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Outline 
Lecture1:  Fundamentals 

  Probability 
  Random variables, pdfs    

Lecture 2:  Statistical tests 
  Formalism of frequentist tests 
  Comments on multivariate methods (brief) 
  p-values 
  Discovery and limits    

Lecture 3:  Parameter estimation 
  Properties of estimators 
  Maximum likelihood 
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Some statistics books, papers, etc.  
G. Cowan, Statistical Data Analysis, Clarendon, Oxford, 1998 
R.J. Barlow, Statistics: A Guide to the Use of Statistical Methods in 
the Physical Sciences, Wiley, 1989 
Ilya Narsky and Frank C. Porter, Statistical Analysis Techniques in 
Particle Physics, Wiley, 2014. 
Luca Lista, Statistical Methods for Data Analysis in Particle 
Physics, Springer, 2017. 
L. Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986 
F. James., Statistical and Computational Methods in Experimental 
Physics, 2nd ed., World Scientific, 2006 
S. Brandt, Statistical and Computational Methods in Data 
Analysis, Springer, New York, 1998 (with program library on CD) 
M. Tanabashi et al. (PDG), Phys. Rev. D 98, 030001 (2018); see 
also pdg.lbl.gov sections on probability, statistics, Monte Carlo 
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Theory ↔ Statistics ↔ Experiment 

+ simulation 
of detector 
and cuts 

Theory (model, hypothesis): Experiment: 

+ data 
selection 
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Data analysis in particle physics  
Observe events (e.g., pp collisions) and for each, measure 
a set of characteristics: 

 particle momenta, number of muons, energy of jets,... 

Compare observed distributions of these characteristics to  
predictions of theory.  From this, we want to: 

   Estimate the free parameters of the theory: 

   Quantify the uncertainty in the estimates: 

   Assess how well a given theory stands in agreement  
   with the observed data: 

 
To do this we need a clear definition of PROBABILITY 
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A definition of probability  
Consider a set S with subsets A, B, ... 

Kolmogorov 
axioms (1933) 

Also define conditional  
probability of A given B: 

Subsets A, B independent if: 

If A, B independent, 
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Interpretation of probability 
I.  Relative frequency 

 A, B, ... are outcomes of a repeatable experiment  

cf. quantum mechanics, particle scattering, radioactive decay... 

II.  Subjective probability 
 A, B, ... are hypotheses (statements that are true or false)  

•   Both interpretations consistent with Kolmogorov axioms. 
•   In particle physics  frequency interpretation often most useful, 
but subjective probability can provide more natural treatment of  
non-repeatable phenomena:   
     systematic uncertainties, probability that Higgs boson exists,... 
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Bayes’ theorem 
From the definition of conditional probability we have, 

and 

but , so 

Bayes’ theorem 

First published (posthumously) by the 
Reverend Thomas Bayes (1702−1761) 

An essay towards solving a problem in the 
doctrine of chances, Philos. Trans. R. Soc. 53 
(1763) 370; reprinted in Biometrika, 45 (1958) 293. 



G. Cowan  CERN, INSIGHTS Statistics Workshop / 17-21 Sep 2018 / Lecture 1  9 

The law of total probability 

Consider a subset B of  
the sample space S, 

B ∩ Ai 

Ai 

B 

S 

divided into disjoint subsets Ai 
such that ∪i Ai = S, 

→ 

→ 

→ law of total probability 

Bayes’ theorem becomes 
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An example using Bayes’ theorem 
Suppose the probability (for anyone) to have a disease D is: 

← prior probabilities, i.e., 
     before any test carried out 

Consider a test for the disease:  result is + or -

← probabilities to (in)correctly 
     identify a person with the disease 

← probabilities to (in)correctly 
     identify a healthy person 

Suppose your result is +.  How worried should you be?
G. Cowan  
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Bayes’ theorem example (cont.) 
The probability to have the disease given a + result is 

i.e. you’re probably OK! 

Your viewpoint:  my degree of belief that I have the disease is 3.2%. 

Your doctor’s viewpoint:  3.2% of people like this have the disease.

← posterior probability 

G. Cowan  
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Frequentist Statistics − general philosophy  
In frequentist statistics, probabilities are associated only with 
the data, i.e., outcomes of repeatable observations (shorthand:     ). 

 Probability = limiting frequency 

Probabilities such as 

 P (Higgs boson exists),  
 P (0.117 < αs < 0.121),  

etc. are either 0 or 1, but we don’t know which. 
The tools of frequentist statistics tell us what to expect, under 
the assumption of certain probabilities, about hypothetical 
repeated observations. 

A hypothesis is is preferred if the data are found in a region of 
high predicted probability (i.e., where an alternative hypothesis 
predicts lower probability). 
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Bayesian Statistics − general philosophy  
In Bayesian statistics, use subjective probability for hypotheses: 

posterior probability, i.e.,  
after seeing the data 

prior probability, i.e., 
before seeing the data 

probability of the data assuming  
hypothesis H (the likelihood) 

normalization involves sum  
over all possible hypotheses 

Bayes’ theorem has an “if-then” character:  If your prior 
probabilities were π(H), then it says how these probabilities 
should change in the light of the data. 

 No general prescription for priors (subjective!) 
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Random variables and probability density functions 
A random variable is a numerical characteristic assigned to an 
element of the sample space; can be discrete or continuous. 

Suppose outcome of experiment is continuous value x  

→ f (x) = probability density function (pdf) 

Or for discrete outcome xi with e.g. i = 1, 2, ... we have 

x must be somewhere 

probability mass function 

x must take on one of its possible values 

G. Cowan  
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Cumulative distribution function 
Probability to have outcome less than or equal to x is 

cumulative distribution function 

Alternatively define pdf with 
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Other types of probability densities 
Outcome of experiment characterized by several values, 
e.g. an n-component vector, (x1, ... xn)  

Sometimes we want only pdf of some (or one) of the components 

→  marginal pdf  

→  joint pdf  

Sometimes we want to consider some components as constant 

→  conditional pdf  

x1, x2 independent if  

G. Cowan  
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Functions of a random variable 
A function of a random variable is itself a random variable. 

Suppose x follows a pdf f(x), consider a function a(x). 

What is the pdf g(a)? 

dS = region of x space for which 
a is in [a, a+da]. 

For one-variable case with unique 
inverse this is simply 

→ 
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Functions without unique inverse 

If inverse of a(x) not unique,  
include all dx intervals in dS  
which correspond to da: 

Example: 
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Functions of more than one r.v. 

Consider r.v.s and a function  

dS = region of x-space between (hyper)surfaces defined by 



G. Cowan  CERN, INSIGHTS Statistics Workshop / 17-21 Sep 2018 / Lecture 1  20 

Functions of more than one r.v. (2) 

Example:  r.v.s x, y > 0 follow joint pdf f(x,y), 

consider the function z = xy.  What is g(z)? 

→ 

(Mellin convolution) 
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More on transformation of variables 

Consider a random vector with joint pdf  

Form n linearly independent functions  

for which the inverse functions  exist. 

Then the joint pdf of the vector of functions is 

where J is the  

Jacobian determinant: 

For e.g. integrate over the unwanted components. 
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Expectation values 
Consider continuous r.v. x with pdf  f (x).   

Define expectation (mean) value as 

Notation (often):                         ~ “centre of gravity” of pdf.  

For a function y(x) with pdf g(y),  

(equivalent) 

Variance: 

Notation: 

Standard deviation: 

σ ~ width of pdf, same units as x. 

G. Cowan  
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Covariance and correlation 
Define covariance cov[x,y] (also use matrix notation Vxy) as   

Correlation coefficient (dimensionless) defined as 

If x, y, independent, i.e.,  ,   then 

→ x and  y, ‘uncorrelated’ 

N.B. converse not always true. 

G. Cowan  
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Correlation (cont.)  

G. Cowan  
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Error propagation  

which quantify the measurement errors in the xi.  

Suppose we measure a set of values  

and we have the covariances 

Now consider a function 

What is the variance of  

The hard way:  use joint pdf to find the pdf   

then from g(y) find V[y] = E[y2] - (E[y])2.  

Often not practical,  may not even be fully known. 
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Error propagation (2)  
Suppose we had  

in practice only estimates given by the measured 

Expand to 1st order in a Taylor series about  

since 

To find V[y] we need E[y2] and E[y]. 



G. Cowan  CERN, INSIGHTS Statistics Workshop / 17-21 Sep 2018 / Lecture 1  27 

Error propagation (3) 

Putting the ingredients together gives the variance of 
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Error propagation (4) 
If the xi are uncorrelated, i.e.,  then this becomes 

Similar for a set of m functions  

or in matrix notation  where 
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Error propagation (5) 
The ‘error propagation’ formulae tell us the  
covariances of a set of functions 
                                                    in terms of  
the covariances of the original variables.  

Limitations:  exact only if  linear. 
Approximation breaks down if function  
nonlinear over a region comparable 
in size to the σi. 

N.B.  We have said nothing about the exact pdf of the xi, 
e.g., it doesn’t have to be Gaussian. 

x 

y(x) 

σx 

σy 

x σx 

? 

y(x) 
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Error propagation − special cases 

→ 

→ 

That is, if the xi are uncorrelated: 
 add errors quadratically for the sum (or difference), 
 add relative errors quadratically for product (or ratio).  

But correlations can change this completely... 
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Error propagation − special cases (2) 

Consider with 

Now suppose ρ = 1.  Then 

i.e. for 100% correlation, error in difference → 0. 
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Some distributions 
Distribution/pdf  Example use in HEP 
Binomial   Branching ratio 
Multinomial   Histogram with fixed N 
Poisson   Number of events found 
Uniform   Monte Carlo method 
Exponential   Decay time 
Gaussian   Measurement error 
Chi-square   Goodness-of-fit 
Cauchy   Mass of resonance 
Landau   Ionization energy loss 
Beta    Prior pdf for efficiency 
Gamma   Sum of exponential variables 
Student’s t   Resolution function with adjustable tails 
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Binomial distribution 
Consider N independent experiments (Bernoulli trials): 

outcome of each is ‘success’ or ‘failure’, 
probability of success on any given trial is p. 

Define discrete r.v. n = number of successes (0 ≤ n ≤  N). 

Probability of a specific outcome (in order), e.g. ‘ssfsf’ is 

But order not important; there are 

ways (permutations) to get n successes in N trials, total  
probability for n is sum of probabilities for each permutation. 
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Binomial distribution  (2) 
The binomial distribution is therefore 

random 
variable 

parameters 

For the expectation value and variance we find: 
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Binomial distribution  (3) 
Binomial distribution for several values of the parameters: 

Example:  observe N decays of W±,  the number n of which are  
W→µν is a binomial r.v., p = branching ratio. 
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Multinomial distribution 
Like binomial but now m outcomes instead of two, probabilities are 

For N trials we want the probability to obtain: 

n1 of outcome 1, 
n2 of outcome 2, 

 ⠇ 
nm of outcome m. 

This is the multinomial distribution for 
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Multinomial distribution (2) 
Now consider outcome i as ‘success’, all others as ‘failure’. 

→ all ni individually binomial with parameters N, pi 

for all i 

One can also find the covariance to be 

Example:   represents a histogram 

with m bins, N total entries, all entries independent. 
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Poisson distribution 
Consider binomial n in the limit 

→ n follows the Poisson distribution: 

Example:  number of scattering events 
n with cross section σ found for a fixed 
integrated luminosity, with 
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Uniform distribution 
Consider a continuous r.v. x with -∞ < x < ∞ .  Uniform pdf is: 

N.B.  For any r.v. x with cumulative distribution F(x), 
y = F(x) is uniform in [0,1]. 

Example:  for π0 → γγ, Eγ is uniform in [Emin, Emax], with 
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Exponential distribution 
The exponential pdf for the continuous r.v. x is defined by: 

Example:  proper decay time t of an unstable particle 

(τ = mean lifetime) 

Lack of memory (unique to exponential): 
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Gaussian distribution 
The Gaussian (normal) pdf for a continuous r.v. x is defined by: 

Special case: µ = 0, σ2 = 1   (‘standard Gaussian’): 

(N.B. often µ, σ2 denote 
mean, variance of any 
r.v., not only Gaussian.) 

If y ~ Gaussian with µ, σ2, then  x = (y - µ) /σ  follows φ(x). 
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Gaussian pdf and the Central Limit Theorem 
The Gaussian pdf is so useful because almost any random 
variable that is a sum of a large number of small contributions 
follows it.  This follows from the Central Limit Theorem: 

For n independent r.v.s xi with finite variances σi
2, otherwise 

arbitrary pdfs, consider the sum 

Measurement errors are often the sum of many contributions, so 
frequently measured values can be treated as Gaussian r.v.s. 

In the limit n → ∞, y is a Gaussian r.v. with 
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Central Limit Theorem (2) 
The CLT can be proved using characteristic functions (Fourier 
transforms), see, e.g., SDA Chapter 10. 

Good example:  velocity component vx of air molecules. 

OK example:  total deflection due to multiple Coulomb scattering. 
(Rare large angle deflections give non-Gaussian tail.) 

Bad example:  energy loss of charged particle traversing thin 
gas layer.  (Rare collisions make up large fraction of energy loss, 
cf. Landau pdf.) 

For finite n, the theorem is approximately valid to the 
extent that the fluctuation of  the sum is not dominated by 
one (or few) terms.  

Beware of measurement errors with non-Gaussian tails. 
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Multivariate Gaussian distribution 
Multivariate Gaussian pdf for the vector  

are column vectors,  are transpose (row) vectors,  

For n = 2 this is 

where ρ = cov[x1, x2]/(σ1σ2) is the correlation coefficient. 
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Chi-square (χ2) distribution 
The chi-square pdf for the continuous r.v. z  (z ≥ 0) is defined by 

n = 1, 2, ... =  number of ‘degrees of 
                       freedom’ (dof) 

For independent Gaussian xi, i = 1, ..., n, means µi, variances σi
2, 

follows χ2 pdf with n dof. 

Example:  goodness-of-fit test variable especially in conjunction 
with method of least squares. 
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Cauchy (Breit-Wigner) distribution 
The Breit-Wigner pdf for the continuous r.v. x is defined by 

(Γ = 2, x0 = 0 is the Cauchy pdf.) 

E[x] not well defined,   V[x] →∞. 

x0 = mode (most probable value) 

Γ = full width at half maximum 

Example:  mass of resonance particle, e.g. ρ, K*, φ0, ... 

Γ = decay rate (inverse of mean lifetime) 
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Landau distribution 
For a charged particle with β = v /c traversing a layer of matter 
of thickness d, the energy loss Δ follows the Landau pdf: 

L. Landau, J. Phys. USSR 8 (1944) 201; see also 
W. Allison and J. Cobb, Ann. Rev. Nucl. Part. Sci. 30 (1980) 253. 

+ - + - 

- + - + β

d 

Δ
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Landau distribution  (2) 

Long ‘Landau tail’ 
     →  all moments ∞ 

Mode (most probable  
value) sensitive to β , 
     →  particle i.d. 
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Beta distribution 

Often used to represent pdf  
of continuous r.v. nonzero only 
between finite limits.  
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Gamma distribution 

Often used to represent pdf  
of continuous r.v. nonzero only 
in [0,∞]. 

Also e.g. sum of n exponential 
r.v.s or time until nth event 
in Poisson process ~ Gamma 
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Student's t distribution 

ν = number of degrees of freedom 
      (not necessarily integer) 

ν = 1 gives Cauchy, 

ν → ∞ gives Gaussian. 



G. Cowan  CERN, INSIGHTS Statistics Workshop / 17-21 Sep 2018 / Lecture 1  52 

Extra slides 
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What it is:  a numerical technique for calculating probabilities 
and related quantities using sequences of random numbers. 

The usual steps: 

(1)  Generate sequence r1, r2, ..., rm uniform in [0, 1]. 

(2)  Use this to produce another sequence x1, x2, ..., xn 
       distributed according to some pdf  f (x)  in which 
       we’re interested (x can be a vector). 

(3)   Use the x values to estimate some property of  f (x), e.g., 
       fraction of x values with a < x < b gives 

 →  MC calculation = integration (at least formally) 

MC generated values = ‘simulated data’ 
 →  use for testing statistical procedures 

The Monte Carlo method 



G. Cowan  CERN, INSIGHTS Statistics Workshop / 17-21 Sep 2018 / Lecture 1  54 

Random number generators 
Goal:  generate uniformly distributed values in [0, 1]. 

 Toss coin for e.g. 32 bit number... (too tiring). 
 →  ‘random number generator’  

        = computer algorithm to generate r1, r2, ..., rn. 

Example:  multiplicative linear congruential generator (MLCG) 
 ni+1 = (a ni) mod m ,    where 
 ni = integer 
 a = multiplier 
 m = modulus 
 n0 = seed (initial value) 

N.B.  mod = modulus (remainder), e.g. 27 mod 5 = 2. 
This rule produces a sequence of numbers n0, n1, ... 
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Random number generators  (2) 
The sequence is (unfortunately) periodic! 

 Example (see Brandt Ch 4):  a = 3, m = 7, n0 = 1 

←  sequence repeats 

Choose a, m to obtain long period (maximum = m - 1); m usually  
close to the largest integer that can represented in the computer. 

 Only use a subset of a single period of the sequence. 
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Random number generators  (3) 
are in [0, 1] but are they ‘random’? 

Choose a, m so that the ri pass various tests of randomness: 
 uniform distribution in [0, 1], 
 all values independent (no correlations between pairs), 

e.g. L’Ecuyer, Commun. ACM 31 (1988) 742 suggests 
 
    a = 40692 
    m = 2147483399 

Far better generators available, e.g. TRandom3, based on Mersenne 
twister algorithm, period = 219937 - 1 (a “Mersenne prime”). 
See F. James, Comp. Phys. Comm. 60 (1990) 111; Brandt Ch. 4 
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The transformation method 
Given r1, r2,..., rn uniform in [0, 1], find x1, x2,..., xn 
that follow  f (x) by finding a suitable transformation  x (r). 

Require: 

i.e. 

That is,       set and solve for  x (r). 
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Example of the transformation method 
Exponential pdf: 

Set and solve for  x (r). 

→ works too.) 



G. Cowan  CERN, INSIGHTS Statistics Workshop / 17-21 Sep 2018 / Lecture 1  59 

The acceptance-rejection method 

Enclose the pdf in a box: 

(1)  Generate a random number x, uniform in [xmin, xmax], i.e. 
r1 is uniform in [0,1]. 

(2)  Generate a 2nd independent random number u uniformly 
       distributed between 0 and  fmax, i.e. 
(3)  If u <  f (x), then accept x.  If not, reject x and repeat. 
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Example with acceptance-rejection method 

If dot below curve, use  
x value in histogram. 
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Improving efficiency of the  
acceptance-rejection method 

The fraction of accepted points is equal to the fraction of 
the box’s area under the curve. 

 For very peaked distributions, this may be very low and 
 thus the algorithm may be slow. 

Improve by enclosing the pdf f(x) in a curve C h(x) that conforms  
to f(x) more closely, where h(x) is a pdf from which we can  
generate random values and C is a constant. 

Generate points uniformly  
over C h(x). 

If point is below f(x),  
accept x. 
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Monte Carlo event generators 

Simple example:  e+e- → µ+µ-

Generate cosθ and φ: 

Less simple:  ‘event generators’ for a variety of reactions:  
  e+e- → µ+µ-, hadrons, ... 
  pp → hadrons, D-Y, SUSY,... 

e.g. PYTHIA, HERWIG, ISAJET... 

Output = ‘events’, i.e., for each event we get a list of 
generated particles and their momentum vectors, types, etc. 
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A simulated event 

PYTHIA Monte Carlo 
pp → gluino-gluino 

G. Cowan  CERN, INSIGHTS Statistics Workshop / 17-21 Sep 2018 / Lecture 1  
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Monte Carlo detector simulation 
Takes as input the particle list and momenta from generator. 

Simulates detector response: 
 multiple Coulomb scattering (generate scattering angle), 
 particle decays (generate lifetime), 
 ionization energy loss (generate Δ), 
 electromagnetic, hadronic showers, 
 production of signals, electronics response, ... 

Output = simulated raw data →  input to reconstruction software: 
 track finding, fitting, etc.  

Predict what you should see at ‘detector level’ given a certain  
hypothesis for ‘generator level’.  Compare with the real data. 

Estimate ‘efficiencies’ = #events found / # events generated. 

Programming package:  GEANT 


