Statistics for Particle Physics Lecture 2: Statistical Tests

https://indico.cern.ch/event/747653/

INSIGHTS Workshop on Statistics and Machine Learning CERN, 17-21 September, 2018

Glen Cowan Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

Outline

Lecture1: Fundamentals Probability Random variables, pdfs

Lecture 2: Statistical tests

Formalism of frequentist tests Comments on multivariate methods (brief) *p*-values Discovery and limits

Lecture 3: Parameter estimation Properties of estimators Maximum likelihood

Frequentist statistical tests

Consider a hypothesis H_0 and alternative H_1 .

A test of H_0 is defined by specifying a critical region *w* of the data space such that there is no more than some (small) probability α , assuming H_0 is correct, to observe the data there, i.e.,

$$P(x \in w \mid H_0) \le \alpha$$

Need inequality if data are discrete.

 α is called the size or significance level of the test.

If x is observed in the critical region, reject H_0 .

Definition of a test (2)

But in general there are an infinite number of possible critical regions that give the same significance level α .

So the choice of the critical region for a test of H_0 needs to take into account the alternative hypothesis H_1 .

Roughly speaking, place the critical region where there is a low probability to be found if H_0 is true, but high if H_1 is true:

G. Cowan

Type-I, Type-II errors

Rejecting the hypothesis H_0 when it is true is a Type-I error. The maximum probability for this is the size of the test:

$$P(x \in W \mid H_0) \le \alpha$$

But we might also accept H_0 when it is false, and an alternative H_1 is true.

This is called a Type-II error, and occurs with probability

$$P(x \in \mathbf{S} - W | H_1) = \beta$$

One minus this is called the power of the test with respect to the alternative H_1 :

Power =
$$1 - \beta$$

A simulated SUSY event

G. Cowan

Background events

This event from Standard Model ttbar production also has high $p_{\rm T}$ jets and muons, and some missing transverse energy.

→ can easily mimic a SUSY event.

Physics context of a statistical test

Event Selection: the event types in question are both known to exist.

Example: separation of different particle types (electron vs muon) or known event types (ttbar vs QCD multijet). E.g. test H_0 : event is background vs. H_1 : event is signal. Use selected events for further study.

Search for New Physics: the null hypothesis is

 H_0 : all events correspond to Standard Model (background only), and the alternative is

H_1 : events include a type whose existence is not yet established (signal plus background)

Many subtle issues here, mainly related to the high standard of proof required to establish presence of a new phenomenon. The optimal statistical test for a search is closely related to that used for event selection.

G. Cowan

Statistical tests for event selection

Suppose the result of a measurement for an individual event is a collection of numbers $\vec{x} = (x_1, \dots, x_n)$

 x_1 = number of muons,

 $x_2 = \text{mean } p_T \text{ of jets},$

 $x_3 = missing energy, ...$

 \vec{x} follows some *n*-dimensional joint pdf, which depends on the type of event produced, i.e., was it

$$\mathsf{pp} o t\overline{t} \;, \quad \mathsf{pp} o \widetilde{g}\widetilde{g} \;, \ldots$$

For each reaction we consider we will have a hypothesis for the pdf of \vec{x} , e.g., $f(\vec{x}|H_0)$, $f(\vec{x}|H_1)$, etc.

E.g. call H_0 the background hypothesis (the event type we want to reject); H_1 is signal hypothesis (the type we want).

Selecting events

Suppose we have a data sample with two kinds of events, corresponding to hypotheses H_0 and H_1 and we want to select those of type H_1 .

Each event is a point in \vec{x} space. What 'decision boundary' should we use to accept/reject events as belonging to event types H_0 or H_1 ?

Perhaps select events with 'cuts':

Other ways to select events

Or maybe use some other sort of decision boundary:

linear

or nonlinear

How can we do this in an 'optimal' way?

G. Cowan

Test statistics

The boundary of the critical region for an *n*-dimensional data space $x = (x_1, ..., x_n)$ can be defined by an equation of the form

$$t(x_1,\ldots,x_n)=t_{\rm cut}$$

where $t(x_1, ..., x_n)$ is a scalar test statistic.

We can work out the pdfs $g(t|H_0), g(t|H_1), \ldots$

Decision boundary is now a single 'cut' on *t*, defining the critical region.

So for an *n*-dimensional problem we have a corresponding 1-d problem.

Test statistic based on likelihood ratio

How can we choose a test's critical region in an 'optimal way'?

Neyman-Pearson lemma states:

To get the highest power for a given significance level in a test of H_0 , (background) versus H_1 , (signal) the critical region should have

 $\frac{f(\mathbf{x}|H_1)}{f(\mathbf{x}|H_0)} > c$

inside the region, and $\leq c$ outside, where c is a constant chosen to give a test of the desired size.

Equivalently, optimal scalar test statistic is

$$t(\mathbf{x}) = \frac{f(\mathbf{x}|H_1)}{f(\mathbf{x}|H_0)}$$

N.B. any monotonic function of this is leads to the same test.

G. Cowan

Classification viewed as a statistical test

Probability to reject H_0 if true (type I error): $\alpha = \int_W f(\mathbf{x}|H_0) d\mathbf{x}$

 α = size of test, significance level, false discovery rate

Probability to accept H_0 if H_1 true (type II error) $\beta = \int_{\overline{W}} f(\mathbf{x}|H_1) d\mathbf{x}$ $1 - \beta = \text{power of test with respect to } H_1$

Equivalently if e.g. H_0 = background, H_1 = signal, use efficiencies:

$$\varepsilon_{\rm b} = \int_W f(\mathbf{x}|H_0) = \alpha$$

$$\varepsilon_{\mathbf{s}} = \int_{W} f(\mathbf{x}|H_1) = 1 - \beta = \text{power}$$

G. Cowan

Purity / misclassification rate

Consider the probability that an event of signal (s) type classified correctly (i.e., the event selection purity),

Note purity depends on the prior probability for an event to be signal or background as well as on s/b efficiencies.

G. Cowan

Neyman-Pearson doesn't usually help

We usually don't have explicit formulae for the pdfs f(x|s), f(x|b), so for a given x we can't evaluate the likelihood ratio

$$t(\mathbf{x}) = \frac{f(\mathbf{x}|s)}{f(\mathbf{x}|b)}$$

Instead we may have Monte Carlo models for signal and background processes, so we can produce simulated data:

generate
$$\mathbf{x} \sim f(\mathbf{x}|\mathbf{s}) \rightarrow \mathbf{x}_1, \dots, \mathbf{x}_N$$

generate $\mathbf{x} \sim f(\mathbf{x}|\mathbf{b}) \rightarrow \mathbf{x}_1, \dots, \mathbf{x}_N$

This gives samples of "training data" with events of known type. Can be expensive (1 fully simulated LHC event ~ 1 CPU minute).

G. Cowan

Approximate LR from histograms

Want t(x) = f(x|s)/f(x|b) for x here

One possibility is to generate MC data and construct histograms for both signal and background.

Use (normalized) histogram values to approximate LR:

$$t(x) \approx \frac{N(x|s)}{N(x|b)}$$

Can work well for single variable.

Approximate LR from 2D-histograms

Suppose problem has 2 variables. Try using 2-D histograms:

Approximate pdfs using N(x,y|s), N(x,y|b) in corresponding cells. But if we want *M* bins for each variable, then in *n*-dimensions we have M^n cells; can't generate enough training data to populate.

 \rightarrow Histogram method usually not usable for n > 1 dimension.

G. Cowan

Strategies for multivariate analysis

Neyman-Pearson lemma gives optimal answer, but cannot be used directly, because we usually don't have f(x|s), f(x|b).

Histogram method with M bins for n variables requires that we estimate M^n parameters (the values of the pdfs in each cell), so this is rarely practical.

A compromise solution is to assume a certain functional form for the test statistic t(x) with fewer parameters; determine them (using MC) to give best separation between signal and background.

Alternatively, try to estimate the probability densities f(x|s) and f(x|b) (with something better than histograms) and use the estimated pdfs to construct an approximate likelihood ratio.

Multivariate methods

Many new (and some old) methods: Fisher discriminant (Deep) neural networks Kernel density methods Support Vector Machines Decision trees Boosting Bagging

Resources on multivariate methods

C.M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006

T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, 2nd ed., Springer, 2009

R. Duda, P. Hart, D. Stork, Pattern Classification, 2nd ed., Wiley, 2001

A. Webb, Statistical Pattern Recognition, 2nd ed., Wiley, 2002.

Ilya Narsky and Frank C. Porter, *Statistical Analysis Techniques in Particle Physics*, Wiley, 2014.

朱永生(编著),实验数据多元统计分析,科学出版社, 北京,2009。

Software

Rapidly growing area of development – two important resources:

TMVA, Höcker, Stelzer, Tegenfeldt, Voss, Voss, physics/0703039 From tmva.sourceforge.net, also distributed with ROOT Variety of classifiers Good manual, widely used in HEP scikit-learn

> Python-based tools for Machine Learning scikit-learn.org Large user community

Testing significance / goodness-of-fit Suppose hypothesis *H* predicts pdf $f(\vec{x}|H)$ for a set of observations $\vec{x} = (x_1, \dots, x_n)$.

We observe a single point in this space: \vec{x}_{ODS}

What can we say about the validity of *H* in light of the data?

Decide what part of the data space represents less compatibility with H than does the point \vec{x}_{obs} . Note – "less compatible with H" means "more compatible with some alternative H".

G. Cowan

p-values

Express 'goodness-of-fit' by giving the *p*-value for *H*:

p = probability, under assumption of H, to observe data with equal or lesser compatibility with H relative to the data we got.

This is not the probability that *H* is true!

In frequentist statistics we don't talk about P(H) (unless H represents a repeatable observation). In Bayesian statistics we do; use Bayes' theorem to obtain

$$P(H|\vec{x}) = \frac{P(\vec{x}|H)\pi(H)}{\int P(\vec{x}|H)\pi(H) \, dH}$$

where $\pi(H)$ is the prior probability for *H*.

For now stick with the frequentist approach; result is *p*-value, regrettably easy to misinterpret as P(H). *p*-value example: testing whether a coin is 'fair' Probability to observe *n* heads in *N* coin tosses is binomial:

$$P(n; p, N) = \frac{N!}{n!(N-n)!} p^n (1-p)^{N-n}$$

Hypothesis *H*: the coin is fair (p = 0.5).

Suppose we toss the coin N = 20 times and get n = 17 heads.

Region of data space with equal or lesser compatibility with *H* relative to n = 17 is: n = 17, 18, 19, 20, 0, 1, 2, 3. Adding up the probabilities for these values gives:

P(n = 0, 1, 2, 3, 17, 18, 19, or 20) = 0.0026.

i.e. p = 0.0026 is the probability of obtaining such a bizarre result (or more so) 'by chance', under the assumption of *H*.

G. Cowan

Distribution of the *p*-value

The *p*-value is a function of the data, and is thus itself a random variable with a given distribution. Suppose the *p*-value of *H* is found from a test statistic t(x) as

$$p_H = \int_t^\infty f(t'|H)dt'$$

The pdf of p_H under assumption of H is

$$g(p_H|H) = \frac{f(t|H)}{|\partial p_H/\partial t|} = \frac{f(t|H)}{f(t|H)} = 1 \quad (0 \le p_H \le 1)$$

In general for continuous data, under assumption of H, $p_H \sim$ Uniform[0,1] and is concentrated toward zero for Some class of relevant alternatives.

G. Cowan

Using a *p*-value to define test of H_0

One can show the distribution of the *p*-value of H, under assumption of H, is uniform in [0,1].

So the probability to find the *p*-value of H_0 , p_0 , less than α is

$$P(p_0 \le \alpha | H_0) = \alpha$$

We can define the critical region of a test of H_0 with size α as the set of data space where $p_0 \leq \alpha$.

Formally the *p*-value relates only to H_0 , but the resulting test will have a given power with respect to a given alternative H_1 .

Significance from *p*-value

Often define significance Z as the number of standard deviations that a Gaussian variable would fluctuate in one direction to give the same p-value.

$$p=\int_Z^\infty rac{1}{\sqrt{2\pi}}e^{-x^2/2}\,dx=1-\Phi(Z)$$
 1 - TMath::Freq

 $Z = \Phi^{-1}(1-p)$ TMath::NormQuantile

E.g. Z = 5 (a "5 sigma effect") corresponds to $p = 2.9 \times 10^{-7}$.

G. Cowan

The Poisson counting experiment

Suppose we do a counting experiment and observe *n* events.

Events could be from *signal* process or from *background* – we only count the total number.

Poisson model:

$$P(n|s,b) = \frac{(s+b)^n}{n!}e^{-(s+b)}$$

s = mean (i.e., expected) # of signal events

b = mean # of background events

Goal is to make inference about *s*, e.g.,

test s = 0 (rejecting $H_0 \approx$ "discovery of signal process")

test all non-zero *s* (values not rejected = confidence interval)

In both cases need to ask what is relevant alternative hypothesis. G. Cowan CERN, INSIGHTS Statistics Workshop / 17-21 Sep 2018 / Lecture 2 Poisson counting experiment: discovery *p*-value Suppose b = 0.5 (known), and we observe $n_{obs} = 5$. Should we claim evidence for a new discovery?

Give *p*-value for hypothesis *s* = 0:

$$p$$
-value = $P(n \ge 5; b = 0.5, s = 0)$
= $1.7 \times 10^{-4} \ne P(s = 0)!$

G. Cowan

Poisson counting experiment: discovery significance Equivalent significance for $p = 1.7 \times 10^{-4}$: $Z = \Phi^{-1}(1-p) = 3.6$ Often claim discovery if Z > 5 ($p < 2.9 \times 10^{-7}$, i.e., a "5-sigma effect")

In fact this tradition should be revisited: *p*-value intended to quantify probability of a signallike fluctuation assuming background only; not intended to cover, e.g., hidden systematics, plausibility signal model, compatibility of data with signal, "look-elsewhere effect" (~multiple testing), etc.

Confidence intervals by inverting a test Confidence intervals for a parameter θ can be found by defining a test of the hypothesized value θ (do this for all θ):

Specify values of the data that are 'disfavoured' by θ (critical region) such that $P(\text{data in critical region}) \le \alpha$ for a prespecified α , e.g., 0.05 or 0.1.

If data observed in the critical region, reject the value θ .

Now invert the test to define a confidence interval as:

set of θ values that would not be rejected in a test of size α (confidence level is $1 - \alpha$).

The interval will cover the true value of θ with probability $\geq 1 - \alpha$.

Equivalently, the parameter values in the confidence interval have p-values of at least α .

To find edge of interval (the "limit"), set $p_{\theta} = \alpha$ and solve for θ . G. Cowan CERN, INSIGHTS Statistics Workshop / 17-21 Sep 2018 / Lecture 2

Frequentist upper limit on Poisson parameter

Consider again the case of observing $n \sim \text{Poisson}(s + b)$.

Suppose b = 4.5, $n_{obs} = 5$. Find upper limit on *s* at 95% CL.

When testing *s* values to find upper limit, relevant alternative is s = 0 (or lower *s*), so critical region at low *n* and *p*-value of hypothesized *s* is $P(n \le n_{obs}; s, b)$.

Upper limit s_{up} at $CL = 1 - \alpha$ from setting $\alpha = p_s$ and solving for s:

$$\alpha = P(n \le n_{\text{obs}}; s_{\text{up}}, b) = \sum_{n=0}^{n_{\text{obs}}} \frac{(s_{\text{up}} + b)^n}{n!} e^{-(s_{\text{up}} + b)}$$
$$s_{\text{up}} = \frac{1}{2} F_{\chi^2}^{-1} (1 - \alpha; 2(n_{\text{obs}} + 1)) - b$$

$$=\frac{1}{2}F_{\chi^2}^{-1}(0.95;2(5+1)) - 4.5 = 6.0$$

Frequentist upper limit on Poisson parameter

Upper limit s_{up} at $CL = 1 - \alpha$ found from $p_s = \alpha$.

G. Cowan

$n \sim \text{Poisson}(s+b)$: frequentist upper limit on *s* For low fluctuation of *n* formula can give negative result for s_{up} ; i.e. confidence interval is empty.

G. Cowan

Limits near a physical boundary

Suppose e.g. b = 2.5 and we observe n = 0.

If we choose CL = 0.9, we find from the formula for s_{up}

 $s_{\rm up} = -0.197$ (CL = 0.90)

Physicist:

We already knew $s \ge 0$ before we started; can't use negative upper limit to report result of expensive experiment!

Statistician:

The interval is designed to cover the true value only 90% of the time — this was clearly not one of those times.

Not uncommon dilemma when testing parameter values for which one has very little experimental sensitivity, e.g., very small *s*.

Expected limit for s = 0

Physicist: I should have used CL = 0.95 — then $s_{up} = 0.496$

Even better: for CL = 0.917923 we get $s_{up} = 10^{-4}!$

Reality check: with b = 2.5, typical Poisson fluctuation in *n* is at least $\sqrt{2.5} = 1.6$. How can the limit be so low?

G. Cowan

The Bayesian approach to limits

In Bayesian statistics need to start with 'prior pdf' $\pi(\theta)$, this reflects degree of belief about θ before doing the experiment.

Bayes' theorem tells how our beliefs should be updated in light of the data *x*:

$$p(\theta|x) = \frac{L(x|\theta)\pi(\theta)}{\int L(x|\theta')\pi(\theta') d\theta'} \propto L(x|\theta)\pi(\theta)$$

Integrate posterior pdf $p(\theta | x)$ to give interval with any desired probability content.

For e.g. $n \sim \text{Poisson}(s+b)$, 95% CL upper limit on *s* from

$$0.95 = \int_{-\infty}^{s_{\rm up}} p(s|n) \, ds$$

G. Cowan

Bayesian prior for Poisson parameter

Include knowledge that $s \ge 0$ by setting prior $\pi(s) = 0$ for s < 0.

Could try to reflect 'prior ignorance' with e.g.

$$\pi(s) = \begin{cases} 1 & s \ge 0\\ 0 & \text{otherwise} \end{cases}$$

Not normalized but this is OK as long as L(s) dies off for large s.

Not invariant under change of parameter — if we had used instead a flat prior for, say, the mass of the Higgs boson, this would imply a non-flat prior for the expected number of Higgs events.

Doesn't really reflect a reasonable degree of belief, but often used as a point of reference;

or viewed as a recipe for producing an interval whose frequentist properties can be studied (coverage will depend on true *s*).

Bayesian interval with flat prior for s

Solve to find limit s_{up} :

$$s_{\rm up} = \frac{1}{2} F_{\chi^2}^{-1} [p, 2(n+1)] - b$$

where

$$p = 1 - \alpha \left(1 - F_{\chi^2} \left[2b, 2(n+1) \right] \right)$$

For special case b = 0, Bayesian upper limit with flat prior numerically same as one-sided frequentist case ('coincidence').

G. Cowan

Bayesian interval with flat prior for s

For b > 0 Bayesian limit is everywhere greater than the (one sided) frequentist upper limit.

Never goes negative. Doesn't depend on *b* if n = 0.

G. Cowan

Extra slides

G. Cowan

Priors from formal rules

Because of difficulties in encoding a vague degree of belief in a prior, one often attempts to derive the prior from formal rules, e.g., to satisfy certain invariance principles or to provide maximum information gain for a certain set of measurements.

> Often called "objective priors" Form basis of Objective Bayesian Statistics

The priors do not reflect a degree of belief (but might represent possible extreme cases).

In Objective Bayesian analysis, can use the intervals in a frequentist way, i.e., regard Bayes' theorem as a recipe to produce an interval with certain coverage properties.

Priors from formal rules (cont.)

For a review of priors obtained by formal rules see, e.g.,

Robert E. Kass and Larry Wasserman, *The Selection of Prior Distributions by Formal Rules*, J. Am. Stat. Assoc., Vol. 91, No. 435, pp. 1343-1370 (1996).

Formal priors have not been widely used in HEP, but there is recent interest in this direction, especially the reference priors of Bernardo and Berger; see e.g.

L. Demortier, S. Jain and H. Prosper, *Reference priors for high energy physics*, Phys. Rev. D 82 (2010) 034002, arXiv:1002.1111.

D. Casadei, *Reference analysis of the signal + background model in counting experiments*, JINST 7 (2012) 01012; arXiv:1108.4270.

Jeffreys' prior

According to Jeffreys' rule, take prior according to

$$\pi(\boldsymbol{\theta}) \propto \sqrt{\det(I(\boldsymbol{\theta}))}$$

where

$$I_{ij}(\boldsymbol{\theta}) = -E\left[\frac{\partial^2 \ln L(\boldsymbol{x}|\boldsymbol{\theta})}{\partial \theta_i \partial \theta_j}\right] = -\int \frac{\partial^2 \ln L(\boldsymbol{x}|\boldsymbol{\theta})}{\partial \theta_i \partial \theta_j} L(\boldsymbol{x}|\boldsymbol{\theta}) \, d\boldsymbol{x}$$

is the Fisher information matrix.

One can show that this leads to inference that is invariant under a transformation of parameters.

For a Gaussian mean, the Jeffreys' prior is constant; for a Poisson mean μ it is proportional to $1/\sqrt{\mu}$.

Jeffreys' prior for Poisson mean

Suppose $n \sim \text{Poisson}(\mu)$. To find the Jeffreys' prior for μ ,

$$L(n|\mu) = \frac{\mu^n}{n!} e^{-\mu} \qquad \qquad \frac{\partial^2 \ln L}{\partial \mu^2} = -\frac{n}{\mu}$$

$$I = -E\left[\frac{\partial^2 \ln L}{\partial \mu^2}\right] = \frac{E[n]}{\mu^2} = \frac{1}{\mu}$$

$$\pi(\mu) \propto \sqrt{I(\mu)} = \frac{1}{\sqrt{\mu}}$$

So e.g. for $\mu = s + b$, this means the prior $\pi(s) \sim 1/\sqrt{(s+b)}$, which depends on *b*. But this is not designed as a degree of belief about *s*.

G. Cowan

A simple example (2D)

Consider two variables, x_1 and x_2 , and suppose we have formulas for the joint pdfs for both signal (s) and background (b) events (in real problems the formulas are usually not available).

 $f(x_1|x_2) \sim \text{Gaussian, different means for s/b,}$ Gaussians have same σ , which depends on x_2 , $f(x_2) \sim \text{exponential, same for both s and b,}$ $f(x_1, x_2) = f(x_1|x_2) f(x_2)$:

$$f(x_1, x_2 | \mathbf{s}) = \frac{1}{\sqrt{2\pi}\sigma(x_2)} e^{-(x_1 - \mu_{\mathbf{s}})^2 / 2\sigma^2(x_2)} \frac{1}{\lambda} e^{-x_2/\lambda}$$
$$f(x_1, x_2 | \mathbf{b}) = \frac{1}{\sqrt{2\pi}\sigma(x_2)} e^{-(x_1 - \mu_{\mathbf{b}})^2 / 2\sigma^2(x_2)} \frac{1}{\lambda} e^{-x_2/\lambda}$$
$$\sigma(x_2) = \sigma_0 e^{-x_2/\xi}$$

G. Cowan

Joint and marginal distributions of x_1, x_2

G. Cowan

CERN, INSIGHTS Statistics Workshop / 17-21 Sep 2018 / Lecture 2

Likelihood ratio for 2D example

Neyman-Pearson lemma says best critical region is determined by the likelihood ratio:

$$t(x_1, x_2) = \frac{f(x_1, x_2|\mathbf{s})}{f(x_1, x_2|\mathbf{b})}$$

Equivalently we can use any monotonic function of this as a test statistic, e.g.,

$$\ln t = \frac{\frac{1}{2}(\mu_{\rm b}^2 - \mu_{\rm s}^2) + (\mu_{\rm s} - \mu_{\rm b})x_1}{\sigma_0^2 e^{-2x_2/\xi}}$$

Boundary of optimal critical region will be curve of constant $\ln t$, and this depends on x_2 !

G. Cowan

Contours of constant MVA output

G. Cowan

CERN, INSIGHTS Statistics Workshop / 17-21 Sep 2018 / Lecture 2

page 50

Contours of constant MVA output

Training samples: 10⁵ signal and 10⁵ background events

G. Cowan

ROC curve

ROC = "receiver operating characteristic" (term from signal processing).

Shows (usually) background rejection $(1-\varepsilon_b)$ versus signal efficiency ε_s .

Higher curve is better; usually analysis focused on a small part of the curve.

G. Cowan

2D Example: discussion

Even though the distribution of x_2 is same for signal and background, x_1 and x_2 are not independent, so using x_2 as an input variable helps.

Here we can understand why: high values of x_2 correspond to a smaller σ for the Gaussian of x_1 . So high x_2 means that the value of x_1 was well measured.

If we don't consider x_2 , then all of the x_1 measurements are lumped together. Those with large σ (low x_2) "pollute" the well measured events with low σ (high x_2).

Often in HEP there may be variables that are characteristic of how well measured an event is (region of detector, number of pile-up vertices,...). Including these variables in a multivariate analysis preserves the information carried by the well-measured events, leading to improved performance.

G. Cowan