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Outline

Lecture 1:  Introduction and basic formalism

Probability, statistical tests, parameter estimation.

Lecture 2:  Discovery

Quantifying discovery significance and sensitivity

Systematic uncertainties (nuisance parameters)

Lecture 3:  Exclusion limits

Frequentist and Bayesian intervals/limits

Lecture 4:  Further topics

More on Bayesian methods / model selection
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Interval estimation — introduction

Often use +/- the estimated standard deviation of the estimator.

In some cases, however, this is not adequate:

estimate near a physical boundary, 

e.g., an observed event rate consistent with zero.

In addition to a ‗point estimate‘ of a parameter we should report 

an interval reflecting its statistical uncertainty.  

Desirable properties of such an interval may include (PDG):

communicate objectively the result of the experiment;

have a given probability of containing the true parameter;

provide information needed to draw conclusions about

the parameter possibly incorporating stated prior beliefs.

We will look at both Frequentist and Bayesian intervals.



G. Cowan CERN Academic Training 2010 / Statistics for the LHC / Lecture 3 4

Frequentist confidence intervals

Consider an estimator for a parameter q and an estimate

We also need for all possible q its sampling distribution

Specify upper and lower tail probabilities, e.g., a = 0.05, b = 0.05,

then find functions ua(q) and vb(q) such that:
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Confidence interval from the confidence belt

Find points where observed 

estimate intersects the 

confidence belt.  

The region between ua(q) and vb(q) is called the confidence belt.

This gives the confidence interval [a, b]

Confidence level = 1 - a - b = probability for the interval to

cover true value of the parameter (holds for any possible true q).
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Confidence intervals in practice

The recipe to find the interval [a, b] boils down to solving

→ a is hypothetical value of q such that 

→ b is hypothetical value of q such that
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Confidence intervals by inverting a test

Confidence intervals for a parameter q can be found by 

defining a test of the hypothesized value q (do this for all q): 

Specify values of the data that are ‗disfavoured‘ by q

(critical region) such that P(data in critical region) ≤ g

for a prespecified g, e.g., 0.05 or 0.1.

If data observed in the critical region, reject the value q .

Now invert the test to define a confidence interval as:

set of q values that would not be rejected in a test of

size g (confidence level is 1 - g ).

The interval will cover the true value of q with probability ≥ 1 - g.

Equivalent to confidence belt construction; confidence belt is 

acceptance region of a test.

G. Cowan 
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Relation between confidence interval and p-value

Equivalently we can consider a significance test for each

hypothesized value of q, resulting in a p-value, pq..  

If pq < g, then we reject q. 

The confidence interval at CL = 1 – g consists of those values of 

q that are not rejected.

E.g. an upper limit on q is the greatest value for which pq ≥ g. 

In practice find by setting pq = g and solve for q.

G. Cowan 
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Meaning of a confidence interval
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Central vs. one-sided confidence intervals

Intervals from other types of tests (e.g. likeihood ratio) can have 

a, b variable depending on the parameter, but fixed 1 – a – b.
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Setting limits:  Poisson data with background

Count n events, e.g., in fixed time or integrated luminosity.

s = expected number of signal events

b = expected number of background events

n ~ Poisson(s+b):

Suppose the number of events found is roughly equal to the

expected number of background events, e.g., b = 4.6 and we 

observe nobs = 5 events.

The evidence for the presence of signal events is not

statistically significant,

→ set upper limit on the parameter s.
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Upper limit for Poisson parameter

Find the hypothetical value of s such that there is a given small

probability, say, g = 0.05, to find as few events as we did or less:

Solve numerically for s = sup, this gives an upper limit on s at a

confidence level of 1-g.

Example:  suppose b = 0 and we find nobs = 0.  For 1-g = 0.95,

→
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Calculating Poisson parameter limits

To solve for slo, sup, can exploit relation to c2 distribution:

Quantile of c2 distribution

For low fluctuation of n this 

can give negative result for sup; 

i.e. confidence interval is empty.
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Limits near a physical boundary

Suppose e.g. b = 2.5 and we observe n = 0.  

If we choose CL = 0.9, we find from the formula for sup

Physicist:  

We already knew s ≥ 0 before we started; can‘t use zero-

length interval to report result of expensive experiment!

Statistician:

The interval is designed to cover the true value only 90%

of the time — this was clearly not one of those times.

Not uncommon dilemma when limit of parameter is close to a 

physical boundary.
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Expected limit for s = 0

Physicist:  I should have used CL = 0.95 — then sup = 0.496

Even better:  for CL = 0.917923 we get sup = 10-4 !

Reality check:  with b = 2.5, typical Poisson fluctuation in n is

at least √2.5 = 1.6.  How can the limit be so low?

Look at the mean (or median) limit 

for the no-signal hypothesis (s = 0)

(sensitivity).

Distribution of 95% CL limits

with b = 2.5, s = 0.

Mean upper limit = 4.44
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Likelihood ratio limits (Feldman-Cousins)

Define likelihood ratio for hypothesized parameter value s:

Here       is the ML estimator, note 

Critical region defined by low values of likelihood ratio.

Resulting intervals can be one- or two-sided (depending on n).

(Re)discovered for HEP by Feldman and Cousins, 

Phys. Rev. D 57 (1998) 3873.
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Feldman-Cousins intervals for Poisson mean

Upper/lower edge of intervals for s from n ~ Poisson(s+b)

(On plots, m = s.) 

Feldman & Cousins, PRD 57 (1998) 3873
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More on intervals from LR test (Feldman-Cousins)

Caveat with coverage: suppose we find  n >> b.

Usually one then quotes a measurement:

If, however, n isn‘t large enough to claim discovery, one

sets a limit on s.

FC pointed out that if this decision is made based on n, then

the actual coverage probability of the interval can be less than

the stated confidence level (‗flip-flopping‘).

FC intervals remove this, providing a smooth transition from

1- to 2-sided intervals, depending on  n.

But, suppose FC gives e.g. 0.1 < s < 5 at 90% CL, 

p-value of s=0 still substantial.  
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Generic search (again)
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Recall from yesterday the prototype analysis with a primary

measured histogram where we search for signal:

Possibly as well a subsidiary measurement to constrain some

of the nuisance parameters (e.g., background rate/shape).

Model ni, mi as Poisson distributed; likelihood function is
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Profile likelihood ratio for upper limits

For purposes of setting an upper limit on m use
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Note for purposes of setting an upper limit, one does not regard

an upwards fluctuation of the data as representing incompatibility

with the hypothesized m.

Note also here we allow the estimator for m be negative

(but                  must be positive).

where
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Alternative test statistic for upper limits

Assume physical signal model has m > 0, therefore if estimator

for m comes out negative, the closest physical model has m = 0.

Therefore could also measure level of discrepancy between data 

and hypothesized m with
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This is in fact the test statistic used in the Higgs CSC combination.

Performance not identical to but very close to qm (of previous slide).

qm is simpler in important ways (Fayard, Nisati et al.)
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Relation between test statistics and       
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Assuming the Wald approximation for – 2lnl(m), qm and qm

both have monotonic relation with m. 

~

And therefore quantiles

of qm, qm can be obtained

directly from those 

of m (which is Gaussian).ˆ

̃

~
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Distribution of qm

Similar results for qm
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Distribution of qm
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Similar results for qm̃

̃
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Monte Carlo test of asymptotic formulae 
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O. Vitells,

E. Gross
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Example:  exclusion sensitivity
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Median p-value of m = 1 hypothesis versus Higgs mass assuming

background-only data (ATLAS, arXiv:0901.0512).
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The ―CLs‖ issue

When the b and s+b hypotheses are well separated, there is 

a high probability of excluding the s+b hypothesis (ps+b < a) if in

fact the data contain background only (power of test of s+b 

relative to the alternative b is high).

f (Q|b)    

f (Q| s+b)    

ps+b
pb
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The ―CLs‖ issue (2)

But if the two distributions are close to each other (e.g., we test a 

Higgs mass far above the accessible kinematic limit) then there is 

a non-negligible probability of rejecting s+b even though we have 

low sensitivity (test of s+b low power relative to b).

f (Q|b)    
f (Q|s+b)    

ps+bpb

In limiting case of no

sensitivity, the distri-

butions coincide and 

the probability of 

exclusion = a (e.g. 0.05).

But we should not regard

a model as excluded if we

have no sensitivity to it!
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The CLs solution
The CLs solution (A. Read et al.) is to base the test not on

the usual p-value (CLs+b), but rather to divide this by CLb

(one minus the background of the b-only hypothesis, i.e.,

Define:

Reject s+b 

hypothesis if: Reduces ―effective‖ p-value  when the two

distributions become close (prevents 

exclusion if sensitivity is low).

f (q|b)    
f (q|s+b)    

CLs+b

= ps+b

1-CLb

= pb
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CLs discussion
In the CLs method the p-value is reduced according to the

recipe

Statistics community does not smile upon ratio of p-values

An alternative would to regard parameter m as excluded if:

(a) p-value of m < 0.05

(b) power of test of m with respect to background-only

exceeds a specified threshold 

i.e. ―Power Constrained Limits‖.  Coverage is 1-a if one is

sensitive to the tested parameter (sufficient power) otherwise 

never exclude (coverage is then 100%).

Ongoing study.  In any case should produce CLs result for 

purposes of comparison with other experiments.
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Wrapping up lecture 3

General concept of a confidence interval

Constructed to cover true value of the parameter with

specified probability.  

Interval is random, not the parameter.

Intervals (limits) from inversion of LR test.

CLs issue:  

In case of no sensitivity, false exclusion rate = 1 - CL 

CLs solution: ps → ps / (1 – pb)

Alternative solution:  exclude parameter only if power of

test exceeds minimum threshold.

Next:  Bayesian limits, more on systematics
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Extra slides
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Intervals from the likelihood function 

In the large sample limit it can be shown for ML estimators:

defines a hyper-ellipsoidal confidence region,

If then

(n-dimensional Gaussian, covariance V)
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Distance between estimated and true q
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Approximate confidence regions from L(q ) 

So the recipe to find the confidence region with CL = 1-g is:

For finite samples, these are approximate confidence regions.

Coverage probability not guaranteed to be equal to 1-g ;

no simple theorem to say by how far off it will be (use MC).

Remember here the region is random, not the parameter.
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Example of interval from ln L(q ) 

For n=1 parameter, CL = 0.683, Qg = 1.
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Properties of upper limits

Upper limit sup vs. n Mean upper limit vs. s

Example:  take b = 5.0, 1 - g = 0.95

(N.B. here Feldman-Cousins ―upper-limit‖ refers to the 

upper edge of the interval, which can be two-sided.)
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Upper limit versus b

If n = 0 observed, should upper limit depend on b?

Classical:  yes

Bayesian:  no

FC:  yes

Feldman & Cousins, PRD 57 (1998) 3873
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Coverage probability of intervals

Because of discreteness of Poisson data, probability for interval

to include true value in general > confidence level (‗over-coverage‘)


