
Lectures on C++

Glen Cowan
Physics Department
Royal Holloway, University of London
Egham, Surrey TW20 0EX

01784 443452
g.cowan@rhul.ac.uk
www.pp.rhul.ac.uk/~cowan/stat_course.html

G. Cowan / RHUL 1 Statistical Data Analysis / Lectures on C++

C++ Outline

 1 Introduction to C++ and UNIX environment
 2 Variables, types, expressions, loops
 3 Type casting, functions
 4 Files and streams
 5 Arrays, strings, pointers
 6 Classes, intro to Object Oriented Programming
 7 Memory allocation, operator overloading, templates
 8 Inheritance, STL, gmake, ddd

G. Cowan / RHUL 2 Statistical Data Analysis / Lectures on C++

Some resources on C++
There are many web based resources, e.g.,

 www.doc.ic.ac.uk/~wjk/C++Intro (Rob Miller, IC course)

 www.cplusplus.com (online reference)

 www.icce.rug.nl/documents/cplusplus (F. Brokken)

See links on course site or google for “C++ tutorial”, etc.

There are thousands of books – see e.g.

 W. Savitch, Problem Solving with C++, 4th edition
 (lots of detail – very thick).
 B. Stroustrup, The C++ Programming Language
 (the classic – even thicker).
 Lippman, Lajoie (& Moo), C++ Primer, A-W, 1998.

G. Cowan / RHUL 3 Statistical Data Analysis / Lectures on C++

We will learn C++ using the Linux operating system
 Open source, quasi-free version of UNIX

UNIX and C developed ~1970 at Bell Labs
 Short, cryptic commands: cd, ls, grep, …

Other operating systems in 1970s, 80s ‘better’, (e.g. VMS)
but, fast ‘RISC processors’ in early 1990s needed a cheap
solution → we got UNIX

In 1991, Linus Torvalds writes a free, open source version
of UNIX called Linux.

 We currently use the distribution from CERN

Introduction to UNIX/Linux

G. Cowan / RHUL 4 Statistical Data Analysis / Lectures on C++

Basic UNIX
UNIX tasks divide neatly into:
 interaction between operating system and computer (the kernel),
 interaction between operating system and user (the shell).

Several shells (i.e. command sets) available: sh, csh, tcsh, bash, …

Shell commands typed at a prompt, here [linappserv0]~>
often set to indicate name of computer:

Command pwd to “print working
directory”, i.e., show the directory
(folder) you’re sitting in.

Commands are case sensitive.

 PWD will not work .

G. Cowan / RHUL 5 Statistical Data Analysis / Lectures on C++

UNIX file structure
Tree-like structure for files and directories (like folders):

/ ← the ‘root’ directory

usr/ bin/ home/ sys/ tmp/ ...

smith/ jones/ jackson/ ...

WWW/ code/ thesis/ ...

File/directory names are case sensitive: thesis ≠ Thesis

G. Cowan / RHUL 6 Statistical Data Analysis / Lectures on C++

Simple UNIX file tricks
A complete file name specifies the entire ‘path’

 /home/jones/thesis/chapter1.tex

A tilde points to the home directory:

 ~/thesis/chapter1.tex ← the logged in user (e.g. jones)

 ~smith/analysis/result.dat ← a different user

Single dot points to current directory, two dots for the one above:

 /home/jones/thesis ← current directory

 ../code ← same as /home/jones/code

G. Cowan / RHUL 7 Statistical Data Analysis / Lectures on C++

A few UNIX commands (case sensitive!)
pwd Show present working directory
ls List files in present working directory
ls -la List files of present working directory with details
man ls Show manual page for ls. Works for all commands.
man -k keyword Searches man pages for info on “keyword”.
cd Change present working directory to home directory.
mkdir foo Create subdirectory foo
cd foo Change to subdirectory foo (go down in tree)
cd .. Go up one directory in tree
rmdir foo Remove subdirectory foo (must be empty)
emacs foo & Edit file foo with emacs (& to run in background)
more foo Display file foo (space for next page)
less foo Similar to more foo, but able to back up (q to quit)
rm foo Delete file foo

G. Cowan / RHUL 8 Statistical Data Analysis / Lectures on C++

A few more UNIX commands
cp foo bar Copy file foo to file bar, e.g., cp ~smith/foo ./

 copies Smith’s file foo to my current directory
mv foo bar Rename file foo to bar
lpr foo Print file foo. Use -P to specify print queue, e.g.,

 lpr -Plj1 foo (site dependent).
ps Show existing processes
kill 345 Kill process 345 (kill -9 as last resort)
./foo Run executable program foo in current directory
ctrl-c Terminate currently executing program
chmod ug+x foo Change access mode so user and group have

 privilege to execute foo (Check with ls -la)

Better to read a book or online tutorial and use man pages

G. Cowan / RHUL 9 Statistical Data Analysis / Lectures on C++

UNIX file access

Three groups of letters refer to: user (u), group (g) and other (o).
The possible permissions are read (r), write (w), execute (x).
Default may be everyone in your group has read access to all
of your files. To change this, use chmod, e.g.
 chmod go-rwx hgg
prevents group and other from seeing the directory hgg.

If you type ls –la, you will see that each file and directory
is characterized by a set of file access rights:

G. Cowan / RHUL 10 Statistical Data Analysis / Lectures on C++

Introduction to C++
Language C developed (from B) ~ 1970 at Bell Labs

 Used to create parts of UNIX

C++ derived from C in early 1980s by Bjarne Stroustrup
 “C with classes”, i.e., user-defined data types that
 allow “Object Oriented Programming”.

Java syntax based largely on C++ (head start if you know java)

 C++ is case sensitive (a not same as A).

Currently most widely used programming language in High
Energy Physics and many other science/engineering fields.

 Recent switch after four decades of FORTRAN.

G. Cowan / RHUL 11 Statistical Data Analysis / Lectures on C++

Compiling and running a simple C++ program

// My first C++ program
#include <iostream>
using namespace std;
int main(){
 cout << "Hello World!" << endl;
 return 0;
}

Using,e.g., emacs, create a file HelloWorld.cc containing:

We now need to compile the file (creates machine-readable code):

 g++ -o HelloWorld HelloWorld.cc

Invokes compiler (gcc) name of output file source code

Run the program: ./HelloWorld ← you type this
Hello World! ← computer shows this

G. Cowan / RHUL 12 Statistical Data Analysis / Lectures on C++

Notes on compiling/linking
g++ -o HelloWorld HelloWorld.cc

is an abbreviated way of saying first

g++ -c HelloWorld.cc

Compiler (-c) produces HelloWorld.o. (‘object files’)
Then ‘link’ the object file(s) with
g++ -o HelloWorld HelloWorld.o

If the program contains more than one source file, list with
spaces; use \ to continue to a new line:

g++ -o HelloWorld HelloWorld.cc Bonjour.cc \
GruessGott.cc YoDude.cc

G. Cowan / RHUL 13 Statistical Data Analysis / Lectures on C++

Writing programs in the Real World
Usually create a new directory for each new program.

For trivial programs, type compile commands by hand.

For less trivial but still small projects, create a file (a ‘script’) to
contain the commands needed to build the program:

#!/bin/sh
File build.sh to build HelloWorld
g++ -o HelloWorld HelloWorld.cc Bonjour.cc \
GruessGott.cc YoDude.cc

To use, must first have ‘execute access’ for the file:

 chmod ug+x build.sh ← do this only once
 ./build.sh ← executes the script

G. Cowan / RHUL 14 Statistical Data Analysis / Lectures on C++

A closer look at HelloWorld.cc
// My first C++ program is a comment (preferred style)

The older ‘C style’ comments are also allowed (cannot be nested):
/*
 These lines
 here are comments
*/

/* and so are these */

You should include enough comments in your code to make it
understandable by someone else (or by yourself, later).

Each file should start with comments indicating author’s name,
main purpose of the code, required input, etc.

G. Cowan / RHUL 15 Statistical Data Analysis / Lectures on C++

More HelloWorld.cc − include statements
#include <iostream> is a compiler directive.

Compiler directives start with #. These statements are not executed
at run time but rather provide information to the compiler.

#include <iostream> tells the compiler that the code will use
library routines whose definitions can be found in a file called
iostream, usually located somewhere under /usr/include

Old style was #include <iostream.h>

iostream contains functions that perform i/o operations to
communicate with keyboard and monitor.

In this case, we are using the iostream object cout to send text
to the monitor. We will include it in almost all programs.

G. Cowan / RHUL 16 Statistical Data Analysis / Lectures on C++

More HelloWorld.cc
using namespace std; More later. For now, just do it.
A C++ program is made up of functions. Every program contains
exactly one function called main:

int main(){
 // body of program goes here

 return 0;
}

Functions “return” a value of a given type; main returns int (integer).

The () are for arguments. Here main takes no arguments.

The body of a function is enclosed in curly braces: { }

return 0; means main returns a value of 0.

G. Cowan / RHUL 17 Statistical Data Analysis / Lectures on C++

Finishing up HelloWorld.cc
The ‘meat’ of HelloWorld is contained in the line

 cout << "Hello World!" << endl;

Like all statements, it ends with a semi-colon.

cout is an “output stream object”.

You send strings (sequences of characters) to cout with <<

We will see it also works for numerical quantities (automatic
conversion to strings), e.g., cout << "x = " << x << endl;

Sending endl to cout indicates a new line. (Try omitting this.)

Old style was "Hello World!\n"

G. Cowan / RHUL 18 Statistical Data Analysis / Lectures on C++

C++ building blocks

G. Cowan / RHUL Statistical Data Analysis / Lectures on C++ 19

All of the words in a C++ program are either:

 Reserved words: cannot be changed, e.g.,
 if, else, int, double, for, while, class, ...

 Library identifiers: default meanings usually not
 changed, e.g., cout, sqrt (square root), ...

 Programmer-supplied identifiers:
 e.g. variables created by the programmer,
 x, y, probeTemperature, photonEnergy, ...

Valid identifier must begin with a letter or underscore (“_”) , and
can consist of letters, digits, and underscores.

Try to use meaningful variable names; suggest lowerCamelCase.

Data types

G. Cowan / RHUL Statistical Data Analysis / Lectures on C++ 20

Data values can be stored in variables of several types.
Think of the variable as a small blackboard, and we have
different types of blackboards for integers, reals, etc.
The variable name is a label for the blackboard.

Basic floating point types (i.e., for real numbers):
 float usually 32 bits
 double usually 64 bits ← best for our purposes

Basic integer type: int (also short, unsigned, long int, ...)
 Number of bits used depends on compiler; typically 32 bits.

Boolean: bool (equal to true or false)

Character: char (single ASCII character only, can be blank),
 no native ‘string’ type; more on C++ strings later.

Declaring variables

G. Cowan / RHUL Statistical Data Analysis / Lectures on C++ 21

All variables must be declared before use.
 Usually declare just before 1st use.

Examples
int main(){
 int numPhotons; // Use int to count things
 double photonEnergy; // Use double for reals
 bool goodEvent; // Use bool for true or false
 int minNum, maxNum; // More than one on line
 int n = 17; // Can initialize value
 double x = 37.2; // when variable declared.
 char yesOrNo = ‘y’; // Value of char in ‘ ‘

 ...
}

Assignment of values to variables

G. Cowan / RHUL Statistical Data Analysis / Lectures on C++ 22

Declaring a variable establishes its name; value is undefined
(unless done together with declaration).

Value is assigned using = (the assignment operator):

int main(){
 bool aOK = true; // true, false predefined constants
 double x, y, z;
 x = 3.7;
 y = 5.2;
 z = x + y;
 cout << "z = " << z << endl;
 z = z + 2.8; // N.B. not like usual equation
 cout << "now z = " << z << endl;
 ...
}

Constants

G. Cowan / RHUL Statistical Data Analysis / Lectures on C++ 23

Sometimes we want to ensure the value of a variable doesn’t change.

 Useful to keep parameters of a problem in an easy
 to find place, where they are easy to modify.

 Use keyword const in declaration:

const int numChannels = 12;
const double PI = 3.14159265;

// Attempted redefinition by Indiana State Legislature
PI = 3.2; // ERROR will not compile

Old C style retained for compatibility (avoid this):
#define PI 3.14159265

Enumerations

G. Cowan / RHUL Statistical Data Analysis / Lectures on C++ 24

Sometimes we want to assign numerical values to words, e.g.,

 January = 1, February = 2, etc.

Use an ‘enumeration’ with keyword enum
 enum { RED, GREEN, BLUE };

is shorthand for
const int RED = 0;

 const int GREEN = 1;
 const int BLUE = 2;

Enumeration starts by default with zero; can override:
 enum { RED = 1, GREEN = 3, BLUE = 7 }

(If not assigned explicitly, value is one greater than previous.)

Expressions

G. Cowan / RHUL Statistical Data Analysis / Lectures on C++ 25

C++ has obvious(?) notation for mathematical expressions:

 operation symbol

 addition +
 subtraction -
 multiplication *
 division /
 modulus %

Note division of int values is truncated:
 int n, m; n = 5; m = 3;
 int ratio = n/m; // ratio has value of 1

Modulus gives remainder of integer division:

 int nModM = n%m; // nModM has value 2

Operator precedence

G. Cowan / RHUL Statistical Data Analysis / Lectures on C++ 26

* and / have precedence over + and -, i.e.,

 x*y + u/v means (x*y) + (u/v)

* and / have same precedence, carry out left to right:

 x/y/u*v means ((x/y) / u) * v

Similar for + and -

 x - y + z means (x - y) + z

Many more rules (google for C++ operator precedence).

Easy to forget the details, so use parentheses unless it’s obvious.

Boolean expressions and operators

G. Cowan / RHUL Statistical Data Analysis / Lectures on C++ 27

Boolean expressions are either true or false, e.g.,
 int n, m; n = 5; m = 3;
 bool b = n < m; // value of b is false

C++ notation for boolean expressions:
 greater than >
 greater than or equals >=
 less than <
 less than or equals <=
 equals ==
 not equals !=

Can be combined with && (“and”), || (“or”) and ! (“not”), e.g.,
 (n < m) && (n != 0) (false)
 (n%m >= 5) || !(n == m) (true)

not =

Precedence of operations not obvious; if in doubt use parentheses.

Shorthand assignment statements

G. Cowan / RHUL Statistical Data Analysis / Lectures on C++ 28

 full statement shorthand equivalent

 n = n + m n += m
 n = n - m n -= m
 n = n * m n *= m
 n = n / m n /= m

 n = n % m n %= m

 full statement shorthand equivalent

 n = n + 1 n++ (or ++n)
 n = n - 1 n-- (or --n)

Special case of increment or decrement by one:

++ or -- before variable means first increment (or decrement),
then carry out other operations in the statement (more later).

Getting input from the keyboard

G. Cowan / RHUL Statistical Data Analysis / Lectures on C++ 29

Sometimes we want to type in a value from the keyboard and
assign this value to a variable. For this use the iostream object cin:

 int age;
 cout << "Enter your age" << endl;
 cin >> age;
 cout << "Your age is " << age << endl;

When you run the program you see
 Enter your age
23 ← you type this, then “Enter”

 Your age is 23

(Why is there no “jin” in java? What were they thinking???)

if and else

G. Cowan / RHUL Statistical Data Analysis / Lectures on C++ 30

Simple flow control is done with if and else:
if (boolean test expression){

 Statements executed if test expression true
 }

or
if (expression1){

 Statements executed if expression1 true
 }
 else if (expression2) {
 Statements executed if expression1 false
 and expression2 true
 }
 else {
 Statements executed if both expression1 and
 expression2 false
 }

more on if and else

G. Cowan / RHUL Statistical Data Analysis / Lectures on C++ 31

Note indentation and placement of curly braces:
if (x > y){

 x = 0.5*x;
 }

Some people prefer

if (x > y)
 {
 x = 0.5*x;
 }

If only a single statement is to be executed, you can omit the
curly braces -- this is usually a bad idea:

 if (x > y) x = 0.5*x;

Putting it together -- checkArea.cc

G. Cowan / RHUL Statistical Data Analysis / Lectures on C++ 32

#include <iostream>
 using namespace std;
 int main() {
 const double maxArea = 20.0;
 double width, height;
 cout << "Enter width" << endl;
 cin >> width;
 cout << "Enter height" << endl;
 cin >> height;
 double area = width*height;
 if (area > maxArea){
 cout << "Area too large" << endl;
 }
 else {
 cout << "Dimensions are OK" << endl;
 }
 return 0;
 }

“while” loops
A while loop allows a set of statements to be repeated as long as
a particular condition is true:

while(boolean expression){
 // statements to be executed as long as
 // boolean expression is true

}

while (x < xMax){
 x += y;
 ...
}

For this to be useful, the boolean expression must be updated
upon each pass through the loop:

Possible that statements never executed, or that loop is infinite.

G. Cowan / RHUL Statistical Data Analysis / Lectures on C++ 33

“do-while” loops
A do-while loop is similar to a while loop, but always executes
at least once, then continues as long as the specified condition is
true.

do {
 // statements to be executed first time
 // through loop and then as long as
 // boolean expression is true

} while (boolean expression)

Can be useful if first pass needed to initialize the boolean
expression.

G. Cowan / RHUL Statistical Data Analysis / Lectures on C++ 34

“for” loops
A for loop allows a set of statements to be repeated a fixed
number of times. The general form is:

for (initialization action ;
 boolean expression ; update action){
 // statements to be executed

}

for (int i=0; i<n; i++){
 // statements to be executed n times

}

Often this will take on the form:

Note that here i is defined only inside the { }.

G. Cowan / RHUL Statistical Data Analysis / Lectures on C++ 35

Examples of loops

int sum = 0;
for (int i = 1; i<=n; i++){
 sum += i;
}
cout << "sum of integers from 1 to " << n <<
 " is " << sum << endl;

A do-while loop:
int n;
bool gotValidInput = false;
do {
 cout << "Enter a positive integer" << endl;
 cin >> n;
 gotValidInput = n > 0;
} while (!gotValidInput);

A for loop:

G. Cowan / RHUL Statistical Data Analysis / Lectures on C++ 36

Nested loops

// loop over pixels in an image

for (int row=1; row<=nRows; row++){
 for (int column=1; column<=nColumns; column++){
 int b = imageBrightness(row, column);
 ...

 } // loop over columns ends here
} // loop over rows ends here

Loops (as well as if-else structures, etc.) can be nested, i.e.,
you can put one inside another:

We can put any kind of loop into any other kind, e.g., while
loops inside for loops, vice versa, etc.

G. Cowan / RHUL Statistical Data Analysis / Lectures on C++ 37

More control of loops
continue causes a single iteration of loop to be skipped
(jumps back to start of loop).

while (processEvent) {

 if (eventSize > maxSize) { continue; }

 if (numEventsDone > maxEventsDone) {
 break;
 }

// rest of statements in loop ...

}

break causes exit from entire loop (only innermost one if
inside nested loops).

Usually best to avoid continue or break by use of if statements.

G. Cowan / RHUL Statistical Data Analysis / Lectures on C++ 38

Type casting
Often we need to interpret the value of a variable of one type
as being of a different type, e.g., we may want to carry out
floating-point division using variables of type int.

Suppose we have: int n, m; n = 5; m = 3; and we want
to know the real-valued ratio of n/m (i.e. not truncated). We
need to “type cast” n and m from int to double (or float):
double x = static_cast<double>(n) /
 static_cast<double>(m);

will give x = 1.666666...

Similarly we can use static_cast<int>(x) to turn a float
or double into an int, etc.

Will also work here with static_cast<double>(n)/m;
but static_cast<double>(n/m); gives 1.0.

G. Cowan / RHUL 39 Statistical Data Analysis / Lectures on C++

 Digression #1: bool vs. int
C and earlier versions of C++ did not have the type bool.
Instead, an int value of zero was interpreted as false, and any
other value as true. This still works in C++:
int num = 1;
if (num) {
 ... // condition true if num != 0

It is best to avoid this. If you want true or false, use bool.
If you want to check whether a number is zero, then use the
corresponding boolean expression:

if (num != 0) {
 ... // condition true if num != 0

G. Cowan / RHUL 40 Statistical Data Analysis / Lectures on C++

Digression #2: value of an assignment and == vs. =

In C++, an assignment statement has an associated value,
equal to the value assigned to the left-hand side. We may see:
int x, y;
x = y = 0;

Recall = is the assignment operator, e.g., x = 3;

 == is used in boolean expressions, e.g., if (x == 3) { ...

This says first assign 0 to y, then assign its value (0) to x.
This can lead to very confusing code. Or worse:
if (x = 0) { ... // condition always false!

Here what the author probably meant was
if (x == 0) { ...

G. Cowan / RHUL 41 Statistical Data Analysis / Lectures on C++

Standard mathematical functions
Simple mathematical functions are available through the
standard C library cmath (previously math.h), including:

abs acos asin atan atan2 cos cosh exp
fabs fmod log log10 pow sin sinh sqrt
tan tanh

Most of these can be used with float or double arguments;
return value is then of same type.

Raising to a power, z = xy, with z = pow(x,y) involves log and
exponentiation operations; not very efficient for z = 2, 3, etc.
Some advocate e.g. double xSquared = x*x;

To use these functions we need: #include <cmath>

Google for C++ cmath or see www.cplusplus.com for more info.

G. Cowan / RHUL 42 Statistical Data Analysis / Lectures on C++

A simple example
Create file testMath.cc containing:
// Simple program to illustrate cmath library
#include <iostream>
#include <cmath>
using namespace std;
int main() {

 for (int i=1; i<=10; i++){
 double x = static_cast<double>(i);
 double y = sqrt(x);
 double z = pow(x, 1./3.); // note decimal pts
 cout << x << " " << y << " " << z << endl;
 }

}

Note indentation and use of blank lines for clarity.

G. Cowan / RHUL 43 Statistical Data Analysis / Lectures on C++

Running testMath
Compile and link: g++ -o testMath testMath.cc

1 1 1
2 1.41421 1.25992
3 1.73205 1.44225
4 2 1.5874
...

The numbers don’t line up in neat columns -- more later.

Run the program: ./testMath

Often it is useful to save output directly to a file. Unix allows
us to redirect the output:
./testMath > outputFile.txt
Similarly, use >> to append file, >! to insist on overwriting.
These tricks work with any Unix commands, e.g., ls, grep, ...

G. Cowan / RHUL 44 Statistical Data Analysis / Lectures on C++

Improved i/o: formatting tricks
Often it’s convenient to control the formatting of numbers.

cout.setf(ios::fixed);
cout.precision(4);

will result in 4 places always to the right of the decimal point.
cout.setf(ios::scientific);

will give scientific notation, e.g., 3.4516e+05. To undo this,
use cout.unsetf(ios::scientific);

cout.width(15) will cause next item sent to cout to occupy
15 spaces, e.g.,

cout.width(5); cout << x;
cout.width(10); cout << y;
cout.width(10); cout << z << endl;

To use cout.width need #include <iomanip> .

G. Cowan / RHUL 45 Statistical Data Analysis / Lectures on C++

More formatting: printf and scanf
Much of this can be done more easily with the C function printf:

printf ("formatting info" [, arguments]);

For example, for float or double x and int i:
printf("%f %d \n", x, i);

will give a decimal notation for x and integer for i.
\n does (almost) same as endl;

Suppose we want 8 spaces for x, 3 to the right of the decimal
point, and 10 spaces for i:

printf("%8.3f %10d \n", x, i);

To use printf need #include <cstdlib> .

For more info google for printf examples, etc.
Also scanf, analogue of cin.

G. Cowan / RHUL 46 Statistical Data Analysis / Lectures on C++

Scope basics
The scope of a variable is that region of the program in which it
can be used.

If a block of code is enclosed in braces { }, then this delimits
the scope for variables declared inside the braces. This
includes braces used for loops and if structures:
int x = 5;
for (int i=0; i<n; i++){
 int y = i + 3;
 x = x + y;
}
cout << "x = " << x << endl; // OK
cout << "y = " << y << endl; // BUG -- y out of scope
cout << "i = " << i << endl; // BUG -- i out of scope

Variables declared outside any function, including main, have
‘global scope’. They can be used anywhere in the program.

G. Cowan / RHUL 47 Statistical Data Analysis / Lectures on C++

More scope

int x = 5;
{
 double x = 3.7;
 cout << "x = " << x << endl; // will print x = 3.7
}
cout << "x = " << x << endl; // will print x = 5

The meaning of a variable can be redefined in a limited ‘local
scope’:

In general try to keep the scope of variables as local as possible.
This minimizes the chance of clashes with other variables to
which you might try to assign the same name.

(This is bad style; example is only to illustrate local scope.)

G. Cowan / RHUL 48 Statistical Data Analysis / Lectures on C++

Namespaces
A namespace defines a set of names (identifiers of variables,
functions, objects) and a context in which they are used.

E.g., variables declared outside of any function are in the global
namespace (they have global scope); and can be used anywhere.

A namespace can be defined with the namespace keyword:
 namespace aNameSpace {
 double x = 1.0;
 }

To refer to this x in some other part of the program (outside of
its local namespace), we can use

 aNameSpace::x

:: is the scope resolution operator.

G. Cowan / RHUL 49 Statistical Data Analysis / Lectures on C++

The std namespace
C++ provides automatically a namespace called std.

It contains all identifiers used in the standard C++ library (lots!),
including, e.g., cin, cout, endl, ...

To use, e.g., cout, endl, we can say:
using std::cout;
using std::endl;
int main(){
 cout << "Hello" << endl;
 ...

or we can omit using and say
int main(){
 std::cout << "Hello" << std::endl;
 ...

G. Cowan / RHUL 50 Statistical Data Analysis / Lectures on C++

using namespace std;
Or we can simply say
using namespace std;
int main(){
 cout << "Hello" << endl;
 ...

Although I do this in the lecture notes to keep them compact,
it is not a good idea in real code. The namespace std contains
thousands of identifiers and you run the risk of a name clash.

This construction can also be used with user-defined namespaces:
using namespace aNameSpace;
int main(){
 cout << x << endl; // uses aNameSpace::x
 ...

G. Cowan / RHUL 51 Statistical Data Analysis / Lectures on C++

Functions
Up to now we have seen the function main, as well as
mathematical functions such as sqrt and cos. We can also
define other functions, e.g.,
const double PI = 3.14159265; // global constant
double ellipseArea(double, double); // prototype
int main() {
 double a = 5;
 double b = 7;
 double area = ellipseArea(a, b);
 cout << "area = " << area << endl;
 return 0;
}

double ellipseArea(double a, double b){
 return PI*a*b;
}

G. Cowan / RHUL 52 Statistical Data Analysis / Lectures on C++

The usefulness of functions
Now we can ‘call’ ellipseArea whenever we need the area of
an ellipse; this is modular programming.

The user doesn’t need to know about the internal workings of
the function, only that it returns the right result.

‘Procedural abstraction’ means that the implementation details
of a function are hidden in its definition, and needn’t concern
the user of the function.

A well written function can be re-used in other parts of the
program and in other programs.

Functions allow large programs to be developed by teams
(as is true for classes, which we will see soon).

G. Cowan / RHUL 53 Statistical Data Analysis / Lectures on C++

Declaring functions
Before we can use a function, we need to declare it at the top of
the file (before int main()).

double ellipseArea(double, double);

This is called the ‘prototype’ of the function. It begins with
the function’s ‘return type’. The function can be used in an
expression like a variable of this type.

The prototype must also specify the types of the arguments, in
the correct sequence. Variable names are optional in the
prototype.

The specification of the types and order of the arguments is
called the function’s signature.

G. Cowan / RHUL 54 Statistical Data Analysis / Lectures on C++

Defining functions
The function must then be defined, i.e., we must say what it
does with its arguments and what it returns.

double ellipseArea(double a, double b){
 return PI*a*b;
}

Note the scope of a and b is local to the function ellipseArea.
We could have given them names different from the a and b in
the main program (and we often do).

The first word defines the type of value returned, here double.

Then comes a list of parameters, each preceded by its type.

Then the body of the function does the necessary computation and
finally we have the return statement followed by the
corresponding value of the function.

G. Cowan / RHUL 55 Statistical Data Analysis / Lectures on C++

Return type of a function

double ellipseArea(double, double);

The prototype must also indicate the return type of the function,
e.g., int, float, double, char, bool.

When calling the function, it must be used in the same manner
as an expression of the corresponding return type, e.g.,

The function’s return statement must return a value of this type.
double ellipseArea(double a, double b){
 return PI*a*b;
}

double volume = ellipseArea(a, b) * height;

G. Cowan / RHUL 56 Statistical Data Analysis / Lectures on C++

Return type void
The return type may be ‘void’, in which case there is no return
statement in the function (like a FORTRAN subroutine):
void showProduct(double a, double b){
 cout << "a*b = " << a*b << endl;
}

To call a function with return type void, we simply write its
name with any arguments followed by a semicolon:
showProduct(3, 7);

G. Cowan / RHUL 57 Statistical Data Analysis / Lectures on C++

Putting functions in separate files
Often we put functions in a separate files. The declaration of a
function goes in a ‘header file’ called, e.g., ellipseArea.h,
which contains the prototype:
#ifndef ELLIPSE_AREA_H
#define ELLIPSE_AREA_H

// function to compute area of an ellipse

double ellipseArea(double, double);

#endif

The directives #ifndef (if not defined), etc., serve to ensure that
the prototype is not included multiple times. If ELLIPSE_AREA_H
is already defined, the declaration is skipped.

G. Cowan / RHUL 58 Statistical Data Analysis / Lectures on C++

Putting functions in separate files, continued
Then the header file is included (note use of " " rather than < >)
in all files where the function is called:

#include <iostream>
#include "ellipseArea.h"
using namespace std;
int main() {
 double a = 5;
 double b = 7;
 double area = ellipseArea(a, b);
 cout << "area = " << area << endl;
 return 0;
}

(ellipseArea.h does not have to be included in the file
ellipseArea.cc where the function is defined.)

G. Cowan / RHUL 59 Statistical Data Analysis / Lectures on C++

Passing arguments by value
Consider a function that tries to change the value of an argument:
void tryToChangeArg(int x){
 x = 2*x;
}

It won’t work:
int x = 1;
tryToChangeArg(x);
cout << "now x = " << x << endl; // x still = 1

This is because the argument is passed ‘by value’. Only a copy of
the value of x is passed to the function.

In general this is a Good Thing. We don’t want arguments of
functions to have their values changed unexpectedly.
Sometimes, however, we want to return modified values of the
arguments. But a function can only return a single value.

G. Cowan / RHUL 60 Statistical Data Analysis / Lectures on C++

Passing arguments by reference
We can change the argument’s value passing it ‘by reference’.
To do this we include an & after the argument type in the function’s
prototype and in its definition (but no & in the function call):

void tryToChangeArg(int&); // prototype

void tryToChangeArg(int& x){ // definition
 x = 2*x;
}

int main(){
 int x = 1;
 tryToChangeArg(x);
 cout << "now x = " << x << endl; // now x = 2
}

Argument passed by reference must be a variable, e.g.,
tryToChangeArg(7); will not compile.

G. Cowan / RHUL 61 Statistical Data Analysis / Lectures on C++

Default arguments
Sometimes it is convenient to specify default arguments for
functions in their declaration:

double line(double x, double slope=1, double offset=0);

The function is then defined as usual:

double line(double x, double slope, double offset){
 return x*slope + offset;
}

We can then call the function with or without the defaults:
y = line (x, 3.7, 5.2); // here slope=3.7, offset=5.2
y = line (x, 3.7); // uses offset=0;
y = line (x); // uses slope=1, offset=0

G. Cowan / RHUL 62 Statistical Data Analysis / Lectures on C++

Function overloading
We can define versions of a function with different numbers or types
of arguments (signatures). This is called function overloading:

double cube(double);
double cube (double x){
 return x*x*x;
}

double cube(float);
double cube (float x){
 double xd = static_cast<double>(x);
 return xd*xd*xd;
}

Return type can be same or different; argument list must differ in
number of arguments or in their types.

G. Cowan / RHUL 63 Statistical Data Analysis / Lectures on C++

Function overloading, cont.
When we call the function, the compiler looks at the signature of
the arguments passed and figures out which version to use:

float x;
double y;
double z = cube(x); // calls cube(float) version
double z = cube(y); // calls cube(double) version

This is done e.g. in the standard math library cmath. There is a
version of sqrt that takes a float (and returns float), and another
that takes a double (and returns double).

Note it is not sufficient if functions differ only by return type -- they
must differ in their argument list to be overloaded.

Operators (+, -, etc.) can also be overloaded. More later.

G. Cowan / RHUL 64 Statistical Data Analysis / Lectures on C++

Writing to and reading from files
Here is a simple program that opens an existing file in order to
read data from it:

#include <iostream>
#include <fstream>
#include <cstdlib>
using namespace std;
int main(){
 // create an ifstream object (name arbitrary)...
 ifstream myInput;
 // Now open an existing file...
 myInput.open("myDataFile.txt");
 // check that operation worked...
 if (myInput.fail()) {
 cout << "Sorry, couldn’t open file" << endl;
 exit(1); // from cstdlib
 }
 ...

G. Cowan / RHUL 65 Statistical Data Analysis / Lectures on C++

Reading from an input stream
The input file stream object is analogous to cin, but instead of
getting data from the keyboard it reads from a file. Note use of
“dot” to call the ifstream’s “member functions”, open, fail, etc.
Suppose the file contains columns of numbers like

1.0 7.38 0.43
2.0 8.59 0.52
3.0 9.01 0.55
...

We can read in these numbers from the file:
double x, y, z;
for(int i=1; i<=numLines; i++){
 myInput >> x >> y >> z;
 cout << "Read " << x << " " << y << " " << z << endl;
}

This loop requires that we know the number of lines in the file.

G. Cowan / RHUL 66 Statistical Data Analysis / Lectures on C++

Reading to the end of the file
Often we don’t know the number of lines in a file ahead of
time. We can use the “end of file” (eof) function:

double x, y, z;
int line = 0;
while (!myInput.eof()){
 myInput >> x >> y >> z;
 if (!myInput.eof()) {
 line++;
 cout << x << " " << y << " " << z << endl;
 }
}
cout << lines << " lines read from file" << endl;
...
myInput.close(); // close when finished

Note some gymnastics needed to avoid getting last line twice.

G. Cowan / RHUL 67 Statistical Data Analysis / Lectures on C++

Writing data to a file
We can write to a file with an ofstream object:

#include <iostream>
#include <fstream>
#include <cstdlib>
using namespace std;
int main(){
 // create an ofstream object (name arbitrary)...
 ofstream myOutput;
 // Now open a new file...
 myOutput.open("myDataFile.txt");
 // check that operation worked...
 if (myOutput.fail()) {
 cout << "Sorry, couldn’t open file" << endl;
 exit(1); // from cstdlib
 }
 ...

G. Cowan / RHUL 68 Statistical Data Analysis / Lectures on C++

Writing data to a file, cont.
Now the ofstream object behaves like cout:

for (int i=1; i<=n; i++){
 myOutput << i << "\t" << i*i << endl;
}

Note use of tab character \t for formatting (could also
use e.g. " " or)

 Alternatively use the functions setf, precision,
width, etc. These work the same way with an
ofstream object as they do with cout, e.g.,
 myOutput.setf(ios::fixed);

 myOutput.precision(4);
 ...

G. Cowan / RHUL 69 Statistical Data Analysis / Lectures on C++

File access modes
The previous program would overwrite an existing file.
To append an existing file, we can specify:

myOutput.open("myDataFile.txt", ios::app);

This is an example of a file access mode. Another useful one is:

myOutput.open("myDataFile.txt", ios::bin);

The data is then written as binary, not formatted. This is much
more compact, but we can’t check the values with an editor.

For more than one option, separate with vertical bar:
myOutput.open("myDataFile.txt", ios::bin | ios::app);

Many options, also for ifstream. Google for details.

G. Cowan / RHUL 70 Statistical Data Analysis / Lectures on C++

Putting it together
Now let’s put together some of what we’ve just seen. The
program reads from a file a series of exam scores, computes the
average and writes it to another file. In file examAve.cc we have

#include <iostream>
#include <fstream>
#include <cstdlib>
#include "aveScore.h"
using namespace std;
int main(){
 // open input file
 ifstream inFile;
 inFile.open("studentScores.txt");
 if (inFile.fail()) {
 cerr << "Couldn’t open input file" << endl;
 exit(1);
 }
 ...

G. Cowan / RHUL 71 Statistical Data Analysis / Lectures on C++

examAve, continued
 // open the output file
 ofstream outFile;
 outFile.open("averageScores.txt");
 if (outFile.fail()) {
 cerr << "Couldn’t open output file" << endl;
 exit(1);
 }

 while (!inFile.eof()){
 int studentNum;
 double test1, test2, test3;
 inFile >> studentNum >> test1 >> test2 >> test3;
 if(!inFile.eof()){
 double ave = aveScore (test1, test2, test3);
 outFile << studentNum << "\t" << ave << endl;
 }
 }

G. Cowan / RHUL 72 Statistical Data Analysis / Lectures on C++

More examAve
 // close up
 inFile.close();
 outFile.close();
 return 0;
}

Now the file aveScore.cc contains

double aveScore(double a, double b, double c){
 double ave = (a + b + c)/3.0;
 return ave;
}

G. Cowan / RHUL 73 Statistical Data Analysis / Lectures on C++

More examAve and aveScore
The header file aveScore.h contains
#ifndef AVE_SCORE_H
#define AVE_SCORE_H
double aveScore(double, double, double);
#endif AVE_SCORE_H

The input data file studentScores.txt might contain

We compile and link the program with
g++ -o examAve examAve.cc aveScore.cc

1 73 65 68
2 52 45 44
3 83 85 91

etc. The example is trivial but we can generalize this to very
complex programs.

G. Cowan / RHUL 74 Statistical Data Analysis / Lectures on C++

Arrays
An array is a fixed-length list containing variables of the same type.

The number in brackets [] gives the total number of elements,e.g.
the array score above has 10 elements, numbered 0 through 9.
The individual elements are referred to as

 score[0], score[1], score[2], ..., score[9]

Declaring an array: data-type variableName[numElements];

int score[10];
double energy[50], momentum[50];
const int MaxParticles = 100;
double ionizationRate[MaxParticles];

The index of an array can be any integer expression with a value
from zero up to the number of elements minus 1. If you try to
access score[10] this is an error!

G. Cowan / RHUL 75 Statistical Data Analysis / Lectures on C++

Arrays, continued
Array elements can be initialized with assignment statements and
otherwise manipulated in expressions like normal variables:

const int NumYears = 50;
int year[NumYears];
for(int i=0; i<NumYears; i++){
 year[i] = i + 1960;
}

Note that C++ arrays always begin with zero, and the last element
has an index equal to the number of elements minus one.

This makes it awkward to implement, e.g., n-dimensional vectors
that are naturally numbered x = (x1, ..., xn).

In the C++ 98 standard, the size of the array must be known at
compile time. In C99 (implemented by gcc), array length can be
variable (set at run time). See also “dynamic” arrays (later).

G. Cowan / RHUL 76 Statistical Data Analysis / Lectures on C++

Multidimensional arrays
An array can also have two or more indices. A two-dimensional
array is often used to store the values of a matrix:

const int numRows = 2;
const int numColumns = 3;
double matrix[numRows][numColumns];

Again, notice that the array size is 2 by 3, but the row index runs
from 0 to 1 and the column index from 0 to 2.

matrix[i][j], matrix[i][j+1], etc.

The elements are stored in memory in the order:

Usually we don’t need to know how the data are stored internally.
(Ancient history: in FORTRAN, the left-most index gave adjacent
elements in memory.)

G. Cowan / RHUL 77 Statistical Data Analysis / Lectures on C++

Initializing arrays
We can initialize an array together with the declaration:

int myArray[5] = {2, 4, 6, 8, 10};

Similar for multi-dimensional arrays:

double matrix[numRows][numColumns] =
 { {3, 7, 2}, {2, 5, 4} };

In practice we will usually initialize arrays with assignment
statements.

G. Cowan / RHUL 78 Statistical Data Analysis / Lectures on C++

Example: multiplication of matrix and vector
// Initialize vector x and matrix A
const int n = 5;
double x[n];
double A[n][n];
for (int i=0; i<n; i++){
 x[i] = someFunction(i);
 for (int j=0; j<n; j++){
 A[i][j] = anotherFunction(i, j);
 }
}

// Now find y = Ax
double y[n];
for (int i=0; i<n; i++){
 y[i] = 0.0;
 for (int j=0; j<n; j++){
 y[i] += A[i][j] * x[j];
 }
}

G. Cowan / RHUL 79 Statistical Data Analysis / Lectures on C++

Passing arrays to functions
Suppose we want to use an array a of length len as an argument
of a function. In the function’s declaration we say, e.g.,

double sumElements(double a[], int len);

We don’t need to specify the number of elements in the prototype,
but we often pass the length into the function as an int variable.

double sumElements(double a[], int len){
 double sum = 0.0;
 for (int i=0; i<len; i++){
 sum += a[i];
 }
 return sum;
}

Then in the function definition we have, e.g.,

G. Cowan / RHUL 80 Statistical Data Analysis / Lectures on C++

Passing arrays to functions, cont.
Then to call the function we say, e.g.,

double s = sumElements(myMatrix, itsLength);

Note there are no brackets for myMatrix when we pass it to the
function.

You could, however, pass myMatrix[i], not as a matrix but as
a double, i.e., the ith element of myMatrix. For example,

double x = sqrt(myMatrix[i]);

G. Cowan / RHUL 81 Statistical Data Analysis / Lectures on C++

Passing arrays to functions
When we pass an array to a function, it works as if passed by
reference, even though we do not use the & notation as with non-
array variables. (The array name is a “pointer” to the first array
element. More on pointers later.)

 This means that the array elements could wind up getting their
values changed:
void changeArray (double a[], int len){
 for(int i=0; i<len; i++){
 a[i] *= 2.0;
 }
}

int main(){
 ...
 changeArray(a, len); // elements of a doubled

G. Cowan / RHUL 82 Statistical Data Analysis / Lectures on C++

Passing multidimensional arrays to functions
When passing a multidimensional array to a function, we need to
specify in the prototype and function definition the number of
elements for all but the left-most index:

void processImage(int image[][numColumns],
 int numRows, int numColumns){
 ...

(But we still probably need to pass the number of elements for
both indices since their values are needed inside the function.)

G. Cowan / RHUL 83 Statistical Data Analysis / Lectures on C++

Pointers
A pointer variable contains a memory address. It ‘points’ to a
location in memory. To declare a pointer, use a star, e.g.,

int* iPtr;
double * xPtr;
char *c;
float *x, *y;

Note some freedom in where to put the star. I prefer the first
notation as it emphasizes that iPtr is of type “pointer to int”.

(But in int* iPtr, jPtr; only iPtr is a pointer--need 2 stars.)

Name of pointer variable can be any valid identifier, but often
useful to choose name to show it’s a pointer (suffix Ptr, etc.).

G. Cowan / RHUL 84 Statistical Data Analysis / Lectures on C++

Pointers: the & operator
Suppose we have a variable i of type int:

int i = 3;

We can define a pointer variable to point to the memory location
that contains i:

int* iPtr = &i;

Here & means “address of”. Don’t confuse it with the & used
when passing arguments by reference.

G. Cowan / RHUL 85 Statistical Data Analysis / Lectures on C++

Initializing pointers
A statement like

int* iPtr;

declares a pointer variable, but does not initialize it. It will be
pointing to some “random” location in memory. We need
to set its value so that it points to a location we’re interested in,
e.g., where we have stored a variable:

iPtr = &i;

(just as ordinary variables must be initialized before use).

G. Cowan / RHUL 86 Statistical Data Analysis / Lectures on C++

Dereferencing pointers: the * operator
Similarly we can use a pointer to access the value of the variable
stored at that memory location. E.g. suppose iPtr = &i; then

int iCopy = *iPtr; // now iCopy equals i

This is called ‘dereferencing’ the pointer. The * operator means
“value stored in memory location being pointed to”.

If we set a pointer equal to zero (or NULL) it points to nothing.
(The address zero is reserved for null pointers.)

If we try to dereference a null pointer we get an error.

G. Cowan / RHUL 87 Statistical Data Analysis / Lectures on C++

Why different kinds of pointers?
Suppose we declare

int* iPtr; // type "pointer to int"
float* fPtr; // type "pointer to float"
double* dPtr; // type "pointer to double"

We need different types of pointers because in general, the
different data types (int, float, double) take up different
amounts of memory. If declare another pointer and set

int* jPtr = iPtr + 1;

then the +1 means “plus one unit of memory address for int”,
i.e., if we had int variables stored contiguously, jPtr would
point to the one just after iPtr.
But the types float, double, etc., take up different amounts of
memory, so the actual memory address increment is different.

G. Cowan / RHUL 88 Statistical Data Analysis / Lectures on C++

Passing pointers as arguments
When a pointer is passed as an argument, it divulges an address to
the called function, so the function can change the value stored at
that address:

void passPointer(int* iPtr){
 *iPtr += 2; // note *iPtr on left!
}

...
int i = 3;
int* iPtr = &i;
passPointer(iPtr);
cout << "i = " << i << endl; // prints i = 5
passPointer(&i); // equivalent to above
cout << "i = " << i << endl; // prints i = 7

End result same as pass-by-reference, syntax different. (Usually
pass by reference is the preferred technique.)

G. Cowan / RHUL 89 Statistical Data Analysis / Lectures on C++

Pointers vs. reference variables
A reference variable behaves like an alias for a regular variable.
To declare, place & after the type:

Passing a reference variable to a function is the same as
passing a normal variable by reference.

passReference(j);
cout << "i = " << i << endl; // prints i = 9

int i = 3;
int& j = i; // j is a reference variable
j = 7;
cout << "i = " << i << endl; // prints i = 7

void passReference(int& i){
 i += 2;
}

G. Cowan / RHUL 90 Statistical Data Analysis / Lectures on C++

What to do with pointers
You can do lots of things with pointers in C++, many of which
result in confusing code and hard-to-find bugs.

One of the main differences between Java and C++: Java doesn’t
have pointer variables (generally seen as a Good Thing).

The main usefulness of pointers for us is that they will allow
us to allocate memory (create variables) dynamically, i.e., at
run time, rather than at compile time.

One interesting use of pointers is that the name of an array is
a pointer to the zeroth element in the array, e.g.,

 double a[3] = {5, 7, 9};
 double zerothVal = *a; // has value of a[0]

G. Cowan / RHUL 91 Statistical Data Analysis / Lectures on C++

Strings (the old way)
A string is a sequence of characters. In C and in earlier versions of
C++, this was implemented with an array of variables of type char,
ending with the character \0 (counts as a single ‘null’ character):

char aString[] = "hello"; // inserts \0 at end

The cstring library (#include <cstring>) provides functions
to copy strings, concatenate them, find substrings, etc. E.g.

char* strcpy(char* target, const char* source);

takes as input a string source and sets the value of a string target,
equal to it. Note source is passed as const -- it can’t be changed.

You will see plenty of code with old “C-style” strings, but there is
now a better way: the string class (more on this later).

G. Cowan / RHUL 92 Statistical Data Analysis / Lectures on C++

Example with strcpy
#include <iostream>
#include <cstring>
using namespace std;
int main(){
 char string1[] = "hello";
 char string2[50];
 strcpy(string2, string1);
 cout << "string2: " << string2 << endl;
 return 0;
}

No need to count elements when initializing string with " ".

Also \0 is automatically inserted as last character.

Program will print: string2 = hello

G. Cowan / RHUL 93 Statistical Data Analysis / Lectures on C++

Classes
A class is something like a user-defined data type. The class
must be declared with a statement of the form:

class MyClassName {
 public:
 public function prototypes and
 data declarations;
 ...
 private:
 private function prototypes and
 data declarations;
 ...
};

Typically this would be in a file called MyClassName.h and the
definitions of the functions would be in MyClassName.cc.
Note the semi-colon after the closing brace.
For class names often use UpperCamelCase.

G. Cowan / RHUL 94 Statistical Data Analysis / Lectures on C++

A simple class: TwoVector
We might define a class to represent a two-dimensional vector:

class TwoVector {
 public:
 TwoVector();
 TwoVector(double x, double y);
 double x();
 double y();
 double r();
 double theta();
 void setX(double x);
 void setY(double y);
 void setR(double r);
 void setTheta(double theta);
 private:
 double m_x;
 double m_y;
};

G. Cowan / RHUL 95 Statistical Data Analysis / Lectures on C++

Class header files
The header file must be included (#include "MyClassName.h")
in other files where the class will be used.

To avoid multiple declarations, use the same trick we saw before
with function prototypes, e.g., in TwoVector.h :

#ifndef TWOVECTOR_H
#define TWOVECTOR_H

class TwoVector {
 public:
 ...
 private:
 ...
};

#endif

G. Cowan / RHUL 96 Statistical Data Analysis / Lectures on C++

Objects
Recall that variables are instances of a data type, e.g.,
double a; // a is a variable of type double

Similarly, objects are instances of a class, e.g.,

#include "TwoVector.h"
int main() {
 TwoVector v; // v is an object of type TwoVector

(Actually, variables are also objects in C++. Sometimes class
instances are called “class objects” -- distinction is not important.)

A class contains in general both:
 variables, called “data members” and
 functions, called “member functions” (or “methods”)

G. Cowan / RHUL 97 Statistical Data Analysis / Lectures on C++

Data members of a TwoVector object
The data members of a TwoVector are:

...
private:
 double m_x;
 double m_y;

Their values define the “state” of the object.

Because here they are declared private, a TwoVector object’s
values of m_x and m_y cannot be accessed directly, but only from
within the class’s member functions (more later).

The optional prefixes m_ indicate that these are data members.
Some authors use e.g. a trailing underscore. (Any valid identifier
is allowed.)

G. Cowan / RHUL 98 Statistical Data Analysis / Lectures on C++

The constructors of a TwoVector
The first two member functions of the TwoVector class are:

...
public:
 TwoVector();
 TwoVector(double x, double y);

These are special functions called constructors.

A constructor always has the same name as that of the class.

It is a function that is called when an object is created.

A constructor has no return type.

There can be in general different constructors with different
signatures (type and number of arguments).

G. Cowan / RHUL 99 Statistical Data Analysis / Lectures on C++

The constructors of a TwoVector, cont.
When we declare an object, the constructor is called which has
the matching signature, e.g.,

TwoVector u; // calls TwoVector::TwoVector()

The constructor with no arguments is called the “default
constructor”. If, however, we say

TwoVector v(1.5, 3.7);

then the version that takes two double arguments is called.

If we provide no constructors for our class, C++ automatically
gives us a default constructor.

G. Cowan / RHUL 100 Statistical Data Analysis / Lectures on C++

Defining the constructors of a TwoVector
In the file that defines the member functions, e.g., TwoVector.cc,
we precede each function name with the class name and :: (the
scope resolution operator). For our two constructors we have:

TwoVector::TwoVector() {
 m_x = 0;
 m_y = 0;
}
TwoVector::TwoVector(double x, double y) {
 m_x = x;
 m_y = y;
}

The constructor serves to initialize the object.
If we already have a TwoVector v and we say

TwoVector w = v;

this calls a “copy constructor” (automatically provided).

G. Cowan / RHUL 101 Statistical Data Analysis / Lectures on C++

The member functions of TwoVector
We call an object’s member functions with the “dot” notation:

TwoVector v(1.5, 3.7); // creates an object v
double vX = v.x();
cout << "vX = " << vX << endl; // prints vX = 1.5
...

If the class had public data members, e.g., these would also be
called with a dot. E.g. if m_x and m_y were public, we could say

double vX = v.m_x;

We usually keep the data members private, and only allow the user
of an object to access the data through the public member functions.
This is sometimes called “data hiding”.

If, e.g., we were to change the internal representation to polar
coordinates, we would need to rewrite the functions x(), etc., but
the user of the class wouldn’t see any change.

G. Cowan / RHUL 102 Statistical Data Analysis / Lectures on C++

Defining the member functions
Also in TwoVector.cc we have the following definitions:

double TwoVector::x() const { return m_x; }
double TwoVector::y() const { return m_y; }
double TwoVector::r() const {
 return sqrt(m_x*m_x + m_y*m_y);
}
double TwoVector::theta() const {
 return atan2(m_y, m_x); // from cmath
}
...

These are called “accessor” or “getter” functions.

They access the data but do not change the internal state of the
object; therefore we include const after the (empty) argument list
(more on why we want const here later).

G. Cowan / RHUL 103 Statistical Data Analysis / Lectures on C++

More member functions
Also in TwoVector.cc we have the following definitions:

void TwoVector::setX(double x) { m_x = x; }
void TwoVector::setY(double y) { m_y = y; }
void TwoVector::setR(double r) {
 double cosTheta = m_x / this->r();
 double sinTheta = m_y / this->r();
 m_x = r * cosTheta;
 m_y = r * sinTheta;
}

These are “setter” functions. As they belong to the class, they are
allowed to manipulate the private data members m_x and m_y.

To use with an object, use the “dot” notation:
TwoVector v(1.5, 3.7);
v.setX(2.9); // sets v’s value of m_x to 2.9

G. Cowan / RHUL 104 Statistical Data Analysis / Lectures on C++

Pointers to objects
Just as we can define a pointer to type int,

int* iPtr; // type "pointer to int"

we can define a pointer to an object of any class, e.g.,

TwoVector* vPtr; // type "pointer to TwoVector"

This doesn’t create an object yet! This is done with, e.g.,

vPtr = new TwoVector(1.5, 3.7);

vPtr is now a pointer to our object. With an object pointer, we
call member functions (and access data members) with -> (not
with “.”), e.g.,
double vX = vPtr->x();
cout << "vX = " << vX << endl; // prints vX = 1.5

G. Cowan / RHUL 105 Statistical Data Analysis / Lectures on C++

Forgotten detail: the this pointer
Inside each object’s member functions, C++ automatically provides
a pointer called this. It points to the object that called the member
function. For example, we just saw

void TwoVector::setR(double r) {
 double cosTheta = m_x / this->r();
 double sinTheta = m_y / this->r();
 m_x = r * cosTheta;
 m_y = r * sinTheta;
}

Here the use of this is optional (but nice, since it emphasizes what
belongs to whom). It can be needed if one of the function’s
parameters has the same name, say, x as a data member. By default,
x means the parameter, not the data member; this->x is then used
to access the data member.

G. Cowan / RHUL 106 Statistical Data Analysis / Lectures on C++

Memory allocation
We have seen two main ways to create variables or objects:

 (1) by a declaration (automatic memory allocation):
 int i;
 double myArray[10];
 TwoVector v;
 TwoVector* vPtr;

 (2) using new: (dynamic memory allocation):
 vPtr = new TwoVector(); // creates object
 TwoVector* uPtr = new TwoVector(); // on 1 line
 double* a = new double[n]; // dynamic array
 float* xPtr = new float(3.7);

The key distinction is whether or not we use the new operator.
Note that new always requires a pointer to the newed object.

G. Cowan / RHUL 107 Statistical Data Analysis / Lectures on C++

The stack
When a variable is created by a “usual declaration”, i.e., without
new, memory is allocated on the “stack”.

When the variable goes out of scope, its memory is automatically
deallocated (“popped off the stack”).
...
{
 int i = 3; // memory for i and obj
 MyObject obj; // allocated on the stack
 ...
} // i and obj go out of scope,
 // memory freed

G. Cowan / RHUL 108 Statistical Data Analysis / Lectures on C++

The heap
To allocate memory dynamically, we first create a pointer, e.g.,

 MyClass* ptr;
ptr itself is a variable on the stack. Then we create the object:

 ptr = new MyClass(constructor args);
This creates the object (pointed to by ptr) from a pool of memory
called the “heap” (or “free store”).
When the object goes out of scope, ptr is deleted from the stack,
but the memory for the object itself remains allocated in the heap:
{
 MyClass* ptr = new MyClass(); // creates object
 ...
} // ptr goes out of scope here -- memory leak!

This is called a memory leak. Eventually all of the memory
available will be used up and the program will crash.

G. Cowan / RHUL 109 Statistical Data Analysis / Lectures on C++

Deleting objects
To prevent the memory leak, we need to deallocate the object’s
memory before it goes out of scope:
{
 MyClass* ptr = new MyClass(); // creates an object
 MyClass* a = new MyClass[n]; // array of objects
 ...

 delete ptr; // deletes the object pointed to by ptr
 delete [] a; // brackets needed for array of objects
}

For every new, there should be a delete.
For every new with brackets [], there should be a delete [] .
This deallocates the object’s memory. (Note that the pointer to the
object still exists until it goes out of scope.)

G. Cowan / RHUL 110 Statistical Data Analysis / Lectures on C++

Dangling pointers
Consider what would happen if we deleted the object, but then still
tried to use the pointer:

MyClass* ptr = new MyClass(); // creates an object
...
delete ptr;
ptr->someMemberFunction(); // unpredictable!!!

After the object’s memory is deallocated, it will eventually be
overwritten with other stuff.
But the “dangling pointer” still points to this part of memory.
If we dereference the pointer, it may still give reasonable behaviour.
But not for long! The bug will be unpredictable and hard to find.
Some authors recommend setting a pointer to zero after the delete.
Then trying to dereference a null pointer will give a consistent error.

G. Cowan / RHUL 111 Statistical Data Analysis / Lectures on C++

Static memory allocation
For completeness we should mention static memory allocation.
Static objects are allocated once and live until the program stops.

void aFunction(){
 static bool firstCall = true;
 if (firstCall) {
 firstCall = false;
 ... // do some initialization
 }
 ...
} // firstCall out of scope, but still alive

The next time we enter the function, it remembers the previous
value of the variable firstCall. (Not a very elegant initialization
mechanism but it works.)

This is only one of several uses of the keyword static in C++.

G. Cowan / RHUL 112 Statistical Data Analysis / Lectures on C++

Operator overloading
Suppose we have two TwoVector objects and we want to add them.
We could write an add member function:

TwoVector TwoVector::add(TwoVector& v){
 double cx = this->m_x + v.x();
 double cy = this->m_y + v.y();
 TwoVector c(cx, cy);
 return c;
}

To use this function we would write, e.g.,
TwoVector u = a.add(b);

It would be much easier if would could simply use a+b, but to do
this we need to define the + operator to work on TwoVectors.

This is called operator overloading. It can make manipulation of
the objects more intuitive.

G. Cowan / RHUL 113 Statistical Data Analysis / Lectures on C++

Overloading an operator
We can overload operators either as member or non-member
functions. For member functions, we include in the class
declaration:
class TwoVector {
 public:
 ...
 TwoVector operator+ (const TwoVector&);
 TwoVector operator- (const TwoVector&);
 ...

Instead of the function name we put the keyword operator
followed by the operator being overloaded.

When we say a+b, a calls the function and b is the argument.

The argument is passed by reference (quicker) and the declaration
uses const to protect its value from being changed.

G. Cowan / RHUL 114 Statistical Data Analysis / Lectures on C++

Defining an overloaded operator
We define the overloaded operator along with the other member
functions, e.g., in TwoVector.cc:
TwoVector TwoVector::operator+ (const TwoVector& b) {
 double cx = this->m_x + b.x();
 double cy = this->m_y + b.y();
 TwoVector c(cx, cy);
 return c;
}

The function adds the x and y components of the object that called
the function to those of the argument.

It then returns an object with the summed x and y components.

Recall we declared x() and y(), as const. We did this so that
when we pass a TwoVector argument as const, we’re still able to
use these functions, which don’t change the object’s state.

G. Cowan / RHUL 115 Statistical Data Analysis / Lectures on C++

Overloaded operators: asymmetric arguments
Suppose we want to overload * to allow multiplication of a
TwoVector by a scalar value:
TwoVector TwoVector::operator* (double b) {
 double cx = this->m_x * b;
 double cy = this->m_y * b;
 TwoVector c(cx, cy);
 return c;
}

Given a TwoVector v and a double s we can say e.g. v = v*s;
But how about v = s*v; ???

No! s is not a TwoVector object and cannot call the appropriate
member function (first operand calls the function).

We didn’t have this problem with + since addition commutes.

G. Cowan / RHUL 116 Statistical Data Analysis / Lectures on C++

Overloading operators as non-member functions
We can get around this by overloading * with a non-member
function.

We could put the declaration in TwoVector.h (since it is related
to the class), but outside the class declaration.

We define two versions, one for each order:
TwoVector operator* (const TwoVector&, double b);
TwoVector operator* (double b, const TwoVector&);

For the definitions we have e.g. (other order similar):
TwoVector operator* (double b, const TwoVector& a) {
 double cx = a.x() * b;
 double cy = a.y() * b;
 TwoVector c(cx, cy);
 return c;
}

G. Cowan / RHUL 117 Statistical Data Analysis / Lectures on C++

Restrictions on operator overloading
You can only overload C++’s existing operators:

Unary: + - * & ~ ! ++ -- -> ->*
Binary: + - * / & ^ & | << >>

 += -= *= /= %= ^= &= |= <<= >>=
 < <= > >= == != && || , [] ()
 new new[] delete delete[]

Operator precedence stays same as in original.

Too bad -- cannot replace pow function with ** since this isn’t
allowed, and if we used ^ the precedence would be very low.

Recommendation is only to overload operators if this leads to more
intuitive code. Remember you can still do it all with functions.

You cannot overload: . .* ?: ::

G. Cowan / RHUL 118 Statistical Data Analysis / Lectures on C++

A different “static”: static members
Sometimes it is useful to have a data member or member function
associated not with individual objects but with the class as a whole.

An example is a variable that counts the number of objects of a
class that have been created.

These are called static member functions/variables (yet another use
of the word static -- better would be “class-specific”). To declare:

class TwoVector {
 public:
 ...
 static int totalTwoVecs();
 private:
 static int m_counter;
 ...
};

G. Cowan / RHUL 119 Statistical Data Analysis / Lectures on C++

Static members, continued
Then in TwoVector.cc (note here no keyword static):

int TwoVector::m_counter = 0; // initialize

TwoVector::TwoVector(double x, double y){
 m_x = x;
 m_y = y;
 m_counter++; // in all constructors
}

int TwoVector::totalTwoVecs() { return m_counter; }

Now we can count our TwoVectors. Note the function is called
with class-name:: and then the function name. It is connected to
the class, not to any given object of the class:
TwoVector a, b, c;
int vTot = TwoVector::totalTwoVecs();
cout << vTot << endl; // prints 3

G. Cowan / RHUL 120 Statistical Data Analysis / Lectures on C++

Oops #1: digression on destructors
The totalTwoVec function doesn’t work very well, since we also
create a new TwoVector object when, e.g., we use the overloaded
+. The local object itself dies when it goes out of scope, but the
counter still gets incremented when the constructor is executed.

We can remedy this with a destructor, a special member function
called automatically just before its object dies. The name is ~
followed by the class name. To declare in TwoVector.h:
public:
 ~TwoVector(); // no arguments or return type

And then we define the destructor in TwoVector.cc :
TwoVector::~TwoVector(){ m_counter--; }

Destructors are good places for clean up, e.g., deleting anything
created with new in the constructor.

G. Cowan / RHUL 121 Statistical Data Analysis / Lectures on C++

Oops #2: digression on copy constructors
The totalTwoVec function still doesn’t work very well, since we
should count an extra TwoVector object when, e.g., we say

 TwoVector v; // this increments m_counter
 TwoVector u = v; // oops, m_counter stays same

When we create/initialize an object with an assignment statement,
this calls the copy constructor, which by default just makes a copy.

We need to write our own copy constructor to increment
m_counter. To declare (together with the other constructors):

TwoVector(const TwoVector&); // unique signature

It gets defined in TwoVector.cc :
TwoVector(const TwoVector& v) {
 m_x = v.x(); m_y = v.y();
 m_counter++;
}

G. Cowan / RHUL 122 Statistical Data Analysis / Lectures on C++

Class templates
We defined the TwoVector class using double variables. But in
some applications we might want to use float.

We could cut/paste to create a TwoVector class based on floats
(very bad idea -- think about code maintenance).

Better solution is to create a class template, and from this we
create the desired classes.

template <class T> // T stands for a type
class TwoVector {
 public:
 TwoVector(T, T); // put T where before we
 T x(); // had double
 T y();
 ...
};

G. Cowan / RHUL 123 Statistical Data Analysis / Lectures on C++

Defining class templates
To define the class’s member functions we now have, e.g.,

template <class T>
TwoVector<T>::TwoVector(T x, T y){
 m_x = x;
 m_y = y;
 m_counter++;
}

template <class T>
T TwoVector<T>::x(){ return m_x; }

template <class T>
void TwoVector<T>::setX(T x){
 m_x = x;
}

With templates, class declaration must be in same file as
function definitions (put everything in TwoVector.h).

G. Cowan / RHUL 124 Statistical Data Analysis / Lectures on C++

Using class templates
To use a class template, insert the desired argument:

TwoVector<double> dVec; // creates double version

TwoVector<float> fVec; // creates float version

TwoVector is no longer a class, it’s only a template for classes.

TwoVector<double> and TwoVector<float> are classes
(sometimes called “template classes”, since they were made from
class templates).

Class templates are particularly useful for container classes, such
as vectors, stacks, linked lists, queues, etc. We will see this later
in the Standard Template Library (STL).

G. Cowan / RHUL 125 Statistical Data Analysis / Lectures on C++

The Standard C++ Library
We’ve already seen parts of the standard library such as iostream
and cmath. Here are some more:
What you #include What it does
<algorithm> useful algorithms (sort, search, ...)
<complex> complex number class
<list> a linked list
<stack> a stack (push, pop, etc.)
<string> proper strings (better than C-style)
<vector> often used instead of arrays

Most of these define classes using templates, i.e., we can have a
vector of objects or of type double, int, float, etc. They form
what is called the Standard Template Library (STL).

G. Cowan / RHUL 126 Statistical Data Analysis / Lectures on C++

Using vector
Here is some sample code that uses the vector class. Often a
vector is better than an array.

#include <vector>
using namespace std;
int main() {
 vector<double> v; // uses template
 double x = 3.2;
 v.push_back(x); // element 0 is 3.2
 v.push_back(17.0); // element 1 is 17.0
 vector<double> u = v; // assignment
 int len = v.size();
 for (int i=0; i<len; i++){
 cout << v[i] << endl; // like an array
 }
 v.clear(); // remove all elements
 ...

G. Cowan / RHUL 127 Statistical Data Analysis / Lectures on C++

Sorting elements of a vector
Here is sample code that uses the sort function in algorithm:
#include <vector>
#include <algorithm>
using namespace std;

bool descending(double x, double y){ return (x>y); }

int main() {
...

// u, v are unsorted vectors; overwritten by sort.
// Default sort is ascending; also use user-
// defined comparison function for descending order.

 sort(u.begin(), u.end());
 sort(v.begin(), v.end(), descending);

G. Cowan / RHUL 128 Statistical Data Analysis / Lectures on C++

Iterators
To loop over the elements of a vector v, we could do this:
vector<double> v = ... // define vector v
for (int i=0; i<v.size(); i++){
 cout << v[i] << endl;
}

G. Cowan / RHUL 129 Statistical Data Analysis / Lectures on C++

Alternatively, we can use an iterator, which is defined by the
vector class (and all of the STL container classes):
vector<double> v = ... // define vector v
vector<double>::iterator it;
for (it = v.begin(); it != v.end(); ++it){
 cout << *it << endl;
}

vector’s begin and end functions point to the first and last elements.
++ tells the iterator to go to the next element.
* gives the object (vector element) pointed to (note no index used).

Using string
Here is some sample code that uses the string class (much better
than C-style strings):

#include <string>
using namespace std;
int main() {
 string a, b, c;
 string s = "hello";
 a = s; // assignment
 int len = s.length(); // now len = 5
 bool sEmpty = s.empty(); // now sEmpty = false
 b = s.substring(0,2); // first position is 0
 cout << b << endl; // prints hel
 c = s + " world"; // concatenation
 s.replace(2, 3, "j!"); // replace 3 characters
 // starting at 2 with j!
 cout << s << endl; // hej!
 ...

G. Cowan / RHUL 130 Statistical Data Analysis / Lectures on C++

Inheritance
Often we define a class which is similar to an existing one. For
example, we could have a class

class Animal {
 public:
 double weight();
 double age();
 ...
 private:
 double m_weight;
 double m_age;
 ...
};

G. Cowan / RHUL 131 Statistical Data Analysis / Lectures on C++

Related classes
Now suppose the objects in question are dogs. We want

class Dog {
 public:
 double weight();
 double age();
 bool hasFleas();
 void bark();
 private:
 double m_weight;
 double m_age;
 bool m_hasFleas;
 ...
};

Dog contains some (perhaps many) features of the Animal class but
it requires a few extra ones.

The relationship is of the form “X is a Y”: a dog is an animal.

G. Cowan / RHUL 132 Statistical Data Analysis / Lectures on C++

Inheritance
Rather than redefine a separate Dog class, we can derive it from
Animal. To do this we declare in Dog.h

#include "Animal.h"
class Dog : public Animal {
 public:
 bool hasFleas();
 void bark();
 ...
 private:
 bool m_hasFleas;
 ...
};

Animal is called the “base class”, Dog is the “derived class”.

Dog inherits all of the public (and “protected”) members of Animal.
We only need to define hasFleas(), bark(), etc.

G. Cowan / RHUL 133 Statistical Data Analysis / Lectures on C++

Polymorphism, virtual functions, etc.
We might redefine a member function of Animal to do or mean
something else in Dog. This is function “overriding”. (Contrast this
with function overloading.)

We could have age() return normal years for Animal, but “dog
years” for Dog. This is an example of polymorphism. The function
takes on different forms, depending on the type of object calling it.

We can also declare functions in the base class as "pure virtual" (or
"abstract"). In the declaration use the keyword virtual and set
equal to zero; we do not supply any definition for the function in
the base class:

 virtual double age() = 0;

This would mean we cannot create an Animal object. A derived
class must define the function if it is to create objects.

G. Cowan / RHUL 134 Statistical Data Analysis / Lectures on C++

Compiling and linking with gmake
For our short test programs it was sufficient to put the compile and
link commands in a short file (e.g. build.sh).

For large programs with many files, however, compiling and
linking can take a long time, and we should therefore recompile
only those files that have been modified.

This can be done with the Unix program make (gnu version gmake).

Homepage www.gnu.org/software/make

Manual ~150 pages (many online mini-tutorials).

Widely used in High Energy Physics (and elsewhere).

G. Cowan / RHUL 135 Statistical Data Analysis / Lectures on C++

Why we use gmake
Suppose we have hello.cc :

#include "goodbye.h"
int main() {
 cout << "Hello world" << endl;
 goodbye();
}

as well as goodbye.cc :

#include "goodbye.h"
using namespace std;
void goodbye() {
 cout << "Good-bye world" << endl;
}

and its prototype in goodbye.h .

G. Cowan / RHUL 136 Statistical Data Analysis / Lectures on C++

Simple example without gmake
Usually we compile with

g++ -o hello hello.cc goodbye.cc

which is really shorthand for compiling and linking steps:

Now suppose we modify goodbye.cc. To rebuild, really we only
need to recompile this file.
But in general it’s difficult to keep track of what needs to be
recompiled, especially if we change a header file.
Using date/time information from the files plus user supplied
information, gmake recompiles only those files that need to be and
links the program.

g++ -c hello.cc
g++ -c goodbye.cc
g++ -o hello hello.o goodbye.o

G. Cowan / RHUL 137 Statistical Data Analysis / Lectures on C++

Simple example with gmake
The first step is to create a “makefile”. gmake looks in the current
directory for the makefile under the names GNUmakefile,
makefile and Makefile (in that order).

The makefile can contain several types of statements, the most
important of which is a “rule”. General format of a rule:

target : dependencies
 command

The target is usually the name of a file we want to produce and the
dependencies are the other files on which the target depends.

On the next line there is a command which must always be
preceded by a tab character (spaces no good). The command tells
gmake what to do to produce the target.

G. Cowan / RHUL 138 Statistical Data Analysis / Lectures on C++

Simple example with gmake, cont.
In our example we create a file named GNUmakefile with:

If we type gmake without an argument, then the first target listed is
taken as the default, i.e., to build the program, simply type

 gmake or gmake hello

We could also type e.g.
 gmake goodbye.o

if we wanted only to compile goodbye.cc.

hello : hello.o goodbye.o
 g++ -o hello hello.o goodbye.o

hello.o : hello.cc goodbye.h
 g++ -c hello.cc

goodbye.o : goodbye.cc goodbye.h
 g++ -c goodbye.cc

G. Cowan / RHUL 139 Statistical Data Analysis / Lectures on C++

gmake refinements
In the makefile we can also define variables (i.e., symbols). E.g.,
rather than repeating hello.o goodbye.o we can define

When gmake encounters $(objects) it makes the substitution.

objects = hello.o goodbye.o

hello : $(objects)

 g++ -o hello $(objects)
...

We can also make gmake figure out the command. We see that
hello.o depends on a source file with suffix .cc and a header file
with suffix .h. Provided certain defaults are set up right, it will
work if we say e.g.

hello.o : hello.cc goodbye.h

G. Cowan / RHUL 140 Statistical Data Analysis / Lectures on C++

gmake for experts
makefiles can become extremely complicated and cryptic.

Often they are hundreds or thousands of lines long.

Often they are themselves not written by “humans” but rather
constructed by an equally obscure shell script.

The goal here has been to give you some feel for what gmake does
and how to work with makefiles provided by others.

Often software packages are distributed with a makefile. You
might have to edit a few lines depending on the local set up
(probably explained in the comments) and then type gmake.

We will put some simple and generalizable examples on the
course web site.

G. Cowan / RHUL 141 Statistical Data Analysis / Lectures on C++

Debugging your code
You should write and test your code in short incremental steps.
Then if something doesn’t work you can take a short step back
and figure out the problem.

For every class, write a short program to test its member
functions.

You can go a long way with cout. But, to really see what’s
going on when a program executes, it’s useful to have a
debugging program.

The current best choice for us is probably ddd
(DataDisplayDebugger) which is effectively free (gnu license).

ddd is actually an interface to a lower level debugging program,
which can be gdb. If you don’t have ddd installed, try xxgdb.

G. Cowan / RHUL 142 Statistical Data Analysis / Lectures on C++

Using ddd

The ddd homepage is www.gnu.org/software/ddd

There are extensive online tutorials, manuals, etc.

To use ddd, you must compile your code with the -g option:

 g++ -g -o MyProg MyProg.cc

Then type

 ddd MyProg

You should see a window with your program’s source code and a
bunch of controls.

G. Cowan / RHUL 143 Statistical Data Analysis / Lectures on C++

When you start ddd
From the ddd online manual:

G. Cowan / RHUL 144 Statistical Data Analysis / Lectures on C++

Running the program
Click a line of the program and then on “Break” to set a break point.
Then click on “Run”. The program will stop at the break point.

G. Cowan / RHUL 145 Statistical Data Analysis / Lectures on C++

Stepping through the program
To execute current line, click next.
Put cursor over a variable to see its value.
For objects, select it and click Display.

You get the idea.
Refer to the online
tutorial and manual.

G. Cowan / RHUL 146 Statistical Data Analysis / Lectures on C++

