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Outline 
Lecture 1:  Introduction and basic formalism 

 Probability, statistical tests, parameter estimation. 

Lecture 2:  Discovery and Limits 
 Quantifying discovery significance and sensitivity 
 Frequentist and Bayesian intervals/limits 

Lecture 3:  More on discovery and limits 
 Bayesian limits 
 The Look-Elsewhere Effect 
 Dealing with nuisance parameters 
 Expected discovery significance 

Lecture 4:  Unfolding (deconvolution) 
 Correcting distributions for effects of smearing 
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The Bayesian approach to limits 
In Bayesian statistics need to start with ‘prior pdf’ π(θ), this  
reflects degree of belief about θ before doing the experiment. 

Bayes’ theorem tells how our beliefs should be updated in 
light of the data x: 

Integrate posterior pdf  p(θ | x) to give interval with any desired 
probability content.   

For e.g. n ~ Poisson(s+b), 95% CL upper limit on s from 
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Bayesian prior for Poisson parameter 
Include knowledge that s ≥0 by setting prior π(s) = 0 for s<0. 

Could try to reflect ‘prior ignorance’ with e.g.  

Not normalized but this is OK as long as L(s) dies off for large s. 

Not invariant under change of parameter — if we had used instead 
a flat prior for, say, the mass of the Higgs boson, this would  
imply a non-flat prior for the expected number of Higgs events. 

Doesn’t really reflect a reasonable degree of belief, but often used 
as a point of reference; 

or viewed as a recipe for producing an interval whose frequentist 
properties can be studied (coverage will depend on true s).  
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Bayesian interval with flat prior for s 
Solve numerically to find limit sup. 

For special case b = 0, Bayesian upper limit with flat prior 
numerically same as one-sided frequentist case (‘coincidence’).  

Otherwise Bayesian limit is 
everywhere greater than 
the one-sided frequentist limit,  
and here (Poisson problem) it  
coincides with the CLs limit. 

Never goes negative. 

Doesn’t depend on b if n = 0. 
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Priors from formal rules  
Because of difficulties in encoding a vague degree of belief 
in a prior, one often attempts to derive the prior from formal rules, 
e.g., to satisfy certain invariance principles or to provide maximum 
information gain for a certain set of measurements. 

 Often called “objective priors”  
 Form basis of Objective Bayesian Statistics 

The priors do not reflect a degree of belief (but might represent 
possible extreme cases).    

In Objective Bayesian analysis, can use the intervals in a 
frequentist way, i.e., regard Bayes’ theorem as a recipe to produce 
an interval with certain coverage properties.  
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Priors from formal rules (cont.)  
For a review of priors obtained by formal rules see, e.g., 

Formal priors have not been widely used in HEP, but there is 
recent interest in this direction, especially the reference priors 
of Bernardo and Berger; see e.g. 

L. Demortier, S. Jain and H. Prosper, Reference priors for high 
energy physics, Phys. Rev. D 82 (2010) 034002, arXiv:1002.1111. 

D. Casadei, Reference analysis of the signal + background model  
in counting experiments, JINST 7 (2012) 01012; arXiv:1108.4270. 



G. Cowan  CERN Academic Training 2012 / Statistics for HEP / Lecture 3 8 

Jeffreys’ prior 
According to Jeffreys’ rule, take prior according to 

where 

is the Fisher information matrix. 

One can show that this leads to inference that is invariant under 
a transformation of parameters. 

For a Gaussian mean, the Jeffreys’ prior is constant; for a Poisson  
mean µ it is proportional to 1/√µ.  
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Jeffreys’ prior for Poisson mean 

Suppose n ~ Poisson(µ).  To find the Jeffreys’ prior for µ, 

So e.g. for µ = s + b, this means the prior π(s) ~ 1/√(s + b),   
which depends on b.  Note this is not designed as a degree of  
belief  about s. 
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The Look-Elsewhere Effect 

Gross and Vitells, EPJC 70:525-530,2010, arXiv:1005.1891 

Suppose a model for a mass distribution allows for a peak at 
a mass m with amplitude µ.	



The data show a bump at a mass m0. 

How consistent is this 
with the no-bump (µ = 0) 
hypothesis? 
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p-value for fixed mass 
First, suppose the mass m0 of the peak was specified a priori. 

Test consistency of bump with the no-signal (µ = 0) hypothesis  
with e.g. likelihood ratio  

where “fix” indicates that the mass of the peak is fixed to m0. 

The resulting p-value  

gives the probability to find a value of tfix at least as great as 
observed at the specific mass m0. 
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p-value for floating mass 
But suppose we did not know where in the distribution to 
expect a peak. 

What we want is the probability to find a peak at least as  
significant as the one observed anywhere in the distribution. 

Include the mass as an adjustable parameter in the fit, test  
significance of peak using 

(Note m does not appear 
in the µ = 0 model.) 
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Distributions of tfix, tfloat 

For a sufficiently large data sample, tfix ~chi-square for 1 degree 
of freedom (Wilks’ theorem). 

For tfloat there are two adjustable parameters, µ and m, and naively 
Wilks theorem says tfloat ~ chi-square for 2 d.o.f. 

In fact Wilks’ theorem does 
not hold in the floating mass 
case because on of the 
parameters (m) is not-defined 
in the µ = 0 model. 

So getting tfloat distribution is 
more difficult. 

Gross and Vitells 
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Approximate correction for LEE 
We would like to be able to relate the p-values for the fixed and 
floating mass analyses (at least approximately). 

Gross and Vitells show the p-values are approximately related by 

where 〈N(c)〉 is the mean number “upcrossings” of  -2ln L in 
the fit range based on a threshold 

and where Zfix is the significance for the fixed mass case. 
So we can either carry out the full floating-mass analysis (e.g. use  
MC to get p-value), or do fixed mass analysis and apply a  
correction factor (much faster than MC). 

Gross and Vitells 
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Upcrossings of -2lnL 

〈N(c)〉 can be estimated  
from  MC (or the real  
data) using a much lower  
threshold c0: 

Gross and Vitells 

The Gross-Vitells formula for the trials factor requires 〈N(c)〉, 
the mean number  “upcrossings” of  -2ln L in the fit range based  
on a threshold c = tfix= Zfix

2. 
  

In this way 〈N(c)〉 can be 
estimated without need of 
large MC samples, even if  
the the threshold c is quite 
high. 
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Multidimensional look-elsewhere effect 
Generalization to multiple dimensions:  number of upcrossings 
replaced by expectation of Euler characteristic: 

Applications:  astrophysics (coordinates on sky), search for 
resonance of unknown mass and width, ... 

CERN Academic Training 2012 / Statistics for HEP / Lecture 3 

Vitells and Gross, Astropart. Phys. 35 (2011) 230-234; arXiv:1105.4355 



Remember the Look-Elsewhere Effect is when we test a single 
model (e.g., SM) with multiple observations, i..e, in mulitple 
places. 

Note there is no look-elsewhere effect when considering 
exclusion limits.    There we test specific signal models (typically 
once) and say whether each is excluded. 

With exclusion there is, however, the analogous issue of testing  
many signal models (or parameter values) and thus excluding  
some even in the absence of signal (“spurious exclusion”) 

Approximate correction for LEE should be sufficient, and one  
should also report the uncorrected significance. 

 “There's no sense in being precise when you don't even  
 know what you're talking about.” ––  John von Neumann 
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Summary on Look-Elsewhere Effect 

CERN Academic Training 2012 / Statistics for HEP / Lecture 3 



Common practice in HEP has been to claim a discovery if the  
p-value of the no-signal hypothesis is below 2.9 × 10-7,  
corresponding to a significance Z = Φ-1 (1 – p) = 5 (a 5σ effect). 

There a number of reasons why one may want to require such 
a high threshold for discovery: 

 The “cost” of announcing a false discovery is high. 

 Unsure about systematics. 

 Unsure about look-elsewhere effect. 

 The implied signal may be a priori highly improbable 
 (e.g., violation of Lorentz invariance). 

18 G. Cowan  

Why 5 sigma? 
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But the primary role of the p-value is to quantify the probability 
that the background-only model gives a statistical fluctuation 
as big as the one seen or bigger. 

It is not intended as a means to protect against hidden systematics 
or the high standard required for a claim of an important discovery. 

In the processes of establishing a discovery there comes a point 
where it is clear that the observation is not simply a fluctuation, 
but an “effect”, and the focus shifts to whether this is new physics 
or a systematic. 

Providing LEE is dealt with, that threshold is probably closer to 
3σ than 5σ. 

19 G. Cowan  

Why 5 sigma (cont.)? 
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Nuisance parameters 
In general our model of the data is not perfect: 

x  

L 
(x

|θ
) 

model:   

truth: 

Can improve model by including  
additional adjustable parameters. 

Nuisance parameter ↔ systematic uncertainty. Some point in the 
parameter space of the enlarged model should be “true”.   

Presence of nuisance parameter decreases sensitivity of analysis 
to the parameter of interest (e.g., increases variance of estimate). 
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p-values in cases with nuisance parameters 
Suppose we have a statistic qθ that we use to test a hypothesized 
value of a parameter θ, such that the p-value of θ is 

But what values of ν to use for f (qθ|θ, ν)? 
Fundamentally we want to reject θ only if pθ < α for all ν. 

 → “exact” confidence interval 
Recall that for statistics based on the profile likelihood ratio, the 
distribution f (qθ|θ, ν) becomes independent of the nuisance 
parameters in the large-sample limit. 
But in general for finite data samples this is not true; one may be 
unable to reject some θ values if all values of ν must be 
considered, even those strongly disfavoured by the data (resulting 
interval for θ “overcovers”). 
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Profile construction (“hybrid resampling”) 

Compromise procedure is to reject θ if pθ ≤ α where 
the p-value is computed assuming the value of the nuisance 
parameter that best fits the data for the specified θ: 

“double hat” notation means 
value of parameter that maximizes 
likelihood for the given θ. 

The resulting confidence interval will have the correct coverage 
for the points  (!, ˆ̂"(!)) . 

Elsewhere it may under- or overcover, but this is usually as good 
as we can do (check with MC if crucial or small sample problem). 
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“Hybrid frequentist-Bayesian” method 

Alternatively, suppose uncertainty in ν is characterized by 
a Bayesian prior π(ν). 

Can use the  marginal likelihood to model the data:  

This does not represent what the data distribution would 
be if we “really” repeated the experiment, since then ν would 
not change. 

But the procedure has the desired effect.  The marginal likelihood 
effectively builds the uncertainty due to ν into the model. 

Use this now to compute (frequentist) p-values → result 
has hybrid “frequentist-Bayesian” character. 
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The “ur-prior” behind the hybrid method 

But where did π(ν) come frome?  Presumably at some earlier 
point there was a measurement of some data y with 
likelihood L(y|ν), which was used in Bayes’theorem, 

and this “posterior” was subsequently used for π(ν) for the 
next part of the analysis. 

But it depends on an “ur-prior” π0(ν), which still has to be 
chosen somehow (perhaps “flat-ish”). 

But once this is combined to form the marginal likelihood, the 
origin of the knowledge of ν may be forgotten, and the model 
is regarded as only describing the data outcome x. 
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The (pure) frequentist equivalent 
In a purely frequentist analysis, one would regard both 
x and y as part of the data, and write down the full likelihood: 

“Repetition of the experiment” here means generating both 
x and y according to the distribution above. 

In many cases, the end result from the hybrid and pure 
frequentist methods are found to be very similar (cf. Conway, 
Roever, PHYSTAT 2011). 
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More on priors 
Suppose we measure n ~ Poisson(s+b), goal is to make inference 
about s. 

Suppose b is not known exactly but we have an estimate bmeas 
with uncertainty σb. 

For Bayesian analysis, first reflex may be to write down a  
Gaussian prior for b, 

But a Gaussian could be problematic because e.g. 
 b ≥ 0, so need to truncate and renormalize; 
 tails fall off very quickly, may not reflect true uncertainty. 
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Bayesian limits on s with uncertainty on b 
Consider n ~ Poisson(s+b) and take e.g. as prior probabilities 

Put this into Bayes’ theorem, 

Marginalize over the nuisance parameter b,  

Then use p(s|n) to find intervals for s with any desired  
probability content. 
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Gamma prior for b 
What is in fact our prior information about b?  It may be that  
we estimated b using a separate measurement (e.g., background  
control sample) with 

        m ~ Poisson(τb)              (τ = scale factor, here assume known) 

Having made the control measurement we can use Bayes’ theorem 
to get the probability for b given m, 

If we take the ur-prior π0(b) to be to be constant for b ≥ 0, 
then the posterior π(b|m), which becomes the subsequent prior  
when we measure n and infer s, is a Gamma distribution with: 

 mean =  (m + 1) /τ	


 standard dev. = √(m + 1) /τ 
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Gamma distribution 
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Frequentist test with Bayesian treatment of b 

Distribution of n based on marginal likelihood (gamma prior for b): 

and use this as the basis of 
a test statistic: 

p-values from distributions of qm 
under background-only (0) or  
signal plus background (1)  
hypotheses: 
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Frequentist approach to same problem 

In the frequentist approach we would regard both variables 

 n ~ Poisson(s+b) 
 m ~ Poisson(τb) 

as constituting the data, and thus the full likelihood function is 

Use this to construct test of s with e.g. profile likelihood ratio 

Note here that the likelihood refers to both n and m, whereas 
the likelihood used in the Bayesian calculation only modeled n. 
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Test based on fully frequentist treatment 
Data consist of both n and m, with distribution 

Use this as the basis of a test 
statistic based on ratio of  
profile likelihoods: 

Here combination of two discrete 
variables (n and m) results in an 
approximately continuous  
distribution for qp. 
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Log-normal prior for systematics 
In some cases one may want a log-normal prior for a nuisance 
parameter (e.g., background rate b).   

This would emerge from the Central Limit Theorem, e.g., 
if the true parameter value is uncertain due to a large number 
of multiplicative changes, and it corresponds to having a 
Gaussian prior for β = ln b. 

where β0 = ln b0 and in the following we write σ as σβ. 



G. Cowan  CERN Academic Training 2012 / Statistics for HEP / Lecture 3 34 

The log-normal distribution 
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Frequentist-Bayes correspondence for log-normal 
The corresponding frequentist treatment regards the best estimate 
of b as a measured value bmeas that is log-normally distributed, or  
equivalently has a Gaussian distribution for βmeas = ln bmeas: 

To use this to motivate a Bayesian prior, one would use 
Bayes’ theorem to find the posterior for β, 

If we take the ur-prior π0, β(β) constant, this implies an 
ur-prior for b of 
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Example of tests based on log-normal 
Bayesian treatment of b: Frequentist treatment of bmeas: 

Final result similar but note in Bayesian treatment, marginal model 
is only for n, which is discrete, whereas in frequentist model both  
n and continuous bmeas are treated as measurements. 
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Discovery significance for n ~ Poisson(s + b) 

Consider again the case  where we observe n events , 
model as following Poisson distribution with mean s + b 
(assume b is known). 
 
1)   For an observed n, what is the significance Z0 with which 
     we would reject the s = 0 hypothesis? 
 
2)   What is the expected (or more precisely, median ) Z0 if  
     the true value of the signal rate is s? 
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Gaussian approximation for Poisson significance 
For large s + b, n → x ~ Gaussian(µ,σ) , µ = s + b, σ = √(s + b). 

For observed value xobs, p-value of s = 0 is Prob(x > xobs | s = 0),: 

Significance for rejecting s = 0 is therefore 

Expected (median) significance assuming signal rate s is 
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Better approximation for Poisson significance 

Likelihood function for parameter s is 

or equivalently the log-likelihood is 

Find the maximum by setting  

gives the estimator for s:  
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Approximate Poisson significance (continued) 
The likelihood ratio statistic for testing s = 0 is 

For sufficiently large s + b, (use Wilks’ theorem),  

To find median[Z0|s+b], let n → s + b (i.e., the Asimov data set): 

This reduces to s/√b for s << b. 



G. Cowan  CERN Academic Training 2012 / Statistics for HEP / Lecture 3 41 

n ~ Poisson(µ s+b),  median significance, 
assuming µ = 1, of the hypothesis µ = 0 

“Exact” values from MC, 
jumps due to discrete data. 
 
Asimov √q0,A good approx. 
for broad range of s, b. 
 
s/√b only good for s « b. 

CCGV, arXiv:1007.1727 
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Summary of Lecture 3 
Bayesian treatment of limits is conceptually easy (integrate 
posterior pdf); appropriate choice of prior not obvious. 

Look-Elsewhere Effect 

 Need to give probability to see a signal as big as the one 
 you saw (or bigger) anywhere you looked.  Hard to define 
 precisely; approximate correction should be adequate. 

Why 5 sigma?  If LEE taken in to account, one is usually convinced 
the effect is not a fluctuation much earlier (at 3 sigma?) 

Nuisance parameters 

 Need enough in model so that for at least some point in 
 parameter space it is correct. 

 Profile or marginalize.  (Profiling allows use of asymptotic 
 formulae.) 
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Extra slides 



Reference priors J. Bernardo, 
L. Demortier, 
M. Pierini Maximize the expected Kullback–Leibler 

divergence of posterior relative to prior: 
 

 

This maximizes the expected posterior information 
about θ when the prior density is π(θ). 

Finding reference priors “easy” for one parameter: 
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(PHYSTAT 2011) 



Reference priors (2) 
J. Bernardo, 
L. Demortier, 
M. Pierini 

Actual recipe to find reference prior nontrivial; 
see references from Bernardo’s talk, website of 
Berger (www.stat.duke.edu/~berger/papers) and also  
Demortier, Jain, Prosper, PRD 82:33, 34002 arXiv:1002.1111: 

Prior depends on order of parameters.  (Is order dependence  
important? Symmetrize?  Sample result from different orderings?) 
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(PHYSTAT 2011) 



G. Cowan  CERN Academic Training 2012 / Statistics for HEP / Lecture 3 46 

Upper limit on µ for x ~ Gauss(µ,σ) with µ ≥ 0 

x 
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Comparison of reasons for (non)-exclusion 
Suppose we observe x = -1.   

µ = 1 excluded by diag. line, 
why not by other methods? 

PCL (Mmin=0.5):  Because 
the power of a test of µ = 1 
was below threshold. 

CLs:  Because the lack of 
sensitivity to µ = 1 led to 
reduced 1 – pb, hence CLs  
not less than α.  

F-C:  Because µ = 1 was not 
rejected in a test of size α 
(hence coverage correct). 
But the critical region 
corresponding to more than  
half of α is at high x. 

x 
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Coverage probability for Gaussian problem 
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Flip-flopping 
F-C pointed out that if one decides, based on the data, whether to 
report a one- or two-sided limit, then the stated coverage 
probability no longer holds.   

The problem (flip-flopping) is avoided in unified intervals. 

Whether the interval covers correctly or not depends on how one 
defines repetition of the experiment (the ensemble). 

Need to distinguish between: 

 (1) an idealized ensemble; 

 (2) a recipe one follows in real life that resembles (1).  
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Flip-flopping 
One could take, e.g.: 

Ideal:  always quote upper limit (∞ # of experiments). 

Real:  quote upper limit for as long as it is of any interest, i.e., 
until the existence of the effect is well established.  

The coverage for the idealized ensemble is correct. 

The question is whether the real ensemble departs from this 
during the period when the limit is of any interest as a guide 
in the search for the signal. 

Here the real and ideal only come into serious conflict if  you 
think the effect is well established (e.g. at the 5 sigma level) 
but then subsequently you find it not to be well established, 
so you need to go back to quoting upper limits. 
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Flip-flopping 
In an idealized ensemble, this situation could arise if, e.g., 
we take x ~ Gauss(µ, σ), and the true µ is one sigma 
below what we regard as the threshold needed to discover 
that µ is nonzero. 

Here flip-flopping gives undercoverage because one continually  
bounces above and below the discovery threshold.  The effect 
keeps going in and out of a state of being established.   

But this idealized ensemble does not resemble what happens 
in reality, where the discovery sensitivity continues to improve 
as more data are acquired. 


