
Computing and Statistical Data Analysis
Lecture 4

Passing arguments by value or by reference.

Inline functions

Default arguments, function overloading

Files and streams

Arrays

G. Cowan / RHUL 1 Computing and Statistical Data Analysis / Lecture 4

Passing arguments by value
Consider a function that tries to change the value of an argument:
void tryToChangeArg(int x){
 x = 2*x;
}

It won’t work:
int x = 1;
tryToChangeArg(x);
cout << "now x = " << x << endl; // x still = 1

This is because the argument is passed ‘by value’. Only a copy of
the value of x is passed to the function.
In general this is a Good Thing. We don’t want arguments of
functions to have their values changed unexpectedly.
Sometimes, however, we want to return modified values of the
arguments. But a function can only return a single value.

G. Cowan / RHUL 2 Computing and Statistical Data Analysis / Lecture 4

Passing arguments by reference
We can change the argument’s value passing it ‘by reference’.
To do this we include an & after the argument type in the function’s
prototype and in its definition (but no & in the function call):

void tryToChangeArg(int&); // prototype

void tryToChangeArg(int& x){ // definition
 x = 2*x;
}

int main(){
 int x = 1;
 tryToChangeArg(x);
 cout << "now x = " << x << endl; // now x = 2
}

Argument passed by reference must be a variable, e.g.,
tryToChangeArg(7); will not compile.

G. Cowan / RHUL 3 Computing and Statistical Data Analysis / Lecture 4

Variable scope inside functions
Recall that the definition of a function is enclosed in braces.
Therefore all variables defined inside it are local to that function.

double pow(double x, int n){
 double y = static_cast<double>(n) * log(x);
 return exp(y);
}

...
double y = pow(3,2); // this is a different y

The variable y in the definition of pow is local. We can use the
same variable name outside this function with no effect on or
from the variable y inside pow.

G. Cowan / RHUL 4 Computing and Statistical Data Analysis / Lecture 4

Inline functions
For very short functions, we can include the keyword inline in
their definition (must be in same file, before calling program):

inline double pow(double x, int n){
 double y = static_cast<double>(n) * log(x);
 return exp(y);
}

The compiler will (maybe) replace all instances of the function by
the code specified in the definition. This will run faster than
ordinary functions but results in a larger program.

Only use make very short functions inline and then only when
speed is a concern, and then only when you’ve determined that the
function is using a significant amount of time.

G. Cowan / RHUL 5 Computing and Statistical Data Analysis / Lecture 4

Default arguments
Sometimes it is convenient to specify default arguments for
functions in their declaration:

double line(double x, double slope=1, double offset=0);

The function is then defined as usual:

double line(double x, double slope, double offset){
 return x*slope + offset;
}

We can then call the function with or without the defaults:
y = line (x, 3.7, 5.2); // here slope=3.7, offset=5.2
y = line (x, 3.7); // uses offset=0;
y = line (x); // uses slope=1, offset=0

G. Cowan / RHUL 6 Computing and Statistical Data Analysis / Lecture 4

Function overloading
We can define versions of a function with different numbers or types
of arguments (signatures). This is called function overloading:

double cube(double);
double cube (double x){
 return x*x*x;
}

double cube(float);
double cube (float x){
 double xd = static_cast<double>(x);
 return xd*xd*xd;
}

Return type can be same or different; argument list must differ in
number of arguments or in their types.

G. Cowan / RHUL 7 Computing and Statistical Data Analysis / Lecture 4

Function overloading, cont.
When we call the function, the compiler looks at the signature of
the arguments passed and figures out which version to use:

float x;
double y;
double z = cube(x); // calls cube(float) version
double z = cube(y); // calls cube(double) version

This is done e.g. in the standard math library cmath. There is a
version of sqrt that takes a float (and returns float), and another
that takes a double (and returns double).

Note it is not sufficient if functions differ only by return type -- they
must differ in their argument list to be overloaded.

Operators (+, -, etc.) can also be overloaded. More later.

G. Cowan / RHUL 8 Computing and Statistical Data Analysis / Lecture 4

Writing to and reading from files
Here is a simple program that opens an existing file in order to
read data from it:

#include <iostream>
#include <fstream>
#include <cstdlib>
using namespace std;
int main(){
 // create an ifstream object (name arbitrary)...
 ifstream myInput;
 // Now open an existing file...
 myInput.open("myDataFile.txt");
 // check that operation worked...
 if (myInput.fail()) {
 cout << "Sorry, couldn’t open file" << endl;
 exit(1); // from cstdlib
 }
 ...

G. Cowan / RHUL 9 Computing and Statistical Data Analysis / Lecture 4

Reading from an input stream
The input file stream object is analogous to cin, but instead of
getting data from the keyboard it reads from a file. Note use of
“dot” to call the ifstream’s “member functions”, open, fail, etc.
Suppose the file contains columns of numbers like

1.0 7.38 0.43
2.0 8.59 0.52
3.0 9.01 0.55
...

We can read in these numbers from the file:
double x, y, z;
for(int i=1; i<=numLines; i++){
 myInput >> x >> y >> z;
 cout << "Read " << x << " " << y << " " << z << endl;
}

This loop requires that we know the number of lines in the file.

G. Cowan / RHUL 10 Computing and Statistical Data Analysis / Lecture 4

Reading to the end of the file
Often we don’t know the number of lines in a file ahead of
time. We can use the “end of file” (eof) function:

double x, y, z;
int line = 0;
while (!myInput.eof()){
 myInput >> x >> y >> z;
 if (!myInput.eof()) {
 line++;
 cout << x << " " << y << " " << z << endl;
 }
}
cout << lines << " lines read from file" << endl;
...
myInput.close(); // close when finished

Note some gymnastics needed to avoid getting last line twice.

G. Cowan / RHUL 11 Computing and Statistical Data Analysis / Lecture 4

Writing data to a file
We can write to a file with an ofstream object:

#include <iostream>
#include <fstream>
#include <cstdlib>
using namespace std;
int main(){
 // create an ofstream object (name arbitrary)...
 ofstream myOutput;
 // Now open a new file...
 myOutput.open("myDataFile.txt");
 // check that operation worked...
 if (myOutput.fail()) {
 cout << "Sorry, couldn’t open file" << endl;
 exit(1); // from cstdlib
 }
 ...

G. Cowan / RHUL 12 Computing and Statistical Data Analysis / Lecture 4

Writing data to a file, cont.
Now the ofstream object behaves like cout:

for (int i=1; i<=n; i++){
 myOutput << i << "\t" << i*i << endl;
}

Note use of tab character \t for formatting (could also
use e.g. " " or)

 Alternatively use the functions setf, precision,
width, etc. These work the same way with an
ofstream object as they do with cout, e.g.,
 myOutput.setf(ios::fixed);

 myOutput.precision(4);
 ...

G. Cowan / RHUL 13 Computing and Statistical Data Analysis / Lecture 4

File access modes
The previous program would overwrite an existing file.
To append an existing file, we can specify:

myOutput.open("myDataFile.txt", ios::app);

This is an example of a file access mode. Another useful one is:

myOutput.open("myDataFile.txt", ios::bin);

The data is then written as binary, not formatted. This is much
more compact, but we can’t check the values with an editor.

For more than one option, separate with vertical bar:
myOutput.open("myDataFile.txt", ios::bin | ios::app);

Many options, also for ifstream. Google for details.

G. Cowan / RHUL 14 Computing and Statistical Data Analysis / Lecture 4

Putting it together
Now let’s put together some of what we’ve just seen. The
program reads from a file a series of exam scores, computes the
average and writes it to another file. In file examAve.cc we have

#include <iostream>
#include <fstream>
#include <cstdlib>
#include "aveScore.h"
using namespace std;
int main(){
 // open input file
 ifstream inFile;
 inFile.open("studentScores.txt");
 if (inFile.fail()) {
 cerr << "Couldn’t open input file" << endl;
 exit(1);
 }
 ...

G. Cowan / RHUL 15 Computing and Statistical Data Analysis / Lecture 4

examAve, continued
 // open the output file
 ofstream outFile;
 outFile.open("averageScores.txt");
 if (outFile.fail()) {
 cerr << "Couldn’t open output file" << endl;
 exit(1);
 }

 while (!inFile.eof()){
 int studentNum;
 double test1, test2, test3;
 inFile >> studentNum >> test1 >> test2 >> test3;
 if(!inFile.eof()){
 double ave = aveScore (test1, test2, test3);
 outFile << studentNum << "\t" << ave << endl;
 }
 }

G. Cowan / RHUL 16 Computing and Statistical Data Analysis / Lecture 4

More examAve
 // close up
 inFile.close();
 outFile.close();
 return 0;
}

Now the file aveScore.cc contains

double aveScore(double a, double b, double c){
 double ave = (a + b + c)/3.0;
 return ave;
}

G. Cowan / RHUL 17 Computing and Statistical Data Analysis / Lecture 4

More examAve and aveScore
The header file aveScore.h contains
#ifndef AVE_SCORE_H
#define AVE_SCORE_H
double aveScore(double, double, double);
#endif AVE_SCORE_H

The input data file studentScores.txt might contain

We compile and link the program with
g++ -o examAve examAve.cc aveScore.cc

1 73 65 68
2 52 45 44
3 83 85 91

etc. The example is trivial but we can generalize this to very
complex programs.

G. Cowan / RHUL 18 Computing and Statistical Data Analysis / Lecture 4

Arrays
An array is a fixed-length list containing variables of the same type.

The number in brackets [] gives the total number of elements,e.g.
the array score above has 10 elements, numbered 0 through 9.
The individual elements are referred to as

 score[0], score[1], score[2], ..., score[9]

Declaring an array: data-type variableName[numElements];

int score[10];
double energy[50], momentum[50];
const int MaxParticles = 100;
double ionizationRate[MaxParticles];

The index of an array can be any integer expression with a value
from zero up to the number of elements minus 1. If you try to
access score[10] this is an error!

G. Cowan / RHUL 19 Computing and Statistical Data Analysis / Lecture 4

Arrays, continued
Array elements can be initialized with assignment statements and
otherwise manipulated in expressions like normal variables:

const int NumYears = 50;
int year[NumYears];
for(int i=0; i<NumYears; i++){
 year[i] = i + 1960;
}

Note that C++ arrays always begin with zero, and the last element
has an index equal to the number of elements minus one.

This makes it awkward to implement, e.g., n-dimensional vectors
that are naturally numbered x = (x1, ..., xn).

In the C++ 98 standard, the size of the array must be known at
compile time. In C99 (implemented by gcc), array length can be
variable (set at run time). See also “dynamic” arrays (later).

G. Cowan / RHUL 20 Computing and Statistical Data Analysis / Lecture 4

Multidimensional arrays
An array can also have two or more indices. A two-dimensional
array is often used to store the values of a matrix:

const int numRows = 2;
const int numColumns = 3;
double matrix[numRows][numColumns];

Again, notice that the array size is 2 by 3, but the row index runs
from 0 to 1 and the column index from 0 to 2.

matrix[i][j], matrix[i][j+1], etc.

The elements are stored in memory in the order:

Usually we don’t need to know how the data are stored internally.
(Ancient history: in FORTRAN, the left-most index gave adjacent
elements in memory.)

G. Cowan / RHUL 21 Computing and Statistical Data Analysis / Lecture 4

Initializing arrays
We can initialize an array together with the declaration:

int myArray[5] = {2, 4, 6, 8, 10};

Similar for multi-dimensional arrays:

double matrix[numRows][numColumns] =
 { {3, 7, 2}, {2, 5, 4} };

In practice we will usually initialize arrays with assignment
statements.

G. Cowan / RHUL 22 Computing and Statistical Data Analysis / Lecture 4

Example: multiplication of matrix and vector
// Initialize vector x and matrix A
const int n = 5;
double x[n];
double A[n][n];
for (int i=0; i<n; i++){
 x[i] = someFunction(i);
 for (int j=0; j<n; j++){
 A[i][j] = anotherFunction(i, j);
 }
}

// Now find y = Ax
double y[n];
for (int i=0; i<n; i++){
 y[i] = 0.0;
 for (int j=0; j<n; j++){
 y[i] += A[i][j] * x[j];
 }
}

G. Cowan / RHUL 23 Computing and Statistical Data Analysis / Lecture 4

Passing arrays to functions
Suppose we want to use an array a of length len as an argument
of a function. In the function’s declaration we say, e.g.,

double sumElements(double a[], int len);

We don’t need to specify the number of elements in the prototype,
but we often pass the length into the function as an int variable.

double sumElements(double a[], int len){
 double sum = 0.0;
 for (int i=0; i<len; i++){
 sum += a[i];
 }
 return sum;
}

Then in the function definition we have, e.g.,

G. Cowan / RHUL 24 Computing and Statistical Data Analysis / Lecture 4

Passing arrays to functions, cont.
Then to call the function we say, e.g.,

double s = sumElements(myMatrix, itsLength);

Note there are no brackets for myMatrix when we pass it to the
function.

You could, however, pass myMatrix[i], not as a matrix but as
a double, i.e., the ith element of myMatrix. For example,

double x = sqrt(myMatrix[i]);

G. Cowan / RHUL 25 Computing and Statistical Data Analysis / Lecture 4

Passing arrays to functions
When we pass an array to a function, it works as if passed by
reference, even though we do not use the & notation as with non-
array variables. (The array name is a “pointer” to the first array
element. More on pointers later.)

 This means that the array elements could wind up getting their
values changed:
void changeArray (double a[], int len){
 for(int i=0; i<len; i++){
 a[i] *= 2.0;
 }
}

int main(){
 ...
 changeArray(a, len); // elements of a doubled

G. Cowan / RHUL 26 Computing and Statistical Data Analysis / Lecture 4

Passing multidimensional arrays to functions
When passing a multidimensional array to a function, we need to
specify in the prototype and function definition the number of
elements for all but the left-most index:

void processImage(int image[][numColumns],
 int numRows, int numColumns){
 ...

(But we still probably need to pass the number of elements for
both indices since their values are needed inside the function.)

G. Cowan / RHUL 27 Computing and Statistical Data Analysis / Lecture 4

Wrapping up lecture 4
We’ve now seen enough C++ to write some reasonably
sophisticated programs, namely, we have seen (almost) all of
the basic control structures, and we can write our own
functions and use arrays.

Next week we will introduce a few more “basic” things such as
strings.

Then for something a bit different: pointers

Finally we will be ready to introduce classes, objects, etc.
which form the core of Object Oriented Programming.

G. Cowan / RHUL 28 Computing and Statistical Data Analysis / Lecture 4

