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Quick review of probablility



G. Cowan CERN Academic Training 2010 / Statistics for the LHC / Lecture 1 4

Frequentist Statistics − general philosophy 

In frequentist statistics, probabilities are associated only with

the data, i.e., outcomes of repeatable observations.

Probability = limiting frequency

Probabilities such as

P (Higgs boson exists), 

P (0.117 < as < 0.121), 

etc. are either 0 or 1, but we don‟t know which.

The tools of frequentist statistics tell us what to expect, under

the assumption of certain probabilities, about hypothetical

repeated observations.

The preferred theories (models, hypotheses, ...) are those for 

which our observations would be considered „usual‟.
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Bayesian Statistics − general philosophy 

In Bayesian statistics, interpretation of probability extended to

degree of belief (subjective probability).  Use this for hypotheses:

posterior probability, i.e., 

after seeing the data

prior probability, i.e.,

before seeing the data

probability of the data assuming 

hypothesis H (the likelihood)

normalization involves sum 

over all possible hypotheses

Bayesian methods can provide more natural treatment of  non-

repeatable phenomena:  

systematic uncertainties, probability that Higgs boson exists,...

No golden rule for priors (“if-then” character of Bayes‟ thm.)
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Hypotheses

A hypothesis H specifies the probability for the data, i.e., the 

outcome of the observation, here symbolically: x.

x could be uni-/multivariate, continuous or discrete.

E.g. write x ~ f (x|H).

x could represent e.g. observation of a single particle, 

a single event, or an entire “experiment”.

Possible values of x form the sample space S (or “data space”).

Simple (or “point”) hypothesis:  f (x|H) completely specified.

Composite hypothesis:  H contains unspecified parameter(s).

The probability for x given H is also called the likelihood of

the hypothesis, written L(x|H).
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Definition of a test

Consider e.g. a simple hypothesis H0 and alternative H1.

A test of H0 is defined by specifying a critical region W of the

data space such that there is no more than some (small) probability

a, assuming H0 is correct,  to observe the data there, i.e.,

P(x  W | H0 ) ≤ a

If x is observed in the critical region, reject H0.

a is called the size or significance level of the test.

Critical region also called “rejection” region; complement is

acceptance region.
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Definition of a test (2)

But in general there are an infinite number of possible critical 

regions that give the same significance level a.

So the choice of the critical region for a test of H0 needs to take 

into account the alternative hypothesis H1.

Roughly speaking, place the critical region where there is a low 

probability to be found if H0 is true, but high if H1 is true:
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Rejecting a hypothesis

Note that rejecting H0 is not necessarily equivalent to the

statement that we believe it is false and H1 true.  In frequentist

statistics only associate probability with outcomes of repeatable

observations (the data).

In Bayesian statistics, probability of the hypothesis (degree

of belief) would be found using Bayes‟ theorem:

which depends on the prior probability p(H). 

What makes a frequentist test useful is that we can compute

the probability to accept/reject a hypothesis assuming that it

is true, or assuming some alternative is true.
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Type-I, Type-II errors 

Rejecting the hypothesis H0 when it is true is a Type-I error.  

The maximum probability for this is the size of  the test:

P(x  W | H0 ) ≤ a

But we might also accept H0 when it is false, and an alternative 

H1 is true.

This is called a Type-II error, and occurs with probability

P(x  S - W | H1 ) = b

One minus this is called the power of the test with respect to

the alternative H1:

Power = 1 - b
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Physics context of a statistical test

Event Selection:  the event types in question are both known to exist.

Example:  separation of different particle types (electron vs muon)

or known event types (ttbar vs QCD multijet).

Use the selected sample for further study.

Search for New Physics:  the null hypothesis H0 means Standard Model 

events, and the alternative H1 means "events of a type whose existence 

is not yet established" (to establish or exclude the signal model is the goal

of the analysis).

Many subtle issues here, mainly related to the heavy burden

of proof required to establish presence of a new phenomenon.

The optimal statistical test  for a search is closely related to that used for 

event selection.
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Suppose we want to discover this…

high p
T

muons

high p
T

jets 
of hadrons

missing transverse energy

p p

SUSY event (ATLAS simulation):
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But we know we‟ll have lots of this…

SM event also has high  
p

T
jets and muons, and 

missing transverse energy.

→ can easily mimic a SUSY 

event and thus constitutes a

background.

ttbar event (ATLAS simulation)
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For each reaction we consider we will have a hypothesis for the

pdf of     , e.g., 

Example of a multivariate statistical test

Suppose the result of a measurement for an individual event 

is a collection of numbers

x1 = number of muons,

x2 = mean pt of jets,

x3 = missing energy, ...

follows some n-dimensional joint pdf, which depends on 

the type of event produced, i.e., was it 

etc.

Often call H0 the background hypothesis (e.g. SM events);

H1, H2, ... are possible signal hypotheses.
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Defining a multivariate critical region

Each event is a point in x-space; critical region is now defined

by a „decision boundary‟ in this space.

What is best way to determine the decision boundary?

W

H1

H0

Perhaps with „cuts‟:
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Other multivariate decision boundaries

Or maybe use some other sort of decision boundary:

W

H1

H0

W

H1

H0

linear or nonlinear
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Multivariate methods

Many new (and some old) methods for finding decision boundary:

Fisher discriminant

Neural networks

Kernel density methods

Support Vector Machines

Decision trees

Boosting

Bagging

New software for HEP, e.g.,

TMVA , Höcker, Stelzer, Tegenfeldt, Voss, Voss, physics/0703039

For more see e.g. references at end of this lecture.

For the rest of these lectures, I will focus on other aspects of 

tests, e.g., discovery significance and exclusion limits.
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Test statistics

The decision boundary can be defined by an equation of the form

We can work out the pdfs

Decision boundary is now a 

single „cut‟ on t, defining 

the critical region.

So for an n-dimensional 

problem we have a 

corresponding 1-d problem.

where t(x1,…, xn) is a scalar test statistic.
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Significance level and power

Probability to reject H0 if it is true 

(type-I error):

(significance level)

Probability to accept H0 if H1 is 

true (type-II error):

(1 - b = power)
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Signal/background efficiency

Probability to reject background hypothesis for 

background event (background efficiency):

Probability to accept a signal event

as signal (signal efficiency):
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Purity of event selection

Suppose only one background type b; overall fractions of signal

and background events are ps and pb (prior probabilities).

Suppose we select signal events with t > tcut.  What is the

„purity‟ of our selected sample?

Here purity means the probability to be signal given that

the event was accepted.  Using Bayes‟ theorem we find:

So the purity depends on the prior probabilities as well as on the

signal and background efficiencies.
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Constructing a test statistic

How can we choose a test‟s critical region in an „optimal way‟?

Neyman-Pearson lemma states:

To get the highest power for a given significance level in a test

H0, (background) versus H1, (signal) (highest es for a given eb)

choose the critical (rejection) region such that

where c is a constant which determines  the power.

Equivalently, optimal scalar test statistic is

N.B. any monotonic function of this is leads to the same test.



G. Cowan CERN Academic Training 2010 / Statistics for the LHC / Lecture 1 23

Proof of Neyman-Pearson lemma

We want to determine the critical region W that maximizes the 

power

subject to the constraint

First, include in W all points where P(x|H0) = 0, as they contribute

nothing to the size, but potentially increase the power.
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Proof of Neyman-Pearson lemma (2)

For P(x|H0) ≠ 0 we can write the power as

The ratio of 1 – b to a is therefore

which is the average of the likelihood ratio P(x|H1) / P(x|H0)  over

the critical region W, assuming H0.

(1 – b) / a is thus maximized if W contains the part of the sample

space with the largest values of the likelihood ratio.
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Testing significance / goodness-of-fit

Suppose hypothesis H predicts pdf 

observations

for a set of

We observe a single point in this space:

What can we say about the validity of H in light of the data?

Decide what part of the 

data space represents less 

compatibility with H than 

does the point less 

compatible

with H

more 

compatible

with H

(Not unique!)
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p-values

where p (H) is the prior probability for H.

Express level of agreement between data and H with p-value:

p = probability, under assumption of H, to observe data with 

equal or lesser compatibility with H relative to the data we got. 

This is not the probability that H is true!

In frequentist statistics we don‟t talk about P(H) (unless H

represents a repeatable observation). In Bayesian statistics we do; 

use Bayes‟ theorem to obtain

For now stick with the frequentist approach; 

result is p-value, regrettably easy to misinterpret as P(H).
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Significance from p-value

Often define significance Z as the number of standard deviations

that a Gaussian variable would fluctuate in one direction

to give the same p-value.

1 - TMath::Freq

TMath::NormQuantile

CERN Academic Training 2010 / Statistics for the LHC / Lecture 1
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The significance of an observed signal

Suppose we observe n events; these can consist of:

nb events from known processes (background)

ns events from a new process (signal)

If ns, nb are Poisson r.v.s with means s, b, then n = ns + nb

is also Poisson, mean = s + b:

Suppose b = 0.5, and we observe nobs = 5.  Should we claim

evidence for a new discovery?  

Give p-value for hypothesis s = 0:
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When to publish

HEP folklore is to claim discovery when p = 2.9  10-7,

corresponding to a significance Z = 5.

This is very subjective and really should depend on the 

prior probability of the phenomenon in question, e.g.,

phenomenon        reasonable p-value for discovery

D0D0 mixing ~0.05

Higgs ~ 10-7 (?)

Life on Mars ~10-10

Astrology ~10-20

One should also consider the degree to which the data are

compatible with the new phenomenon, not only the level of

disagreement with the null hypothesis; p-value is only first step!

CERN Academic Training 2010 / Statistics for the LHC / Lecture 1
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Distribution of  the p-value

The p-value is a function of the data, and is thus itself a random

variable with a given distribution.  Suppose the p-value of H is 

found from a test statistic t(x) as
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The pdf of pH under assumption of H is

In general for continuous data,  under 

assumption of H, pH ~ Uniform[0,1]

and is concentrated toward zero for 

Some (broad) class of alternatives. pH

g(pH|H)

0 1

g(pH|H′)
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Using a p-value to define test of H0

So the probability to find the p-value of H0, p0, less than a is

CERN Academic Training 2010 / Statistics for the LHC / Lecture 1

We started by defining critical region in the original data

space (x), then reformulated this in terms of a scalar test 

statistic t(x).

We can take this one step further and define the critical region 

of a test of H0 with size a as the set of data space where p0 ≤ a.

Formally the p-value relates only to H0, but the resulting test will

have a given power with respect to a given alternative H1.
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Quick review of parameter estimation

The parameters of a pdf are constants that characterize

its shape, e.g.

random variable

Suppose we have a sample of observed values:

parameter

We want to find some function of the data to estimate the 

parameter(s):

← estimator written with a hat

Sometimes we say „estimator‟ for the function of x1, ..., xn;

„estimate‟ for the value of the estimator with a particular data set.
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Properties of estimators

If we were to repeat the entire measurement, the estimates

from each would follow a pdf:

biasedlarge

variance

best

We want small (or zero) bias (systematic error):

→ average of repeated measurements should tend to true value.

And we want a small variance (statistical error):

→ small bias & variance are in general conflicting criteria
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The likelihood function

Suppose the entire result of an experiment (set of measurements)

is a collection of numbers x, and suppose the joint pdf for

the data x is a function that depends on a set of parameters q:

Now evaluate this function with the data obtained and

regard it as a function of the parameter(s).  This is the 

likelihood function:

(x constant)
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The likelihood function for i.i.d.*. data

Consider n independent observations of x:  x1, ..., xn,  where 

x follows f (x; q).  The joint pdf for the whole data sample is:

In this case the likelihood function is

(xi constant)

* i.i.d. = independent and identically distributed
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Maximum likelihood estimators

If the hypothesized q is close to the true value, then we expect 

a high probability to get data like that which we actually found.

So we define the maximum likelihood (ML) estimator(s) to be 

the parameter value(s) for which the likelihood is maximum.

ML estimators not guaranteed to have any „optimal‟

properties, (but in practice they‟re very good).
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Wrapping up lecture 1

General framework of a statistical test:

Divide data spaced into two regions; depending on

where data are then observed, accept or reject hypothesis. 

Properties:

significance level (rate of Type-I error)

power (one minus rate of Type-II error)

Significance tests (also for goodness-of-fit):

p-value = probability to see level of incompatibility

between data and hypothesis equal to or greater than

level found with the actual data.

Parameter estimation

Maximize likelihood function → ML estimator
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Extra slides
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p-value example:  testing whether a coin is „fair‟

i.e. p = 0.0026 is the probability of obtaining such a bizarre

result (or more so) „by chance‟, under the assumption of H.

Probability to observe n heads in N coin tosses is binomial:

Hypothesis H:  the coin is fair (p = 0.5).

Suppose we toss the coin N = 20 times and get n = 17 heads.

Region of data space with equal or lesser compatibility with 

H relative to n = 17 is:  n = 17, 18, 19, 20, 0, 1, 2, 3.  Adding

up the probabilities for these values gives:
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ML example:  parameter of exponential pdf

Consider exponential pdf,

and suppose we have i.i.d. data,

The likelihood function is

The value of t for which L(t) is maximum also gives the 

maximum value of its logarithm (the log-likelihood function):
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ML example:  parameter of exponential pdf (2)

Find its maximum by setting 

→

Monte Carlo test:  

generate 50  values

using t = 1:

We find the ML estimate:
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Variance of estimators from information inequality

The information inequality (RCF) sets a lower bound on the 

variance of any estimator (not only ML):

Often the bias b is small, and equality either holds exactly or

is a good approximation (e.g. large data sample limit).   Then,

Estimate this using the 2nd derivative of  ln L at its maximum:
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Information inequality for n parameters

Suppose we have estimated n parameters   

The (inverse) minimum variance bound is given by the 

Fisher information matrix:

The information inequality then states that V - I-1 is a positive

semi-definite matrix, where                                  Therefore

Often use I-1 as an approximation for covariance matrix, 

estimate using e.g. matrix of 2nd derivatives at maximum of L.
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Extended ML

Sometimes regard n not as fixed, but as a Poisson r.v., mean n.

Result of experiment defined as: n, x1, ..., xn.

The (extended) likelihood function is:

Suppose theory gives n = n(q), then the log-likelihood is 

where C represents terms not depending on q.
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Extended ML (2)

Extended ML uses more info → smaller errors for 

Example:  expected number of events 

where the total cross section s(q) is predicted as a function of

the parameters of a theory, as is the distribution of a variable x. 

If n does not depend on q but remains a free parameter,

extended ML gives: 

Important e.g. for anomalous couplings in e+e- → W+W-
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Extended ML example

Consider two types of events (e.g., signal and background) each 

of which predict a given pdf for the variable x:  fs(x) and fb(x).

We observe a mixture of the two event types, signal fraction = q, 

expected total number = n, observed total number = n.

Let goal is to estimate ms, mb.

→
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Extended ML example (2)

Maximize log-likelihood in 

terms of ms and mb:

Monte Carlo example

with combination of

exponential and Gaussian:

Here errors reflect total Poisson

fluctuation as well as that in 

proportion of signal/background.
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Extended ML example:  an unphysical estimate

A downwards fluctuation of data in the peak region can lead

to even fewer events than what would be obtained from

background alone.

Estimate for ms here pushed

negative (unphysical).

We can let this happen as 

long as the (total) pdf stays

positive everywhere.
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Unphysical estimators (2) 

Here the unphysical estimator is unbiased and should 

nevertheless be reported, since average of a large number of 

unbiased estimates converges to the true value (cf. PDG).

Repeat entire MC

experiment many times, 

allow unphysical estimates: 
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Example of a "cut-based" study
In the 1990s, the CDF experiment at Fermilab (Chicago) measured

the number of hadron jets produced in proton-antiproton collisions

as a function of their momentum perpendicular to the beam direction:

Prediction low relative to data for

very high transverse momentum.

"jet" of

particles
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High pT jets = quark substructure?
Although the data agree remarkably well with the Standard Model

(QCD) prediction overall, the excess at high pT appears significant:

The fact that the variable is "understandable" leads directly to a plausible 

explanation for the discrepancy, namely, that quarks could possess an 

internal substructure.

Would not have been the case if the variable plotted was a complicated 

combination of many inputs.
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High pT jets from parton model uncertainty

Furthermore the physical understanding of the variable led one

to a more plausible explanation, namely, an uncertain modeling of

the quark (and gluon) momentum distributions inside the proton.

When model adjusted, discrepancy largely disappears:

Can be regarded as a "success" of the cut-based approach.  Physical

understanding of output variable led to solution of apparent discrepancy.


