive and the competition more intense, one will always be
looking for ways to exploit as much information as possible from the data. Multivariate methods provide
a means to achieve this, and advanced tools such as boosted decision trees have in recent years become
widely used. And while their use will no doubt increase as theLHC experiments mature, one should
keep in mind that a simple analysis also has its advantages. As one studies the advanced multivariate
techniques, however, their properties become more apparent and the community will surely find ways of
using them so as to maximize the benefits without excessive risk.
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