
Computing and Statistical Data Analysis
Lecture 5

Pointers
Strings
Introduction to classes and objects:

 Declaring classes
 A TwoVector class
 Creating objects
 Data members
 Member functions
 Constructors
 Defining the member functions
 Pointers to objects

G. Cowan / RHUL 1 Computing and Statistical Data Analysis / Lecture 5

Pointers
A pointer variable contains a memory address. It ‘points’ to a
location in memory. To declare a pointer, use a star, e.g.,

int* iPtr;
double * xPtr;
char *c;
float *x, *y;

Note some freedom in where to put the star. I prefer the first
notation as it emphasizes that iPtr is of type “pointer to int”.

(But in int* iPtr, jPtr; only iPtr is a pointer--need 2 stars.)

Name of pointer variable can be any valid identifier, but often
useful to choose name to show it’s a pointer (suffix Ptr, etc.).

G. Cowan / RHUL 2 Computing and Statistical Data Analysis / Lecture 5

Pointers: the & operator
Suppose we have a variable i of type int:

int i = 3;

We can define a pointer variable to point to the memory location
that contains i:

int* iPtr = &i;

Here & means “address of”. Don’t confuse it with the & used
when passing arguments by reference.

G. Cowan / RHUL 3 Computing and Statistical Data Analysis / Lecture 5

Initializing pointers
A statement like

int* iPtr;

declares a pointer variable, but does not initialize it. It will be
pointing to some “random” location in memory. We need
to set its value so that it points to a location we’re interested in,
e.g., where we have stored a variable:

iPtr = &i;

(just as ordinary variables must be initialized before use).

G. Cowan / RHUL 4 Computing and Statistical Data Analysis / Lecture 5

Dereferencing pointers: the * operator
Similarly we can use a pointer to access the value of the variable
stored at that memory location. E.g. suppose iPtr = &i; then

int iCopy = *iPtr; // now iCopy equals i

This is called ‘dereferencing’ the pointer. The * operator means
“value stored in memory location being pointed to”.
If we set a pointer equal to zero (or NULL) it points to nothing.
(The address zero is reserved for null pointers.)

If we try to dereference a null pointer we get an error.

G. Cowan / RHUL 5 Computing and Statistical Data Analysis / Lecture 5

Why different kinds of pointers?
Suppose we declare

int* iPtr; // type "pointer to int"
float* fPtr; // type "pointer to float"
double* dPtr; // type "pointer to double"

We need different types of pointers because in general, the
different data types (int, float, double) take up different
amounts of memory. If declare another pointer and set

int* jPtr = iPtr + 1;

then the +1 means “plus one unit of memory address for int”,
i.e., if we had int variables stored contiguously, jPtr would
point to the one just after iPtr.
But the types float, double, etc., take up different amounts of
memory, so the actual memory address increment is different.

G. Cowan / RHUL 6 Computing and Statistical Data Analysis / Lecture 5

Passing pointers as arguments
When a pointer is passed as an argument, it divulges an address to
the called function, so the function can change the value stored at
that address:

void passPointer(int* iPtr){
 *iPtr += 2; // note *iPtr on left!
}

...
int i = 3;
int* iPtr = &i;
passPointer(iPtr);
cout << "i = " << i << endl; // prints i = 5
passPointer(&i); // equivalent to above
cout << "i = " << i << endl; // prints i = 7

End result same as pass-by-reference, syntax different. (Usually
pass by reference is the preferred technique.)

G. Cowan / RHUL 7 Computing and Statistical Data Analysis / Lecture 5

Pointers vs. reference variables
A reference variable behaves like an alias for a regular variable.
To declare, place & after the type:

Passing a reference variable to a function is the same as
passing a normal variable by reference.

passReference(j);
cout << "i = " << i << endl; // prints i = 9

int i = 3;
int& j = i; // j is a reference variable
j = 7;
cout << "i = " << i << endl; // prints i = 7

void passReference(int& i){
 i += 2;
}

G. Cowan / RHUL 8 Computing and Statistical Data Analysis / Lecture 5

What to do with pointers
You can do lots of things with pointers in C++, many of which
result in confusing code and hard-to-find bugs.

One of the main differences between Java and C++: Java doesn’t
have pointer variables (generally seen as a Good Thing).

The main usefulness of pointers for us is that they will allow
us to allocate memory (create variables) dynamically, i.e., at
run time, rather than at compile time.

One interesting use of pointers is that the name of an array is
a pointer to the zeroth element in the array, e.g.,

 double a[3] = {5, 7, 9};
 double zerothVal = *a; // has value of a[0]

G. Cowan / RHUL 9 Computing and Statistical Data Analysis / Lecture 5

Strings (the old way)
A string is a sequence of characters. In C and in earlier versions of
C++, this was implemented with an array of variables of type char,
ending with the character \0 (counts as a single ‘null’ character):

char aString[] = "hello"; // inserts \0 at end

The cstring library (#include <cstring>) provides functions
to copy strings, concatenate them, find substrings, etc. E.g.

char* strcpy(char* target, const char* source);

takes as input a string source and sets the value of a string target,
equal to it. Note source is passed as const -- it can’t be changed.

You will see plenty of code with old “C-style” strings, but there is
now a better way: the string class (more on this later).

G. Cowan / RHUL 10 Computing and Statistical Data Analysis / Lecture 5

Example with strcpy
#include <iostream>
#include <cstring>
using namespace std;
int main(){
 char string1[] = "hello";
 char string2[50];
 strcpy(string2, string1);
 cout << "string2: " << string2 << endl;
 return 0;
}

No need to count elements when initializing string with " ".

Also \0 is automatically inserted as last character.

Program will print: string2 = hello

G. Cowan / RHUL 11 Computing and Statistical Data Analysis / Lecture 5

Classes
A class is something like a user-defined data type. The class
must be declared with a statement of the form:

class MyClassName {
 public:
 public function prototypes and
 data declarations;
 ...
 private:
 private function prototypes and
 data declarations;
 ...
};

Typically this would be in a file called MyClassName.h and the
definitions of the functions would be in MyClassName.cc.
Note the semi-colon after the closing brace.
For class names often use UpperCamelCase.

G. Cowan / RHUL 12 Computing and Statistical Data Analysis / Lecture 5

A simple class: TwoVector
We might define a class to represent a two-dimensional vector:

class TwoVector {
 public:
 TwoVector();
 TwoVector(double x, double y);
 double x();
 double y();
 double r();
 double theta();
 void setX(double x);
 void setY(double y);
 void setR(double r);
 void setTheta(double theta);
 private:
 double m_x;
 double m_y;
};

G. Cowan / RHUL 13 Computing and Statistical Data Analysis / Lecture 5

Class header files
The header file must be included (#include "MyClassName.h")
in other files where the class will be used.

To avoid multiple declarations, use the same trick we saw before
with function prototypes, e.g., in TwoVector.h :

#ifndef TWOVECTOR_H
#define TWOVECTOR_H

class TwoVector {
 public:
 ...
 private:
 ...
};

#endif

G. Cowan / RHUL 14 Computing and Statistical Data Analysis / Lecture 5

Objects
Recall that variables are instances of a data type, e.g.,
double a; // a is a variable of type double

Similarly, objects are instances of a class, e.g.,

#include "TwoVector.h"
int main() {
 TwoVector v; // v is an object of type TwoVector

(Actually, variables are also objects in C++. Sometimes class
instances are called “class objects” -- distinction is not important.)

A class contains in general both:
 variables, called “data members” and
 functions, called “member functions” (or “methods”)

G. Cowan / RHUL 15 Computing and Statistical Data Analysis / Lecture 5

Data members of a TwoVector object
The data members of a TwoVector are:

...
private:
 double m_x;
 double m_y;

Their values define the “state” of the object.

Because here they are declared private, a TwoVector object’s
values of m_x and m_y cannot be accessed directly, but only from
within the class’s member functions (more later).

The optional prefixes m_ indicate that these are data members.
Some authors use e.g. a trailing underscore. (Any valid identifier
is allowed.)

G. Cowan / RHUL 16 Computing and Statistical Data Analysis / Lecture 5

The constructors of a TwoVector
The first two member functions of the TwoVector class are:

...
public:
 TwoVector();
 TwoVector(double x, double y);

These are special functions called constructors.

A constructor always has the same name as that of the class.

It is a function that is called when an object is created.

A constructor has no return type.

There can be in general different constructors with different
signatures (type and number of arguments).

G. Cowan / RHUL 17 Computing and Statistical Data Analysis / Lecture 5

The constructors of a TwoVector, cont.
When we declare an object, the constructor is called which has
the matching signature, e.g.,

TwoVector u; // calls TwoVector::TwoVector()

The constructor with no arguments is called the “default
constructor”. If, however, we say

TwoVector v(1.5, 3.7);

then the version that takes two double arguments is called.

If we provide no constructors for our class, C++ automatically
gives us a default constructor.

G. Cowan / RHUL 18 Computing and Statistical Data Analysis / Lecture 5

Defining the constructors of a TwoVector
In the file that defines the member functions, e.g., TwoVector.cc,
we precede each function name with the class name and :: (the
scope resolution operator). For our two constructors we have:

TwoVector::TwoVector() {
 m_x = 0;
 m_y = 0;
}
TwoVector::TwoVector(double x, double y) {
 m_x = x;
 m_y = y;
}

The constructor serves to initialize the object.
If we already have a TwoVector v and we say

TwoVector w = v;

this calls a “copy constructor” (automatically provided).

G. Cowan / RHUL 19 Computing and Statistical Data Analysis / Lecture 5

The member functions of TwoVector
We call an object’s member functions with the “dot” notation:

TwoVector v(1.5, 3.7); // creates an object v
double vX = v.x();
cout << "vX = " << vX << endl; // prints vX = 1.5
...

If the class had public data members, e.g., these would also be
called with a dot. E.g. if m_x and m_y were public, we could say

double vX = v.m_x;

We usually keep the data members private, and only allow the user
of an object to access the data through the public member functions.
This is sometimes called “data hiding”.

If, e.g., we were to change the internal representation to polar
coordinates, we would need to rewrite the functions x(), etc., but
the user of the class wouldn’t see any change.

G. Cowan / RHUL 20 Computing and Statistical Data Analysis / Lecture 5

Defining the member functions
Also in TwoVector.cc we have the following definitions:

double TwoVector::x() const { return m_x; }
double TwoVector::y() const { return m_y; }
double TwoVector::r() const {
 return sqrt(m_x*m_x + m_y*m_y);
}
double TwoVector::theta() const {
 return atan2(m_y, m_x); // from cmath
}
...

These are called “accessor” or “getter” functions.

They access the data but do not change the internal state of the
object; therefore we include const after the (empty) argument list
(more on why we want const here later).

G. Cowan / RHUL 21 Computing and Statistical Data Analysis / Lecture 5

More member functions
Also in TwoVector.cc we have the following definitions:

void TwoVector::setX(double x) { m_x = x; }
void TwoVector::setY(double y) { m_y = y; }
void TwoVector::setR(double r) {
 double cosTheta = m_x / this->r();
 double sinTheta = m_y / this->r();
 m_x = r * cosTheta;
 m_y = r * sinTheta;
}

These are “setter” functions. As they belong to the class, they are
allowed to manipulate the private data members m_x and m_y.

To use with an object, use the “dot” notation:
TwoVector v(1.5, 3.7);
v.setX(2.9); // sets v’s value of m_x to 2.9

G. Cowan / RHUL 22 Computing and Statistical Data Analysis / Lecture 5

Pointers to objects
Just as we can define a pointer to type int,

int* iPtr; // type "pointer to int"

we can define a pointer to an object of any class, e.g.,

TwoVector* vPtr; // type "pointer to TwoVector"

This doesn’t create an object yet! This is done with, e.g.,

vPtr = new TwoVector(1.5, 3.7);

vPtr is now a pointer to our object. With an object pointer, we
call member functions (and access data members) with -> (not
with “.”), e.g.,
double vX = vPtr->x();
cout << "vX = " << vX << endl; // prints vX = 1.5

G. Cowan / RHUL 23 Computing and Statistical Data Analysis / Lecture 5

Forgotten detail: the this pointer
Inside each object’s member functions, C++ automatically provides
a pointer called this. It points to the object that called the member
function. For example, we just saw

void TwoVector::setR(double r) {
 double cosTheta = m_x / this->r();
 double sinTheta = m_y / this->r();
 m_x = r * cosTheta;
 m_y = r * sinTheta;
}

Here the use of this is optional (but nice, since it emphasizes what
belongs to whom). It can be needed if one of the function’s
parameters has the same name, say, x as a data member. By default,
x means the parameter, not the data member; this->x is then used
to access the data member.

G. Cowan / RHUL 24 Computing and Statistical Data Analysis / Lecture 5

Wrapping up lecture 5
We are now almost done with the part of C++ that resembles C,
i.e., the part that doesn’t deal with classes or objects.

We’ve seen arrays (static and dynamic).

We’ve introduced pointers (but not yet done much with them).

We’ve seen briefly “C-style” strings.

We’ve introduced classes -- these behave like a sort of user
defined data type.

Objects are instances of classes. In addition to holding data they
have a set of functions that can act on the data. This is what
distinguishes object-oriented programming from “procedural
programming”.

G. Cowan / RHUL 25 Computing and Statistical Data Analysis / Lecture 5

