
Computing and Statistical Data Analysis
Problem sheet 2

Remember to write your name, College and degree programme (e.g., PhD, MSci or MSc) on
your paper.

Please turn in a copy of the source code and relevant sample output. Avoid unnecessarily
complicated code. Highest marks go to a simple, elegant, robust solution. If you choose to do
something complicated (e.g., fancy error checking), then the complexity should buy meaningful
additional functionality or robustness.

1: Starting from the algorithm you created to compute factorials in Problem Sheet 1, write
a function called factorial that takes a single int argument and returns the factorial as a
double. Note that the error checking, e.g., for non-negative integer input, must now be put
inside the body of the function.

Put the function in a separate file factorial.cc and put the prototype in a header file
factorial.h with the appropriate “include guards”.

Write a short main program to test your function (i.e., similar to the program from Problem
Sheet 1).

Write a short shell script called, say, build.sh to compile and link the program.

Show sample output for a few values of the input value, e.g., n = 10, 40, 80.

Overload the factorial function so that it can also take an argument of type double, which
also returns double. Illustrate the use of the function in the main program. (Hint: remember
the “once and only once” principle.) The function definitions and prototypes can go into the
same files as for the original.

2: Write a program that computes a table of values of n,
√

n, lnn and n! for n = 1, 2, . . . nmax,
where the value nmax is set by the user through a cin statement. Using the techniques shown
in the lecture, display the result on the monitor formatted such that the value of n appears as
an integer in a column with 5 spaces, the values of

√

n and lnn appears as decimal values with
12 total spaces and five places to the right of the decimal point, and the value of n! is given in
scientific notation with five digits to the right of the decimal place.

Then using the methods described in the lectures, also write the table of numbers to an output
file. Create the file for nmax = 20.

3: Write a function swap(x,y) of return type void which takes two int arguments passed by
reference, such that the values of x and y are swapped after calling the function. Write a short
test program which calls swap to test and illustrate its use.

4 Look at the TwoVector class on the course website. The state of the vector is given by the
two variables m x and m y, which give the x and y components of the vector. For this exercise
you will modify and extend this class. You should write a small test program (similar to the
program TestTwoVector.cc on the website) to show that the new class works correctly, by
creating TwoVector objects, calling the functions, and printing the results to the monitor with
cout. You should turn in the source code and sample output that show together the solutions
for (a), (b) and (c), i.e., all three parts can be answered using the same program.

4(a) Rewrite the TwoVector class so that the data members represent polar coordinates, r and
θ. That is, get rid of m x and m y are replace them by variables m r and m theta. Rewrite the



member functions so that that class behaves the same way as before (the names, return types
and signatures of the member functions should be exactly the same as before).

The arguments should be interpreted the same way in both the original and new versions of
the class. So, e.g., for the two-argument constructor the arguments should still be interpreted
as x and y; these are then used to set m r and m theta.

4(b) In your modified TwoVector class, write a public member function

void TwoVector::reflect(TwoVector& u){ your code here }

such that when a TwoVector v calls the function,

v.reflect(u);

the effect is to reflect v about the line defined by the argument u. Show in your test program
that the function works as expected.

4(c) Overload the operators += and -= so that they work with objects of the TwoVector class.
Show in your test program that they work as expected. The overloaded operators += and -=

should update the state of the calling object, and also return (by reference, i.e., return type
TwoVector&) the obdated object (i.e., return *this;).

G. Cowan
10 October, 2012

2


