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The CLs method: information for conference speakers

This note provides a brief description of the CLs procedure used for setting upper limits.
More information can be found in the original references for the method [1]. This is one of the
three methods for setting limits mentioned in the Review of Particle Physics by the PDG [2],
and has been widely used in HEP in recent years. The primary motivation for using CLs at
this time in ATLAS is to allow for comparison with other experiments (CMS and Tevatron).

As with all (frequentist) upper limits, those from the CLs method are desiged to be greater
than the true value of the parameter with a probability at least equal to the stated confidence
level (CL), taken by convention to be 95%. The CLs method is conservative in the sense that
this coverage probability can, depending on the true value of the parameter, be greater than
95% (see below).

Upper limits from the CLs procedure are the same as those from the Bayesian method in
two important special cases, namely, for limits on the mean value of a Poisson or Gaussian
distributed measurement. In both cases, a Bayesian limit based on a constant prior for the
mean leads to the same limit as CLs.

Background information

We assume that the analyst has constructed a test statistic q used to distinguish between the
hypothesis that the data contain signal and background (s + b) and that of background only
(b). These correspond to the distributions f(q|s + b) and f(q|b), as indicated in Fig. 1. For
the moment we leave open the details of how the test statistic q is defined.
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Figure 1: Distributions of the test vari-
able q under the s+b and b hypotheses (see
text).

Suppose the actual data result in a value qobs of the test variable. The p-value of the s+ b
hypothesis is defined as the probability, under assumption of this hypothesis, to find a value
of q with equal or lesser compatibility with the s + b model relative to what is found with
qobs. As the background-only distribution f(q|b) is here shifted to the right, one takes the
p-value of s+b to be the probability to find q greater than or equal to qobs, under assumption
of the s + b hypothesis, i.e.,
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ps+b = P (q ≥ qobs|s + b) =

∫
∞

qobs

f(q|s + b) dq . (1)

In a similar way, one takes the p-value of the background-only hypothesis to be

pb = P (q ≤ qobs|b) =

∫ qobs

−∞

f(q|b) dq . (2)

In what is called the “CLs+b” method, one carries out a standard statistical test of the
s + b hypothesis based on its p-value, ps+b. The signal model is regarded as excluded at a
confidence level of 1 − α = 95% if one finds

ps+b < α , (3)

where, e.g., α = 0.05. A confidence interval at confidence level CL = 1−α for the rate of the
signal process can be constructed from those values of the rate s (or cross section) that are
not excluded, and the upper limit sup is the largest value of s not excluded. By construction,
the interval [0, sup] will cover s with a probability of at least 95%, regardless of the value of
s.

The problem with the CLs+b procedure is that one will exclude, with probability close to
α (i.e, 5%) hypotheses to which one has little or no sensitivity. This corresponds to the case
where the expected number of signal events is much less than that of background. Such a
scenario is illustrated in Fig. 2, and corresponds to having the distributions of q under both
the b and s + b hypotheses almost overlapping with each other.

If, for example, the expected numbers of signal and background events are s and b,
respectively, and one has s ≪ b, then if the observed number of events has a sufficient
downward fluctuation relative to s + b (which is approximately equal to b), then this value
of s will be excluded. In the limit where s ≪ b, one might want intuitively this exclusion
probability to go to zero, but in fact in the CLs+b procedure it approaches α = 5%. Given
that one carries out many tests for different signal models, it is not desirable that one out of
twenty searches where one has no sensitivity should result in exclusion.
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Figure 2: Distributions of the test vari-
able q under the s + b and b hypotheses in
an example where one has very little sen-
sitivity to the signal model.

To protect against excluding models to which one has little or no sensitivity, in the CLs

procedure a signal model is regarded as excluded if one finds
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CLs ≡
ps+b

1 − pb

< α . (4)

That is, the p-value is effectively penalized by dividing by 1−pb. If the two distributions f(q|b)
and f(q|s + b) are widely separated, then 1 − pb is only slightly less than unity, the penalty
is slight, and thus exclusion based in CLs is similar to that obtained from the usual p-value
ps+b. If, however, one has little sensitivity to the signal model, then the two distributions are
close together, 1 − pb becomes small, and thus the p-value of s + b is penalized (increased)
more. In this way one is prevented from excluding signal models in cases of low sensitivity.
As previously, one takes the upper limit to be the largest value of the parameter (e.g., the
signal rate s) not excluded.

From the definition (4), one can see that CLs is always greater than the p-value ps+b.
Thus the models excluded by requiring CLs < α are a subset of those excluded by the usual
criterion ps+b < α, and the upper limit from CLs is therefore higher (weaker). In this sense
the CLs procedure is conservative.

One can compute, e.g., using Monte Carlo, the coverage probability by generating data
according to the s + b model and for each simulated experiment one can see if the assumed
value of s is above or below the upper limit obtained. The example shown in Fig. 3 shows the
coverage probability of the CLs interval for the case of a Gaussian distributed measurement
with a mean µ ≥ 0 and (known) standard deviation σ, here taken to be unity. That is, in
this example the parameter µ takes on the role of s above.
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Figure 3: The coverage probability of the
CLs upper limit for the mean of a Gaussian
distributed measurement (see text).

In the CLs procedure must define the statistic q. In ATLAS, it is recommended to
use either the statistic qµ or q̃µ as described in [3], both of which are based on the profile
likelihood ratio. By using the profile treatment of nuisance parameters one incorporates
systematic uncertainties. This is similar but not identical to the so-called hybrid method,
where the nuisance parameters are treated in a Bayesian fashion.

When using qµ or q̃µ, the parameter on which one sets a limit is µ, defined as the cross
section of the signal process divided by the predicted cross section of the nominal signal
model. For a sufficiently large data sample, the distributions f(qµ|µ) or f(q̃µ|µ) needed to
compute p-values can be written down in closed form as described in Ref. [4], and a simple
formula for the CLs-modified p-value ps/(1− pb) valid for the large-sample case can be found
in Ref. [3]. Otherwise the p-values must be determined by Monte Carlo. Note that the
distributions of qµ and q̃µ are not Gaussian as in the examples of Figs. 1 and 2, but rather
are related to the chi-square distribution.
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