
Computing and Statistical Data Analysis
Lecture 2

G. Cowan / RHUL Computing and Statistical Data Analysis / Lecture 2 1

Variables, types: int, float, double, bool, ...

Assignments, expressions

Simple i/o; cin and cout.

Basic control structures: if, else

Loops: while, do-while, for, ...

C++ building blocks

G. Cowan / RHUL Computing and Statistical Data Analysis / Lecture 2 2

All of the words in a C++ program are either:

 Reserved words: cannot be changed, e.g.,
 if, else, int, double, for, while, class, ...

 Library identifiers: default meanings usually not
 changed, e.g., cout, sqrt (square root), ...

 Programmer-supplied identifiers:
 e.g. variables created by the programmer,
 x, y, probeTemperature, photonEnergy, ...

Valid identifier must begin with a letter or underscore (“_”) , and
can consist of letters, digits, and underscores.

Try to use meaningful variable names; suggest lowerCamelCase.

Data types

G. Cowan / RHUL Computing and Statistical Data Analysis / Lecture 2 3

Data values can be stored in variables of several types.
Think of the variable as a small blackboard, and we have
different types of blackboards for integers, reals, etc.
The variable name is a label for the blackboard.

Basic floating point types (i.e., for real numbers):
 float usually 32 bits
 double usually 64 bits ← best for our purposes

Basic integer type: int (also short, unsigned, long int, ...)
 Number of bits used depends on compiler; typically 32 bits.

Boolean: bool (equal to true or false)

Character: char (single ASCII character only, can be blank),
 no native ‘string’ type; more on C++ strings later.!

Declaring variables

G. Cowan / RHUL Computing and Statistical Data Analysis / Lecture 2 4

All variables must be declared before use.
 Usually declare just before 1st use.

Examples
int main(){
 int numPhotons; // Use int to count things
 double photonEnergy; // Use double for reals
 bool goodEvent; // Use bool for true or false
 int minNum, maxNum; // More than one on line
 int n = 17; // Can initialize value
 double x = 37.2; // when variable declared.
 char yesOrNo = ‘y’; // Value of char in ‘ ‘

 ...
}

Assignment of values to variables

G. Cowan / RHUL Computing and Statistical Data Analysis / Lecture 2 5

Declaring a variable establishes its name; value is undefined
(unless done together with declaration).

Value is assigned using = (the assignment operator):!

int main(){
 bool aOK = true; // true, false predefined constants
 double x, y, z;
 x = 3.7;
 y = 5.2;
 z = x + y;
 cout << "z = " << z << endl;
 z = z + 2.8; // N.B. not like usual equation
 cout << "now z = " << z << endl;
 ...
}

Constants

G. Cowan / RHUL Computing and Statistical Data Analysis / Lecture 2 6

Sometimes we want to ensure the value of a variable doesn’t change.

 Useful to keep parameters of a problem in an easy
 to find place, where they are easy to modify.

 Use keyword const in declaration:

const int numChannels = 12;
const double PI = 3.14159265;

// Attempted redefinition by Indiana State Legislature
PI = 3.2; // ERROR will not compile

Old C style retained for compatibility (avoid this):
#define PI 3.14159265

Enumerations

G. Cowan / RHUL Computing and Statistical Data Analysis / Lecture 2 7

Sometimes we want to assign numerical values to words, e.g.,

 January = 1, February = 2, etc.

Use an ‘enumeration’ with keyword enum
 enum { RED, GREEN, BLUE };

is shorthand for
!const int RED = 0;
 const int GREEN = 1;
 const int BLUE = 2;

Enumeration starts by default with zero; can override:
 enum { RED = 1, GREEN = 3, BLUE = 7 }

(If not assigned explicitly, value is one greater than previous.)

Expressions

G. Cowan / RHUL Computing and Statistical Data Analysis / Lecture 2 8

C++ has obvious(?) notation for mathematical expressions:

 operation symbol

 addition +
 subtraction -
 multiplication *
 division /
 modulus %

Note division of int values is truncated:
 int n, m; n = 5; m = 3;
 int ratio = n/m; // ratio has value of 1

Modulus gives remainder of integer division:

 int nModM = n%m; // nModM has value 2

Operator precedence

G. Cowan / RHUL Computing and Statistical Data Analysis / Lecture 2 9

* and / have precedence over + and -, i.e.,

 x*y + u/v means (x*y) + (u/v)

* and / have same precedence, carry out left to right:

 x/y/u*v means ((x/y) / u) * v

Similar for + and -

 x - y + z means (x - y) + z

Many more rules (google for C++ operator precedence).

Easy to forget the details, so use parentheses unless it’s obvious.

Boolean expressions and operators

G. Cowan / RHUL Computing and Statistical Data Analysis / Lecture 2 10

Boolean expressions are either true or false, e.g.,
 int n, m; n = 5; m = 3;
 bool b = n < m; // value of b is false

C++ notation for boolean expressions:
 greater than >
 greater than or equals >=
 less than <
 less than or equals <=
 equals ==
 not equals !=

Can be combined with && (“and”), || (“or”) and ! (“not”), e.g.,
 (n < m) && (n != 0) (false)
 (n%m >= 5) || !(n == m) (true)

not =

Precedence of operations not obvious; if in doubt use parentheses.!

Shorthand assignment statements

G. Cowan / RHUL Computing and Statistical Data Analysis / Lecture 2 11

 full statement shorthand equivalent

 n = n + m n += m
 n = n - m n -= m
 n = n * m n *= m
 n = n / m n /= m

 n = n % m n %= m

 full statement shorthand equivalent

 n = n + 1 n++ (or ++n)!
 n = n - 1 n-- (or --n)

Special case of increment or decrement by one:

++ or -- before variable means first increment (or decrement),
then carry out other operations in the statement (more later).

Getting input from the keyboard

G. Cowan / RHUL Computing and Statistical Data Analysis / Lecture 2 12

Sometimes we want to type in a value from the keyboard and
assign this value to a variable. For this use the iostream object cin:

 int age;
 cout << "Enter your age" << endl;
 cin >> age;
 cout << "Your age is " << age << endl;

When you run the program you see
 Enter your age
!23 ← you type this, then “Enter”
 Your age is 23

(Why is there no “jin” in java? What were they thinking???)!

if and else

G. Cowan / RHUL Computing and Statistical Data Analysis / Lecture 2 13

Simple flow control is done with if and else:!
!if (boolean test expression){
 Statements executed if test expression true
 }

or
!if (expression1){
 Statements executed if expression1 true
 }
 else if (expression2) {
 Statements executed if expression1 false
 and expression2 true
 }
 else {
 Statements executed if both expression1 and
 expression2 false
 }

more on if and else

G. Cowan / RHUL Computing and Statistical Data Analysis / Lecture 2 14

Note indentation and placement of curly braces:!
!if (x > y){
 x = 0.5*x;
 }

Some people prefer
!if (x > y)
 {
 x = 0.5*x;
 }

If only a single statement is to be executed, you can omit the
curly braces -- this is usually a bad idea:

 if (x > y) x = 0.5*x;

Putting it together -- checkArea.cc

G. Cowan / RHUL Computing and Statistical Data Analysis / Lecture 2 15

!#include <iostream>
 using namespace std;
 int main() {
 const double maxArea = 20.0;
 double width, height;
 cout << "Enter width" << endl;
 cin >> width;
 cout << "Enter height" << endl;
 cin >> height;
 double area = width*height;
 if (area > maxArea){
 cout << "Area too large" << endl;
 else {
 cout << "Dimensions are OK" << endl;
 }
 return 0;
 }

“while” loops
A while loop allows a set of statements to be repeated as long as
a particular condition is true:

while(boolean expression){
 // statements to be executed as long as
 // boolean expression is true

}

while (x < xMax){
 x += y;
 ...
}

For this to be useful, the boolean expression must be updated
upon each pass through the loop:

Possible that statements never executed, or that loop is infinite.

“do-while” loops
A do-while loop is similar to a while loop, but always executes
at least once, then continues as long as the specified condition is
true.

do {
 // statements to be executed first time
 // through loop and then as long as
 // boolean expression is true

} while (boolean expression)

Can be useful if first pass needed to initialize the boolean
expression.

“for” loops
A for loop allows a set of statements to be repeated a fixed
number of times. The general form is:

for (initialization action ;
 boolean expression ; update action){
 // statements to be executed

}

for (int i=0; i<n; i++){
 // statements to be executed n times

}

Often this will take on the form:

Note that here i is defined only inside the { }.

Examples of loops

int sum = 0;
for (int i = 1; i<=n; i++){
 sum += i;
}
cout << "sum of integers from 1 to " << n <<
 " is " << sum << endl;

A do-while loop:
int n;
bool gotValidInput = false;
do {
 cout << "Enter a positive integer" << endl;
 cin >> n;
 gotValidInput = n > 0;
} while (!gotValidInput);

A for loop:

Nested loops

// loop over pixels in an image

for (int row=1; row<=nRows; row++){
 for (int column=1; column<=nColumns; column++){
 int b = imageBrightness(row, column);
 ...

 } // loop over columns ends here
} // loop over rows ends here

Loops (as well as if-else structures, etc.) can be nested, i.e.,
you can put one inside another:

We can put any kind of loop into any other kind, e.g., while
loops inside for loops, vice versa, etc.

More control of loops
continue causes a single iteration of loop to be skipped
(jumps back to start of loop).

while (processEvent) {

 if (eventSize > maxSize) { continue; }

 if (numEventsDone > maxEventsDone) {
 break;
 }

// rest of statements in loop ...

}

break causes exit from entire loop (only innermost one if
inside nested loops).

Usually best to avoid continue or break by use of if statements.

Wrapping up lecture 2!

G. Cowan / RHUL Computing and Statistical Data Analysis / Lecture 2 22

We’ve seen some basic elements of a C++ program:

 variables, e.g., int, double, bool, etc.;

 how to assign values and form expressions;

 how to get values from the keyboard and write values
 to the monitor;

 how to control the flow of a program with if and else;

 how to control flow with loops (while, do-while, for, etc.).

 Next we will look at some library functions, and then
 move on to user defined functions.!

