
Computing and Statistical Data Analysis 
Lecture 2 
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Variables, types:  int, float, double, bool, ... 

Assignments, expressions 

Simple i/o; cin and cout. 

Basic control structures: if, else 

Loops:  while, do-while, for, ...  



C++ building blocks 
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All of the words in a C++ program are either: 

      Reserved words:  cannot be changed, e.g., 
 if, else, int, double, for, while, class, ...   

      Library identifiers:  default meanings usually not  
 changed, e.g., cout, sqrt (square root), ... 

      Programmer-supplied identifiers: 
 e.g. variables created by the programmer,  
 x, y, probeTemperature, photonEnergy, ... 

Valid identifier must begin with a letter or underscore (“_”) , and 
can consist of letters, digits, and underscores. 

Try to use meaningful variable names; suggest lowerCamelCase. 



Data types 
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Data values can be stored in variables of several types. 
Think of the variable as a small blackboard, and we have 
different types of blackboards for integers, reals, etc. 
The variable name is a label for the blackboard. 

Basic floating point types (i.e., for real numbers): 
      float  usually 32 bits 
      double  usually 64 bits      ← best for our purposes 

Basic integer type:  int  (also short, unsigned, long int, ...) 
      Number of bits used depends on compiler; typically 32 bits. 

Boolean:  bool  (equal to true or false) 

Character:  char (single ASCII character only, can be blank), 
        no native ‘string’ type; more on C++ strings later.!



Declaring variables 
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All variables must be declared before use.  
 Usually declare just before 1st use. 

Examples 
int main(){ 
  int numPhotons;       // Use int to count things 
  double photonEnergy;  // Use double for reals 
  bool goodEvent;       // Use bool for true or false 
  int minNum, maxNum;   // More than one on line 
  int n = 17;           // Can initialize value 
  double x = 37.2;      // when variable declared. 
  char yesOrNo = ‘y’;   // Value of char in ‘ ‘ 

 ... 
} 



Assignment of values to variables 
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Declaring a variable establishes its name; value is undefined 
(unless done together with declaration). 

Value is assigned using    =     (the assignment operator):!

int main(){ 
  bool aOK = true;  // true, false predefined constants 
  double x, y, z; 
  x = 3.7; 
  y = 5.2; 
  z = x + y;   
  cout << "z = " << z << endl; 
  z = z + 2.8;      // N.B. not like usual equation 
  cout << "now z = " << z << endl; 
   ... 
} 



Constants 
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Sometimes we want to ensure the value of a variable doesn’t change.   

 Useful to keep parameters of a problem in an easy 
 to find place, where they are easy to modify. 

 Use keyword const in declaration: 

const int numChannels = 12; 
const double PI = 3.14159265; 

// Attempted redefinition by Indiana State Legislature 
PI = 3.2;          // ERROR will not compile 

Old C style retained for compatibility (avoid this): 
#define PI 3.14159265 



Enumerations 
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Sometimes we want to assign numerical values to words, e.g., 

 January = 1, February = 2, etc. 

Use an ‘enumeration’ with keyword enum 
 enum { RED, GREEN, BLUE }; 

is shorthand for 
!const int RED = 0; 
 const int GREEN = 1; 
 const int BLUE = 2; 

Enumeration starts by default with zero; can override: 
 enum { RED = 1, GREEN = 3, BLUE = 7 } 

(If not assigned explicitly, value is one greater than previous.) 



Expressions 
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C++ has obvious(?) notation for mathematical expressions: 

  operation  symbol  

  addition       + 
  subtraction       - 
  multiplication       * 
  division       / 
  modulus      % 

Note division of int values is truncated: 
 int n, m;  n = 5;  m = 3; 
 int ratio = n/m;      // ratio has value of 1 

Modulus gives remainder of integer division: 

 int nModM = n%m;         // nModM has value 2 



Operator precedence 

G. Cowan / RHUL Computing and Statistical Data Analysis / Lecture 2 9 

* and / have precedence over + and -, i.e., 

 x*y +  u/v   means   (x*y) + (u/v) 

* and / have same precedence, carry out left to right: 

 x/y/u*v  means   ((x/y) / u) * v 

Similar for + and - 

 x - y + z   means   (x - y) + z  

Many more rules (google for C++ operator precedence). 

Easy to forget the details, so use parentheses unless it’s obvious. 



Boolean expressions and operators 
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Boolean expressions are either true or false, e.g., 
 int n, m; n = 5; m = 3; 
 bool b = n < m;           // value of b is false 

C++ notation for boolean expressions: 
 greater than      > 
 greater than or equals     >= 
 less than       < 
 less than or equals     <= 
 equals       ==   
 not equals       != 

Can be combined with && (“and”), || (“or”) and ! (“not”), e.g., 
 (n < m) && (n != 0)       (false) 
 (n%m >= 5) || !(n == m)    (true) 

not = 

Precedence of operations not obvious; if in doubt use parentheses.!



Shorthand assignment statements 
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 full statement   shorthand equivalent 

     n = n + m      n += m 
   n = n - m      n -= m 
   n = n * m      n *= m 
   n = n / m      n /= m 

        n = n % m           n %= m 

 full statement   shorthand equivalent 

   n = n + 1       n++   (or ++n )!
   n = n - 1       n--   (or --n ) 

Special case of increment or decrement by one: 

++ or -- before variable means first increment (or decrement), 
then carry out other operations in the statement (more later). 



Getting input from the keyboard 
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Sometimes we want to type in a value from the keyboard and 
assign this value to a variable.  For this use the iostream object cin: 

 int age; 
 cout << "Enter your age" << endl; 
 cin >> age; 
 cout << "Your age is " << age << endl; 

When you run the program you see 
 Enter your age 
!23                ← you type this, then “Enter” 
 Your age is 23 

(Why is there no “jin” in java?  What were they thinking???)!



if and else 
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Simple flow control is done with if and else:!
!if ( boolean test expression ){ 
   Statements executed if test expression true 
 } 

or 
!if (expression1 ){ 
   Statements executed if expression1 true 
 } 
 else if ( expression2 ) { 
   Statements executed if expression1 false 
   and expression2 true 
 } 
 else { 
   Statements executed if both expression1 and 
   expression2 false 
 } 



more on if and else 
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Note indentation and placement of curly braces:!
!if ( x > y ){ 
   x = 0.5*x; 
 } 

Some people prefer 
!if ( x > y ) 
 { 
   x = 0.5*x; 
 } 

If only a single statement is to be executed, you can omit the 
curly braces -- this is usually a bad idea: 

 if  ( x > y )  x = 0.5*x; 



Putting it together -- checkArea.cc 
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!#include <iostream> 
 using namespace std; 
 int main() { 
   const double maxArea = 20.0; 
   double width, height; 
   cout << "Enter width" << endl; 
   cin >> width; 
   cout << "Enter height" << endl; 
   cin >> height; 
   double area = width*height; 
   if ( area > maxArea ){ 
     cout << "Area too large" << endl; 
   else { 
     cout << "Dimensions are OK" << endl; 
   } 
   return 0; 
 } 



“while” loops 
A while loop allows a set of statements to be repeated as long as 
a particular condition is true: 

while( boolean expression ){ 
  // statements to be executed as long as  
  // boolean expression is true 

} 

while (x < xMax){ 
  x += y; 
  ... 
} 

For this to be useful, the boolean expression must be updated 
upon each pass through the loop: 

Possible that statements never executed, or that loop is infinite. 



“do-while” loops 
A do-while loop is similar to a while loop, but always executes 
at least once, then continues as long as the specified condition is 
true. 

do { 
  // statements to be executed first time 
  // through loop and then as long as  
  // boolean expression is true  

} while ( boolean expression ) 

Can be useful if first pass needed to initialize the boolean  
expression. 



“for” loops 
A for loop allows a set of statements to be repeated a fixed 
number of times.  The general form is: 

for ( initialization action ;   
     boolean expression ; update action ){ 
  // statements to be executed 

} 

for (int i=0; i<n; i++){ 
  // statements to be executed n times 

} 

Often this will take on the form: 

Note that here i is defined only inside the { }. 



Examples of loops 

int sum = 0; 
for (int i = 1; i<=n; i++){ 
  sum += i; 
} 
cout << "sum of integers from 1 to " << n << 
     " is " << sum << endl; 

A do-while loop: 
int n; 
bool gotValidInput = false; 
do { 
  cout << "Enter a positive integer" << endl; 
  cin >> n; 
  gotValidInput = n > 0; 
} while ( !gotValidInput ); 

A for loop: 



Nested loops 

// loop over pixels in an image 

for (int row=1; row<=nRows; row++){ 
  for (int column=1; column<=nColumns; column++){ 
    int b = imageBrightness(row, column); 
    ... 

  }     // loop over columns ends here 
}       // loop over rows ends here 

Loops (as well as if-else structures, etc.) can be nested, i.e., 
you can put one inside another: 

We can put any kind of loop into any other kind, e.g., while 
loops inside for loops, vice versa, etc. 



More control of loops 
continue causes a single iteration of loop to be skipped 
(jumps back to start of loop). 

while ( processEvent ) { 

  if ( eventSize > maxSize ) { continue; } 

  if ( numEventsDone > maxEventsDone ) { 
    break; 
  } 

//  rest of statements in loop ... 

} 

break causes exit from entire loop  (only innermost one if  
inside nested loops). 

Usually best to avoid continue or break by use of if statements. 



Wrapping up lecture 2!
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We’ve seen some basic elements of a C++ program: 

 variables, e.g., int, double, bool, etc.; 

 how to assign values and form expressions; 

 how to get values from the keyboard and write values
 to the monitor; 

 how to control the flow of a program with if and else; 

 how to control flow with loops (while, do-while, for, etc.). 

 Next we will look at some library functions, and then 
 move on to user defined functions.!


